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and the consequences of spatial structure and movement
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Abstract
We revisit a seminal paper by Levin (AmNat 108:207–228, 1974), where spatiallymediated coexistence and spatial pattern formation
were described.We do so by reviewing and explaining the mathematical tools used to evaluate the dynamics of ecological systems in
space, from the perspective of recent developments in spatial population dynamics. We stress the importance of space-mediated
stability for the coexistence of competing species and explore the ecological consequences of space-induced instabilities (Turing
instabilities) for spatial pattern formation in predator–prey systems. Throughout, we link existing theory to recent developments in
discrete spatially structured metapopulations, such as our understanding of how ecological dynamics occurring on a network can be
analyzed using the Laplacian matrix and its associated eigenvalue spectrum. We underline the validity of Levin’s message, over
40 years later, and suggest it has ever-growing implications in a changing and increasingly fragmented world.

Keywords Spatial structure . Ecological landscape . Stability . Persistence . Coexistence . Networks

BThis model will be a simplification and an idealization, and
consequently a falsification. It is to be hoped that the features
retained for discussion are those of greatest importance in the
present state of knowledge.^—(Alan Turing, 1952)

BWhen we observe the environment, we necessarily do so
on only a limited range of scales; therefore, our perception of
events provides us with only a low-dimensional slice through
a high-dimensional cake.^—(Simon Levin, 1992)

Introduction

Populations are inherently spatial, as their constituent individ-
uals inhabit and move across the landscape in response to

environmental and behavioral cues. We have long known that
the distribution of individuals across a landscape and their
dispersal—i.e. their population-level spatial structure—
determines and constrains intra- and interspecific interactions
(e.g., Skellam 1951; MacArthur and Wilson 1967; Levin
1974; Tilman and Kareiva 1997; Fagan et al. 1999). This
spatial structure often arises from dispersal (e.g., Levins
1969; Gilpin and Hanski 1991; Hanski 1998, 1999; Bonsall
et al. 2005; Schnell et al. 2013; Gibert 2016; Yeakel et al.
2018), habitat selection and suitability (MacArthur and
Levins 1964; Rosenzweig 1981; Cody 1985; Hirzel et al.
2001; Brotons et al. 2004; Abrams 2007; Hirzel and Le Lay
2008), aggregation (Hassell and May 1974; Krause and
Tegeder 1994; Levin 1994; May et al. 2016) or segregation
of individuals (Recher 1966; Thiebot et al. 2012; Navarro
et al. 2013), local environmental conditions (Pearson and
Dawson 2003; Thuiller et al. 2004), local extinction
(MacArthur and Wilson 1967; Levins 1969; Gilpin and
Hanski 1991) as well as interspecific ecological interactions
such as competition (Tilman 1994; Tilman et al. 1994;
Amarasekare 2003; Amarasekare et al. 2004), predation
(Bascompte et al. 2002; McCann et al. 2005; Amarasekare
2008), and facilitation (Choler et al. 2001; Stachowicz 2001;
Boulangeat et al. 2012).
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Ecological interactions and processes affect, and are affect-
ed by, the spatial structure of species. This interplay can
change over time and influence the way individuals reproduce
and die, which in turn alters population growth rates (e.g.,
Law et al. 2003). Indeed, spatial structure and dynamics as
well as spatial heterogeneity often mediate coexistence over
time (Levin 1974; Tilman 1994; Tilman and Kareiva 1997;
Amarasekare and Nisbet 2001; Leibold et al. 2004), protect
prey from their predators (e.g., Bowman and Harris 1980;
Berkeley et al. 2004), or mediate predator–prey interactions
(Hastings 1977, 1980, 1992; Holt 1984). The dispersal of
individuals across the landscape therefore has myriad conse-
quences for ecological dynamics and spatial pattern formation
(Levins 1969, 1974; Hastings 1980; Gilpin and Hanski 1991;
Holmes et al. 1994; Okubo and Levin 2001). Indeed, dispersal
can maintain local populations above their extinction thresh-
old in places where they would otherwise not be able to per-
sist, a phenomenon known as ecological rescue (e.g., Gotelli
1991). Spatial structure and dynamics can also determine the
way networks of interacting species are interconnected
(McCann et al. 2005; Massol et al. 2011) and whether these
complex networks can persist over time (Hassell et al. 1991;
Amarasekare 2008; Massol et al. 2011; Gravel et al. 2011,
2016). Taken together, the consequences of spatial structure
can directly influence species diversity over space and time
(De Souza et al. 2014).

Populations often inhabit discrete areas of the landscape, or
patches, where demographic processes occur within patches,
and dispersal occurs between them. The movement of organ-
isms between patches leads to local differences in colonization
and extinction rates, which can both influence the spatial dis-
tribution of a species over time (Levins 1969; Gilpin and
Hanski 1991; Hanski and Mononen 2011). Seminal work by
MacArthur and Wilson (1967) showed that the distance be-
tween patches (for example, between islands and a mainland)
influences diversity. In fact, the study and understanding of
patch dynamics gave rise to fundamental and long-standing
ecological theories, including (Hanski 1998, 1999),
metacommunity dynamics (Leibold et al. 2004; Chisholm
and Gonzalez 2010; Pillai et al. 2010; Carrara et al. 2012),
and even metaecosystems (Loreau et al. 2003; Massol et al.
2011).

Disregarding spatial structure can be detrimental to our
understanding of ecological processes. Indeed, disciplines of
ecology that have historically overlooked spatial structure,
such as the food web theory, are now working toward incor-
porating spatial processes in such a way to further investigate
and understand the structure and stability of networks of
interacting species and food webs (e.g., McCann et al. 2005;
Holland and Hastings 2008; Massol et al. 2011; Gravel et al.
2011, 2016; Albouy et al. 2014). Recent work has shown that
the topology of food webs strongly depends on the spatial
structure of their constituent species (Massol et al. 2011;

Gravel et al. 2011). The movement of even a small fraction
of such species, such as top predators, can strongly influence
species persistence within foodwebs (Gravel et al. 2011; Pillai
et al. 2011), as well as food web stability (McCann et al.
2005), i.e., the tendency of the system to return to a steady
state after a small perturbation. Indeed, the spatial coupling of
food webs within metacommunities (Massol et al. 2011) or
metaecosystems (Gravel et al. 2016) can either positively or
negatively impact stability, which has myriad consequences
for our understanding of how these complex networks of
interacting species persist in nature, directly addressing a
long-standing debate in ecology (May 1972; McCann 2000).

The spatial structure of interacting populations can also
determine the pace and outcome of tcoevolutionary processes
(Nuismer et al. 1999, 2000, 2003; Gomulkiewicz et al. 2000;
Doebeli and Dieckmann 2003; Nuismer 2006; Gandon and
Nuismer 2009; Gibert et al. 2013; Raimundo et al. 2014;
Yeakel et al. 2018). Not only does the topology of spatial
networks of co-occurrence matter, so does the number of con-
nections between sites, as well as the distribution of sites
where selection is reciprocal across the landscape (i.e.,
coevolutionary hotspots, Nuismer et al. 1999; Gomulkiewicz
et al. 2000; Gibert et al. 2013). Many empirical tests of these
ideas have shown spatially structured evolutionary and coevo-
lutionary dynamics between parasites and hosts as well as
bacteria and phages (Greischar and Koskella 2007;
Carlsson-Granér and Thrall 2015; Penczykowski et al. 2016;
Fronhofer and Altermatt 2017), with important consequences
for the dispersal of infectious diseases across landscapes
(Levin and Pimentel 1981). Indeed, the role of spatially struc-
tured ecological processes in mediating the evolution and ep-
idemiology of diseases was acknowledged very early (Levin
and Pimentel 1981) and has since become a central tenet of
disease ecology (Holdenrieder et al. 2004; Biek and Real
2010).

Space therefore plays a central role in mediating ecological
dynamics across scales, from individuals to ecosystems and
from microbes to macrobes. Understanding how the spatial
structure of populations or collections of interacting popula-
tions, constrain, facilitate, or determine ecological dynamics,
however, is still an active area of research, due to the complex
nature of the problem and its profound implications. Here, we
seek to revisit and build upon seminal work by Levin (1974),
to explore the importance of dispersal-induced instabilities for
population dynamics, species persistence, and pattern forma-
tion in space. The first section of this paper reviews some of
the fundamentals of a family ofmodels that incorporates space
in ecological dynamics. The second section revisits Levin’s
work where it was shown that the spatial structure of compet-
ing species ensures stable coexistence. We then build upon
these results to ask whether such phenomena hold for larger,
more complex spatial structures. Lastly, we explore the role
that migration-induced instabilities play in determining
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predator–prey persistence over time as well as the onset of
pattern formation.

Levin’s seminal paper was not the first in examining the
role of space in ecological dynamics: the role of dispersal and
its ecological effects had first been acknowledged in the 1950s
(Skellam 1951) and explored by others (Cohen 1970; Levins
and Culver 1971; Horn and MacArthur 1972) based on earlier
work by Alan Turing (1952) and Othmer and Scrivens (1972).
However, Levin highlighted the potentially important role that
spatially induced instabilities may play in ecological dynam-
ics. By revisiting Levin’s work, we thus seek to explore and
contrast the role of dynamic stability in ecological dynamics:
we show that although dynamic stability is positively associ-
ated with persistence in nonspatial systems, its effect can be
more multifaceted in spatially explicit scenarios, having both
positive and negative effects on species persistence and com-
munity diversity.

Generalities of spatial ecological models

A number of suitable approaches can be introduced to explore
the effects of spatial structure on population dynamics. For
example, the patch dynamics framework can be used to deter-
mine site occupancy as a function of processes occurring over
long time scales, such as colonization and extinction (e.g.,
Levins 1969; Hanski 1998, 1999), while disregarding changes
in population abundances over time. Levin’s (1974) approach
built upon previous theoretical work that quantified how
short-term processes, such as reproduction and mortality, in-
fluenced population dynamics within sites connected by dis-
persal. As opposed to patch dynamics, this approach
tracked changes in population abundances in addition to
changes in patch occupancy to examine the larger-scale
effects of both intra- and, eventually, interspecific interac-
tions. However, there are multiple ways to model these
shorter-term processes in a spatially explicit framework.
A common approach involves using reaction–diffusion
equations, which have traditionally been used to study
and understand the dynamics of quantities that change over
both space and time, like chemical reactions and morpho-
gen diffusion (Turing 1952; Othmer and Scriven 1971), or
in this case, interacting and dispersing species.

Reaction–diffusion equations keep track of two species
interacting over a continuous landscape, such that the pop-
ulation density of both species, N1 and N2, is a function of
time and space, N1(t, X) and N2(t, X), with X being an n-
dimensional vector (i.e., for a unidimensional space,
X = (x), for a two-dimensional space, X = (x, y), and so
forth). Here and henceforth, we write only N1 and N2 for
simplicity. Intra- and interspecific interactions for species
N1 and N2 are determined by the functions f(N1, N2) and
g(N1, N2), respectively, and movement across the

continuous landscape is assumed to be governed by pas-
sive diffusion. In such a case, movement is controlled by
the diffusion coefficient, D, that controls the magnitude of
the rate of movement for both interacting species, and the
Laplace operator, ∇2, defined as ∇2Ni = ∂2Ni/∂X2. The
Laplace operator quantifies the change in density due to
the movement of species from regions where densities are
high to regions where densities are low. For example, in
two-dimensional space (X = (x, y)), the Laplacian term is:

∇ 2Ni ¼ ∂2Ni

∂X2 ¼ ∂2Ni

∂x2
þ ∂2Ni

∂y2
: ð1Þ

The governing equations that describe the temporal evolu-
tion of the system over time and space then are,

∂N1

∂t
¼ f N1;N 2ð Þ þ D1∇ 2N1 ð2Þ

∂N2

∂t
¼ g N 1;N2ð Þ þ D2∇ 2N 2: ð3Þ

which incorporate both changes in population growth rate due
to ecological interactions (functions f and g) and due to dis-
persal (D and the Laplace operator). This framework has been
used to explore the importance of dispersal across space to
understand species distributions, persistence, and interspecific
interactions (e.g., Gurney and Nisbet 1975; Hastings 1992;
Morris 1993; Lewis and Murray 1993; Holmes et al. 1994;
White et al. 1996; Okubo and Levin 2001; McKenzie et al.
2012; Potts et al. 2016).

To introduce Levin’s work, we discretize space into a col-
lection of patches connected by migration, much in the way of
classic patch dynamics, in which case the model in (2) and (3)
becomes:

dN1;i

dt
¼ f N 1;i;N2;i

� �þ D∑n
j¼1 N 1; j−N1;i
� � ð4Þ

dN 2;i

dt
¼ g N 1;i;N2;i

� �þ εD∑n
j¼1 N 2; j−N 2;i
� �

; for i ¼ 1;…; n:

ð5Þ

If we define D as the rate of dispersal for species N1, ε
represents howmuch speciesN2 moves with respect to species
N1: if ε > 1, thenN2 moves at a higher rate than doesN1, and if
0 < ε < 1, the opposite is true. The discrete-space model ap-
proaches the continuous-space model when n is large and
every patch is connected to each other (Nakao and
Mikhailov 2010).

The connections between patches on a landscape (i.e.,
which patches are connected to one another) can be sum-
marized by the adjacency matrix (A), where Aij—the ele-
ments of the matrix—are equal to 1 whenever patches i and
j are connected by dispersal, and 0 otherwise. We set the
diagonal elements of the matrix as Aii = 0. Incorporating
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this matrix notation, the system in (4) and (5) can be re-
written as:

dN1;i

dt
¼ f N 1;i;N2;i

� �þ D∑n
j¼1Aij N 1; j−N 1;i

� � ð6Þ
dN2;i

dt
¼ g N1;i;N2;i

� �þ D∑n
j¼1Aij N2; j−N2;i

� �
; for i ¼ 1;…; n;

ð7Þ
or equivalently,

dN1;i

dt
¼ f N 1;i;N2;i

� �þ D∑n
j¼1LijN1; j ð8Þ

dN2;i

dt
¼ g N1;i;N 2;i

� �þ D∑n
j¼1LijN 2; j; for i ¼ 1;…; n; ð9Þ

where Lij are the elements of the Laplacian matrix of the
underlying spatial network of patches. The Laplacian ma-
trix is defined as Lij = Aij − kiδij, where ki ¼ ∑

n

j¼1
Aij (the de-

gree or number of connections of patch i), and δij is the
Kronecker delta function, such that δij = 0 for i ≠ j, and 1
otherwise. Notice how in the discrete version of the model,
the Laplacian matrix plays a similar role as the Laplacian
operator in the reaction–diffusion version of the model in
Eqs. (2) and (3).

This general model determines the densities of species N1

andN2 over time across n patches. In the following section, we
will illustrate some of the biological insights gained by ana-
lyzing such a model based on the results in Levin (1974),
where species coexistence and pattern formation are explored
in a spatial context.

Stability-mediated coexistence

The model

Levin’s 1974 paper showed that two species that cannot
coexist locally can in fact coexist globally when dispersal
across an explicit landscape is taken into account. In what
follows, we recapitulate Levin’s original argument and ex-
amples, discuss the importance of stability for the coexis-
tence of spatially structured competing species, and ex-
plore whether these results hold for more complex under-
lying spatial configurations.

Following Levin’s original argument, let us focus on a sim-
ple case of the model described in the previous section, where
two species, N1 and N2, inhabit two sites and compete for
resources. To follow Levin’s notation, we call the classic in-
trinsic growth rate parameter θ, (rather than r), and the effects
of intra- and interspecific competition on growth are deter-
mined by a and b, respectively. Taken together, the dynamical
system is written as

dN1;i

dt
¼ N1;i θ−aN1;i−bN 2;i

� �þ D∑n¼2
j¼1Aij N1; j−N1;i

� � ð10Þ
dN2;i

dt
¼ N2;i θ−bN1;i−aN2;i

� �þ D∑n¼2
j¼1Aij N 2; j−N2;i

� �
; for i ¼ 1; 2:

ð11Þ

The model in (10) and (11) is equivalent to the classic two-
site Lotka–Volterra competition framework whenever a =αiir/
K and b =αijr/K (whereαij are competition coefficients, andK
is the carrying capacity of both species across sites).

When dispersal does not occur between sites, such thatD =
0, the model has one trivial steady-state solution at N1 = 0 and
N2 = 0 in all sites and three nontrivial steady-state solutions: 1)
N1 = 0 and = θ/a, 2)N1 = θ/a andN2 = 0, and the single internal
steady state 3) N1 = θ/(a + b) and N2 = θ/(a + b). However,
only steady states 1) and 2) are stable, resulting in the
competitive exclusion of one competitor or the other, and
no stable coexistence steady state is possible. A key result
of this spatially explicit framework is that when there is
dispersal (D > 0), the system also has an internal and stable
solution of the form:

N11 ¼ N22 ¼ θ−2D
2a

−
1

2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ−2Dð Þ θ−2D

bþ a
b−a

� �s
ð12Þ

N12 ¼ N21 ¼ θ−2D
2a

þ 1

2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ−2Dð Þ θ−2D

bþ a
b−a

� �
;

s
ð13Þ

where Nij represent steady-state abundances. This single re-
sult testifies to the importance of considering the role of space
in species competitive interactions: without dispersal, coexis-
tence does not occur, whereas when dispersal is allowed, co-
existence is stable under the condition that D is small. In the
following section, we examine this caveat in more detail.

Stability in the two-patch model

To assess the local stability of the two-competitor, two-patch
dynamical system evaluated at a particular steady state, we
apply a small perturbation x(t) to the steady-state population
density of each species in each site, e.g.,

N1;i tð Þ ¼ N1;i þ x1;i tð Þ. Rearranging, the perturbation over
time is then

x tð Þ ¼
N11 tð Þ−N 11

N21 tð Þ−N 21

N22 tð Þ−N 22

N12 tð Þ−N 12

0
BBBB@

1
CCCCA; ð14Þ

and the reason for swapping the positions of N22 and N12 is an
important detail that will be clear shortly. Linearizing the sys-
tem of equations about the steady state and dropping higher
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order terms (i.e., Taylor-expanding about the steady state), we
obtain the following system of equations in matrix form:

dx tð Þ
dt

¼ Jx tð Þ; ð15Þ

where J is the Jacobian matrix, the elements of J are defined

as J ij¼δ
dNi
dt

δV j

����
N1;k ; N2;k

with V = (N11,N21,N22,N12), and where

the expression is evaluated at the internal steady state (denoted
by the jN1;k ; N2;k

, notation).

If at least one eigenvalue of the Jacobian is positive,
the perturbations x(t) grow exponentially over time and
the steady-state solution is unstable. If all eigenvalues
are negative, the perturbations decay exponentially and
the steady-state solution is stable. In our model, the
Jacobian is:

J ¼
θ−2aN 11−bN21−D −bN11 0 D

−bN21 θ−bN11−2aN21−D D 0

0 D θ−bN 12−2aN 22−D −bN22

D 0 −bN 12 θ−2aN 12−bN22−D

0
BBB@

1
CCCA ð16Þ

Finding the eigenvalues of large matrices becomes compu-
tationally expensive and analytically intractable as the number
of sites and/or species grows. Even for a relatively simple
model like ours, solutions of an algebraic equation of order
4 are required, which are complicated but tractable, though
analytically intractable for Jacobians larger than order 5. It is
thus beneficial to simplify such calculations. Levin accom-
plished this by building upon previous literature showing that
the full Jacobian of the system, J, can be rewritten as a func-
tion of the Jacobian of each local patch, Jlocal and the adjacen-
cy matrix of the underlying spatial network of sites. Notice the
two local Jacobians, when linearized based on the order
established in Eq. (12) (thus swapping the order of N22 and
N12), are the same:

J local ¼ θ−2aN11−bN21−D −bN 11

−bN21 θ−bN 11−2aN 21−D

 !

¼ θ−bN12−2aN22−D −bN22

−bN12 θ−2aN12−bN22−D

 !
;

ð17Þ

because N11 ¼ N22 and N12 ¼ N21 (Eqs. (12) and (13)). We
can thus rewrite (16) as:

J ¼ I2⊗J local þ DA⊗A ; ð18Þ
where A is the adjacency matrix associated with the underly-
ing spatial network of patches,

A ¼ 0 1
1 0

� �
; ð19Þ

I2 is the 2 × 2 identity matrix,

I2 ¼ 1 0
0 1

� �
; ð20Þ

and ⊗ is the Kronecker product, where, if we have two
matrices α2 × 2 and β2 × 2, the Kronecker product between
the two is:

α⊗β ¼ α1 α2

α3 α4

� �
⊗ β1 β2

β3 β4

� �

¼
α1β1 α1β2

α1β3 α1β4

α2β1 α2β2

α2β3 α2β4
α3β1 α3β2

α3β3 α3β4

α4β1 α4β2

α4β3 α4β4

0
B@

1
CA; ð21Þ

and D is the movement rate. Whenever a Jacobian can be
written as in Eq. (18), where the matrices I2 and A are
Hermitian (i.e., the matrix equals its complex conjugate
transpose), the eigenvalues of (18) are equal to the eigen-
values of:

J local þ λiDA; i ¼ 1; 2 ð22Þ

where λ1, 2 are the eigenvalues of the adjacency matrix A
(Friedman 1956). In our model, the eigenvalues of the
Jacobian, thus, become the eigenvalues of

J local � DA

¼ θ−2aN11−bN21−D −bN 11 � D
−bN 21 � D θ−bN11−2aN21−D

 !
; ð23Þ

given that the eigenvalues of A (as in Eq. 19) are 1 and − 1.
This reorganization and substitution greatly simplifies the
task of analyzing the original Jacobian, by collapsing a
system of order 4 to a system of order 2. Notice that if
we had chosen an order different than that in Eq. (14),
we would not have been able to use the equality in Eq.
(18), and would have had to resort to analyzing the matrix
in Eq. (16), which is much more cumbersome.
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We can now evaluate the conditions for coexistence,
which occurs whenever the steady-state solution in (12)
and (13) is stable. The single internal steady state is stable
when Trace(Jlocal ± DA) < 0 and Det(Jlocal ± DA) > 0,
where:

Trace J local � DAð Þ ¼ θ−2aN 11−bN21−D

þ θ−bN 11−2aN 21−D ð24Þ

Det J local � DAð Þ ¼ θ−2aN 11−bN21−D
� 	

θ−bN11−2aN 21−D
� 	

− −bN11 � D
� 	

−bN21 � D
� 	

:

ð25Þ

By substituting the steady state in Eqs. (12) and (13) into
Eqs. (24) and (25), we can see that Trace(Jlocal ±DA) < 0 if

and only if D < θ
2

b−a
bþ2a

� 	
, and Trace(Jlocal ±DA) > 0 if and

only if D > θ
2

b−a
bþ2a

� 	
(see Levin 1974, Appendix 2). In other

words, stable coexistence is feasible as long as dispersal

across sites is low and smaller than θ
2

b−a
bþ2a

� 	
(Fig. 1a). If D

is too large, the two sites are effectively behaving as one, and
as we saw for a single site, coexistence is no longer feasible
(Fig. 1b). This result emphasizes the importance of space and
dispersal across sites to ensure coexistence of species that
would otherwise not coexist. But do Levin’s results hold in
larger, more complex spatial structures?

Stability within a complex spatial network

The spatial structure of ecological systems is, however, much
more complex in nature than that considered by Levin’s orig-
inal model. In what follows we show under which conditions
does Levin’s result holds in systems with a larger number of
sites and with complex spatial structure. We will also show
that—in some cases—coexistence can be predicted a priori by
knowing only the topology of the spatial network, even with-
out having a full picture of the underlying population
dynamics.

The competition model for n patches can be written as:

dN1;i

dt
¼ N1;i θ−aN1;i−bN 2;i

� �þ D∑n
j¼1Aij N 1; j−N 1;i

� � ð26Þ

dN 2;i

dt
¼ N 2;i θ−bN 1;i−aN2;i

� �þ D∑n
j¼1Aij N 2; j−N2;i

� �
;

for i ¼ 1;…; n;

ð27Þ

which, as we have shown, can be rewritten as a function of the
Laplacian matrix, such that:

dN1;i

dt
¼ N1;i θ−aN1;i−bN 2;i

� �þ D∑n
j¼1LijN 1; j ð28Þ

dN2;i

dt
¼ N2;i θ−bN1;i−aN 2;i

� �þ D∑n
j¼1LijN 2; j;

for i ¼ 1; 2;…; n:

ð29Þ

The Laplacian matrix, L, is particularly useful as many of
its algebraic properties are directly linked to the structural
properties of the underlying network of patches, and have
consequences for the dynamic properties of populations
interacting on the spatial network.

If we defineΛ as the spectrum ofL, such that,Λ = (Λ0,Λ1,
…,Λn) withΛi being the eigenvalues ofL (and listed such that
Λ0 <Λ1 <… <Λn), the number of eigenvalues equal to zero
equals the number of connected components of the network
(or number of independent subnetworks, Barrat et al. 2008). A
network made of a single connected component has Λ0 = 0, a
network with two connected components, has Λ0 = 0 and
Λ1 = 0, and so forth. Moreover, the magnitude of the ratio of
the second smallest eigenvalue to the largest (e.g., Λ1/Λn in a
network with one connected component—henceforth de-
scribed as the Laplacian eigenratio) is directly linked to the
propensity of a network to exhibit fully synchronized dynam-
ics (Barrat et al. 2008). In fact, the Laplacian eigenratio has
been successfully used before to understand and predict eco-
logical dynamics in riverine networks (Yeakel et al. 2014) and
spatially structured coevolutionary dynamics (Gibert et al.
2013). However, the link between the Laplacian eigenratio
and the dynamic properties of the network typically applies
to dynamic oscillators of some kind (predator–prey dynamics,
matching alleles model, etc), and it is unclear whether such

Fig. 1 a Both species coexist at low movement rates (D = 0.11). b One
species goes extinct at higher movement rates (D = 0.15). All other
parameters as: θ= 3, a= 1.1, b= 1.5
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results could also apply to the system presented in Eqs.
(26)–(27). We thus examine: 1) whether Levin’s principal
findings extend to larger, more complex networks, and 2)
whether we can predict some of the observed behavior of
the model using the Laplacian eigenratio, which is a function
of spatial structure, and thus independent of the underlying
dynamics. Because the spatial structure of interacting popula-
tions is easier to quantify than the constraints that determine
the dynamics for most populations, having a predictor of dy-
namics that does not require knowledge of the underlying
metapopulation dynamics could be important for conservation
biologists and managers.

We simulated the resource–consumer system in Eqs.
(26)–(27) across spatial networks with an increasing number
of patches, with spatial structures determined by the Barabási–
Albert model (such that the spatial networks have a power law
degree distribution, where each network is formed by a small
number of highly connected sites, or hubs, connected to a
larger number of peripheral sites with fewer connections,
Barabási and Albert 1999). We also examined networks with
an increasing average number of connections (average node
degree = 1, 2, and 10) and for increasing dispersal between
populations (D = 0.2, 0.35, 0.5). Because the underlying net-
work is just one possible realization of a stochastic algorithm,
we obtained 1000 network replicates where the underlying
spatial structure was randomized for each combination of
patch number and movement rate D (patch number ranged
from 15 to 65). To assess coexistence, we measured the num-
ber of extinctions of local populations that occurred over each
of the n patches, and averaged the total number of extinctions
across replicates. Populations were considered to go extinct if
local abundances fell below 10−4. Because coexistence is only
possible when the steady-state solutions are stable, changes in
the number of extinctions points to changes in stability. To test
whether we can predict the behavior of the system using only
the structural features of the underlying spatial network, we
also calculated the Laplacian eigenratio for each of the repli-
cates and compared this measure to the average number of
extinctions.

We observed that, while Levin’s result holds—namely, as
D increases, the likelihood of species coexisting decreases—
the system behaves differently as the average node degree of
the network decreases (patches become more isolated, and
those at the periphery are attached to a fewer number of hubs).
At the extreme end, where the average node degree equals
one, the spatial network is shaped very much like a river,
where populations in different tributaries can only reach each
other by traversing those few nodes that serve as confluence
points (Yeakel et al. 2014; Moore et al. 2015; Terui et al.
2018). We find that the potential for coexistence can increase
with the number of patches, but only if the average node
degree is low, and this effect is particularly strong for networks
with riverine topologies. Moreover, we find that river-like

networks with a larger number of patches can facilitate coex-
istence for a greater range of D (Fig. 2a). This result indicates
that species competing on river-like networks may be less
prone to extinction, even if their dispersal rates are exaggerat-
ed, supporting recent empirical observations of river metapop-
ulations (Terui et al. 2018). In contrast, for networks with
higher average node degree, the potential for coexistence de-
clines with an increasing number of patches but is relatively
constant for values of D above a minimum threshold, below
which coexistence is feasible (Fig. 2b, c). In such cases, and
mirroring Levin’s original finding for the effects of increasing
diffusion within the two-site model, a greater number of inter-
connections between sites serves to homogenize local interac-
tions, such that the system begins to operate as a single patch,
and the potential for coexistence begins to erode.

When the node degree is low and connectivity is limited
(e.g., Fig. 2a), the Laplacian eigenratio is predictive of coex-
istence. In general, a lower eigenratio means the network is
closer to having disconnected components; however, there is
no unique match between network structure and eigenratio
value. Conversely, larger eigenratios suggest greater overall
connectivity and an increased likelihood for exhibiting syn-
chronous dynamics across sites. We observe that, as the
eigenratio increases, the number of extinctions increases and
then plateaus, and this pattern becomes more robust for larger
values of D (Fig. 3), thus mirroring what we observe in Fig.
2a. This relationship disappears when dispersal rates are low
(Fig. 3a, green). Our results show that a strong relationship
between the Laplacian ratio and the number of extinctions
emerges as the interconnectivity between sites grows and that
this relationship is insensitive to dispersal rates (Fig. 3b, c).
For populations in nonriverine systems, where node degree is
low and connectivity is limited, these relationships suggest
that a great deal about dynamics can be inferred directly from
the spatial structure of interacting populations, even if the
details of those dynamics are unknown. It has been suggested,
however, that most metapopulations are more likely to occur
as riverine networks—even those that are not constrained by
rivers (Fronhofer and Altermatt 2017). That the interplay be-
tween structure and dynamics follows remarkably different
rules when the spatial network is riverine (Figs. 2a and 3a)
hints at potentially important future areas of research.
Moreover, one major caveat of the present approach is the
assumption of equal dispersal rates among all patches. While
this assumption is commonplace, it is also most likely not to
hold in nature. As such, assessing the effects of changes in
these assumptions could be an interesting future avenue for
research.

Interestingly, while we show that is possible to predict
dynamical outcomes in some cases if we know only the
structure of the spatial network, the contrary is not always
true. Previous work has shown that if our knowledge is
limited to the dynamics of a spatially distributed system
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of interacting populations, it is not generally possible to
predict the structure of the network upon which such dy-
namics occur (Gilarranz et al. 2014). This asymmetry in
the information we obtain from the network versus the
information obtained from the dynamic system likely has
important consequences for the capacity to infer network
from process and process from network, particularly in the
face of imperfect information (Novak et al. 2011).

Instability-mediated spatial pattern
formation

We have explored Levin’s finding that coexistence between
pairs of competing species is ensured in space whenever
steady-state solutions are stable and that, in some cases,
dispersal-mediated coexistence extends to larger, more com-
plex spatial networks. In this section, we expand upon Levin’s

results to show that diffusion-mediated instability, rather than
stability, can also factor into determining the persistence of
populations over time. Mirroring Levin’s paper, we now ex-
amine the onset of spatial instabilities and their role in gener-
ating spatial pattern formation in a consumer–resource (or
predator–prey) system and to what extent these dynamics
can influence important statistical properties of populations
such as variance-dampening portfolio effects (Moore et al.
2010, 2015; Yeakel et al. 2014; Anderson et al. 2015) and
their impact on extinction risk.

If we consider a system, where space is continuous and
interacting species move across the landscape (such as that
defined in Eqs. (1) and (2)), spatial pattern formation—
defined as the onset of heterogeneous steady-state abundances
over space—can emerge (e.g., Baurmann et al. 2007). The
potential ecological importance of those situations in which
pattern formation can be observed has been explored else-
where (e.g., Holmes et al. 1994). One mechanism for the
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Fig. 2 a Top: spatial network for an average node degree equal to 1.
Middle: number of extinctions (low = blue, high = yellow) for all
combinations of the number of available patches and migration rate D.
Bottom: time series for all species across all sites (color code as in Fig. 1)

for the combination of number of patches andmigration rate marked as an
asterisk (namely, 50 patches,D = 0.05). bAs in a but for an average node
degree equal to 2. cAs in a and b but for an average node degree equal to
10. All the other parameters as in Fig. 1
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creation of a spatial pattern in the densities of interacting spe-
cies is dispersal-induced instability, that is, the process where-
by spatial movement destabilizes an otherwise stable steady
state. In such a scenario, we say the system undergoes a
diffusion-induced instability, or crosses a Turing bifurcation,
named after the mathematician Alan Turing, who first de-
scribed the conditions under which spatial pattern formation
could occur for a system of diffusing chemical morphogens
(Turing 1952). In what follows, we consider a consumer–
resource model and examine under what circumstances pat-
tern formation may arise in a two-species system interacting
across a discrete landscape of habitat patches, and discuss
some of the consequences of crossing the Turing bifurcation
for species persistence. We begin by discussing the general
conditions under which Turing bifurcations occur, revisit
Levin’s work from that perspective, and conclude by explor-
ing broader consequences for large complex spatial networks
based on recent theoretical studies on pattern formation in
discrete landscapes.

A general multipatch model

Let us consider a consumer–resource model where both
interacting species move at ratesDC andDR, respectively, over
the landscape. Following previous work (Nakao and
Mikhailov 2010), we can define the ratio of the predator rate

of movement to the prey rate of movement as ε ¼ DC
DR

and

follow changes in abundance over time as:

dRi

dt
¼ f Ri;Cið Þ þ DR∑n

j¼1Aij R j−Ri
� � ð30Þ

dCi

dt
¼ g Ri;Cið Þ þ εDR∑n

j¼1Aij C j−Ci
� �

; for i ¼ 1;…; n;

ð31Þ

so that the rate of dispersal for the predator can be interpreted
as being larger, smaller, or equal to that of the prey, depending
on whether ε is larger, smaller, or equal to 1, respectively.
Notice the change in notation, where the consumer population
is now called C, and the resource population is now called R,
to distinguish this model from that described in the previous
sections, where two species competed for resources.
Assuming that functions f and g do not change across sites,
a consumer–resource model would typically settle to a steady
state of the form R1 ¼ R2 ¼ … ¼ Rn and
C1 ¼ C2 ¼ … ¼ Cn, irrespective of dispersal rates. Let us
see why this happens.

In the nonspatial scenario, i.e., there is no dispersal
(DR =DC = 0), we have n independent systems of differen-
tial equations:

dRi

dt
¼ f Ri;Cið Þ ð32Þ

dCi

dt
¼ g Ri;Cið Þ; for i ¼ 1;…; n; ð33Þ

which go the steady states R*
1;…;R*

n and C*
1;…;C*

n, with R*
1

¼ … ¼ R*
n and C*

1 ¼ … ¼ C*
n (to contrast between the spa-

tial and nonspatial steady-state solutions, we use the star no-
tation R*

i , C
*
i for the nonspatial case). When evaluated at the

steady state, Eqs. (32) and (33) become dRi
dt ¼ f R*

i ;C
*
i

� � ¼ 0
and dCi

dt ¼ g R*
i ;C

*
i

� � ¼ 0. Then, if we evaluate the spatial
model in Eqs. (30)–(31) at the steady state of the nonspatial
model (32–33), we get:

f R*
i ;C

*
i

� �þ D∑n
j¼1Aij R*

j−R
*
i

� 	
ð34Þ

g R*
i ;C

*
i

� �þ D∑n
j¼1Aij C*

j−C
*
i

� 	
; ð35Þ

with f R*
i ;C

*
i

� � ¼ g R*
i ;C

*
i

� � ¼ 0. But because R*
1 ¼ … ¼ R*

n
and C*

1 ¼ … ¼ C*
n, then D∑n

j¼1Aij R*
j−R

*
i

� 	
¼ 0 and

D∑n
j¼1Aij C*

j−C
*
i

� 	
¼ 0. Because of this,

(a)

(b)

(c)

Fig. 3 Number of extinctions against the Laplacian eigenratio (Λ1/Λn) of
the underlying network for increasing movement rates for an underlying
spatial network with average node degree equal to 1 (a), equal to 2 (b), or
equal to 10 (c). All the other parameters as in Fig. 2
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f R*
i ;C

*
i

� �þ D∑n
j¼1Aij R*

j−R
*
i

� 	
¼ 0 and g R*

i ;C
*
i

� �þ D∑n
j¼1Aij C*

j−C
*
i

� 	
¼ 0,

which means R*
1 ¼ … ¼ R*

n and C*
1 ¼ … ¼ C*

n is also a
steady-state solution of the spatial model. This result is
not true whenever different steady states are expected
across sites, as in the two-site competition model studied
in the previous section, where the steady states for popu-
lations are mirror images of each other. In the spatial
consumer–resource model presented here, R1 ¼ C2 and R2

¼ C1 with R1≠R2 and C1≠C2.
To study the stability of such a model, and without modi-

fying the underlying dynamics, we can again employ the
Laplacian matrix notation used in Eqs. (30)–(31):

dRi

dt
¼ f Ri;Cið Þ þ DR∑n

j¼1LijR j ð36Þ

dCi

dt
¼ g Ri;Cið Þ þ εDR∑n

j¼1LijC j; for i ¼ 1;…; n: ð37Þ

In what follows we show that the stability of the above
model depends on the eigenvalues of the Jacobian matrix of
the system (λi) and the eigenvalues of the Laplacian matrix of
the system (Λi).

The Jacobian of the model described in Eqs. (36)–(37) is
given by:

J ¼

∂ f
∂R1

þ DRL11
∂ f
∂C1

∂g
∂R1

∂g
∂C1

þ εDRL11
⋯ DRL1n 0

0 εDRL1n

⋮ ⋱ ⋮

DRLn1 0
0 εDRLn1

⋯

∂ f
∂Rn

þ DRLnn
∂ f
∂Cn

∂g
∂Rn

∂g
∂Cn

þ εDRLnn

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

�����������������
R1;…;Rn;C1;…;Cn

ð38Þ

Assuming no dispersal (D = 0), we notice that all local
Jacobians are the same when evaluated at equilibrium, be-

cause R1 ¼ … ¼ Rn and C1 ¼ … ¼ Cn. Thus, (38) can be
written as:

J ¼ In⊗Jnonspatial þ L⊗ DR 0
0 εDR

� �
; ð39Þ

where

Jnonspatial ¼
∂ f
∂R

∂ f
∂C

∂g
∂R

∂g
∂C

0
B@

1
CA
�������
R;C

; ð40Þ

In ¼
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

0
@

1
A; ð41Þ

and

L⊗ DR 0
0 εDR

� �

¼
L11 ⋯ L1n
⋮ ⋱ ⋮
Ln1 ⋯ Lnn

0
@

1
A⊗ DR 0

0 εDR

� �

¼

DRL11 0
0 εDRL11

⋯ DRL1n 0
0 εDRL1n

⋮ ⋱ ⋮
DRLn1 0
0 εDRLn1

⋯ DRLnn 0
0 εDRLnn

0
BBB@

1
CCCA ð42Þ

Because both In and L are Hermitian, we can use
Friedman’s theorem (Friedman 1956), as before, and the
eigenvalues of the Jacobian eigenvalues of (38) and (39)
are the eigenvalues of the matrices:

Jnonspatial þ Λi
DR 0
0 εDR

� �
; ; i ¼ 1;…; n ð43Þ

or

∂ f
∂R

þ DRΛi
∂ f
∂C

∂g
∂R

∂g
∂C

þ εDRΛi

0
B@

1
CA
�������
R;C

; i ¼ 1;…; n; ð44Þ

where Λi are the eigenvalues of the Laplacian matrix, L.
If a single Jacobian eigenvalue (from the spectrum of

eigenvalues given by the matrices in Eq. (44)) has positive
real part, then the steady-state solution is unstable, and it is
stable otherwise. If the nonspatial model is stable (DR = 0,
DC = 0), but becomes unstable when dispersal is consid-
ered, it may cross a Turing bifurcation, in which the system
can produce spatially inhomogeneous steady-state densi-
ties, thus giving rise to spatial pattern formation in
steady-state densities. In the next section, we examine the
conditions under which Turing instabilities and pattern for-
mation may arise in a predator–prey system distributed
over n sites.
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Turing instability

We use Eq. (44) to assess under what conditions the model in
Eqs. (37)–(38) may become spatially unstable, giving rise to
spatial pattern formation in steady-state densities. For a Turing
instability to arise, the nonspatial system needs to be stable; in
other words, an already unstable system cannot be stabilized
by dispersal. This implies that Tr(Jnonspatial) < 0 and

Det(Jnonspatial) > 0. If we define f R ¼ ∂ f
∂R, f C ¼ ∂ f

∂C, gR ¼ ∂g
∂R

and gC ¼ ∂g
∂C, we can write:

Jnonspatial ¼ f R f C
gR gC

� �
; ð45Þ

where each element of Jnonspatial depends on the partial deriv-
atives of the functions f and g with respect to the state
variables.

The stability conditions in the nonspatial system,
Tr(Jnonspatial) < 0 and Det(Jnonspatial) > 0 then become:

f R þ gC < 0 ; ð46Þ
f RgC− f CgR > 0: ð47Þ

In contrast, the stability conditions for the spatial system
are,

Tr Jnonspatial þ Λi
DR 0
0 εDR

� �� �
< 0 ; ð48Þ

Det Jnonspatial þ Λi
DR 0
0 εDR

� �� �
> 0: ð49Þ

Condition (48) implies that:

f R þ gC þ Λi 1þ εð ÞDR < 0 : ð50Þ

Because the elements of the Laplacian matrix are defined
as (Lij = Aij − kiδij), its eigenvalues, Λi, must all be negative or
zero (assuming that every node is connected to the spatial
network). Then, using Eq. (46), it follows that:

f R þ gC þ Λi 1þ εð ÞDR≤ f R þ gC < 0 ; ð51Þ
which results in the trace of the system being always negative
if the steady states of the nonspatial system are stable. For the
system to be Turing unstable, the determinant of at least one of
the Jacobian matrices (from Eqs. (43) and (44)) must be neg-
ative:

f R þ ΛiDRð Þ gC þ εΛiDRð Þ− f CgR < 0 ; ð52Þ
which can be rewritten as,

f RgC− f CgR þ Λi DRgC þ εDR f Rð Þ þ εΛi
2DR

2 < 0 : ð53Þ

Because Λi < 0, εΛi
2DR

2 > 0, and fRgC − fCgR > 0, we need
DRgC + εDRfR > 0 for Eq. (53) to hold, which is a necessary

but not sufficient condition for the emergence of a Turing
instability. We observe that Eq. (53) is a concave up quadratic
equation in Λi, so a sufficient condition for Eq. (53) to be
negative is that it becomes negative at its minimum, which
can be found by taking the derivative of Eq. (53) with respect
to Λi, setting the expression to zero and solving for Λi. This
results in

Λimin ¼ −
DRgC þ εDR f R

2εDR
2 ; ð54Þ

which we can now substitute back into Eq. (53), to get

f RgC− f CgR <
DRgC þ εDR f Rð Þ

4εDR
2

2

: ð55Þ

Using Eq. (55), we can derive, for a fixed DR, the factors
that promote the onset of Turing instabilities. For example, Eq.
(55) is more likely to hold for very high ε (the equation in-
creases linearly with εwhen ε is very large), or very low ε (the
right-hand side expression tends to infinity as ε goes to 0). This
means that Turing instabilities are more likely to occur in sys-
tems where one of the species is much more mobile than the
other, as Levin’s paper also showed for a simple predator–prey
system. However, whether Eq. (55) holds, and whether it is the
predator or the prey mobility that matters, will ultimately de-
pend on the specific functional forms that fR and gC take, which
depend on how predator growth increases with prey density
(the function f), and how prey growth is reduced by the pred-
ator (the function g). Therefore, the Turing instability in this
case ultimately depends on the diagonal terms of the Jacobian

matrix: ∂ f∂R þ DRΛi and
∂g
∂C þ εDRΛi, evaluated at steady state.

In more general terms, the ecological conditions that have
been shown to promote Turing instabilities are multiple. For
example, recent work has shown that Turing instabilities are
likely to emerge under the influence of: 1) high nutrient supply
(e.g., high prey carrying capacity); 2) weak prey intraspecific
competition; 3) high prey abundance, strong intraspecific
competition among predators (e.g., strong interference;
Baurmann et al. 2007); 4) strongly density-dependent predator
mortality term (e.g., quadratic mortality term rather than line-
ar); and/or 5) high predator movement rates relative to prey or
vice versa, as we saw in Levin’s case (Levin 1974; Baurmann
et al. 2007). Interestingly, it was shown recently that in mul-
tispecies contexts, Turing bifurcations can occur for any com-
bination of resource and consumer dispersal rates, which
makes pattern formation a much more likely feature of multi-
species systems than previously thought (Fanelli et al. 2013).

Finally, because Turing instabilities can arise if just one
Laplacian eigenvalue Λi (Eq. 54) satisfies Eq. (55), and given
that the Laplacian matrix is determined by the structure of the
underlying spatial network, it follows that the spatial move-
ment of individuals can have an important effect on whether
the Turing bifurcation occurs for a given set of interactions
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and rate laws. In what follows we explore numerically some of
these results and discuss some potential ecological conse-
quences of crossing the Turing bifurcation.

Complex underlying spatial networks
and the ecological consequences of Turing
instabilities

In this section, we explore the ecological consequences of the
onset of Turing instabilities. To do so, we focus on two
consumer–resource models, a modified Rosenzweig–
MacArthur (RMA) model that considers density-dependent
predator mortality (the classic RMA model considers
density-independent per capita mortality for the predator, but
strong density dependence is needed for Turing instabilities to
be present) and a modifiedMimura–Murray (MM) model that
considers a type-I functional response and strongly density-
dependent mortality for the predator. This latter model has
been shown before to exhibit pattern formation as well
(Nakao and Mikhailov 2010), which is why we adopt it in this
paper. The RMA model determines the population density of
predators (C) and prey (R) over time, where r is the maximum
per capita growth rate of the prey; K is its carrying capacity; α
and η are the attack rate and handling time of the predator,
respectively; e is the conversion efficiency of the predator; and
d is its per capita death rate. As before, we assume that indi-
viduals can move across patches at a rate DR for the prey and
εDR for the predator. Taken together, the abundances of n
populations of the predator and prey change over time as

dRi

dt
¼ rRi 1−

Ri

K

� �
−

αRiCi

1þ αηRi
þ DR∑n

j¼1LijR j ð56Þ

dCi

dt
¼ e

αRiCi

1þ αηRi
−dCi

2 þ εDR∑n
j¼1LijC j; for i

¼ 1;…; n; ð57Þ

which shares similarities with the model of a previous study
(Turchin and Batzli 2001). In a similar vein, the MM model
incorporates two additional parameters A and B (Mimura and
Murray 1978) that control the strength of the (weak) Allee
effect (where all other parameters are as before), with dynam-
ics determined by

dRi

dt
¼ rRi 1−

Ri

K

� �
Ri

A
þ B

� �
−RiCi þ DR∑n

j¼1LijR j ð58Þ

dCi

dt
¼ RiCi− 1þ dCið ÞCi þ εDR∑n

j¼1LijC j; for i

¼ 1;…; n: ð59Þ

First, we illustrate the onset of Turing instabilities by
assessing the effect of predator dispersal on the Jacobian de-
terminants and the signs of their eigenvalues.We observe that,

as stated before, an increase in the predator movement rate, ε,
leads to negative determinants (Fig. 4a, c) and positive
Jacobian eigenvalues in both models (Fig. 4b, d), hence
Turing instability. As we have shown, the stability of the
steady states of the model are determined by the eigenvalues
of the Laplacian matrix associated to the underlying spatial
network, emphasizing the importance of spatial patterns of
dispersal for determining ecological dynamics.

Crossing the Turing bifurcation leads to spatially inhomo-
geneous steady-state densities for the MM model, where the
populations occupying each site go to steady-state densities
similar to those attained in the nonspatial case in some sites,
but alternative steady-state densities in other sites (Fig. 5). A
previous study has shown that prey dispersal rate controls
where in the spatial network these alternative steady states
appear as a result of the Turing instability (Nakao and
Mikhailov 2010). If the prey dispersal rate is low, the alterna-
tive steady states appear in patches that are more interconnect-
ed (i.e., nodes with high degree or hubs, Fig. 5a, b), whereas
when the prey dispersal rate is high, the alternative steady
states appear in patches with fewer connections (i.e., periph-
eral nodes) (Fig. 5c, d).

Given how potentially pervasive Turing instabilities can
be, what are the effects of these dynamics on species persis-
tence? The classic perception in ecology is that unstable
steady-state solutions lead to larger extinction risk and, thus,
lower persistence (e.g., May 1972; McCann 2000; Rooney
and McCann 2011; Allesina and Tang 2012); however, the
potential for systems to exhibit spatial pattern formation via
Turing instabilities suggests that this perception may be more
nuanced (Earn 2000). To address this question, we assessed
how persistence in the metapopulation was affected by Turing
instability as a function of spatial connectivity. To do so, we
numerically solved the MM model for 1000 time steps across
increasingly interconnected (high average node degree) spa-
tial networks. For each parameter set, we numerically solved
the model 100 times and evaluated numerically whether the
system showed spatial pattern formation or not. Our results
suggest that the region over which the Turing instability arises
depends on the average node degree of the network, withmore
interconnected underlying spatial networks being less prone to
exhibit Turing instabilities (Fig. 6a).

It is widely assumed that instability leads to higher extinc-
tion risk in predator–prey systems (McCann 2000), largely
because instability in nonspatial models results in widely fluc-
tuating populations that spend much time near their extinction
thresholds, thus increasing the chance of stochastic extinc-
tions. To assess under what conditions instability led to fluc-
tuations and extinction, we used two different proxies of ex-
tinction risk: the number of local extinctions and the portfolio
effect of the metapopulation, i.e., to what extent the aggregate
metapopulation dampens local fluctuations in population den-
sities. The latter metric is frequently used to evaluate
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robustness in natural populations (Schindler et al. 2010;
Anderson et al. 2015; Moore et al. 2015). To calculate the
number of stochastic extinctions, we used a stochastic

differential equation version of the model in Eqs. (58)–(59)
that considers low levels of additive demographic
stochasticity (i.e., Weiner process without drift and standard

Fig. 4 a Determinant versus trace of the Jacobian matrix of the
Rosenzweig–MacArthur model for an underlying spatial network with
100 patches and for increasing predator migration rates (ε = 1, in blue, to
ε = 50, in red). Gray (ε = 2), dark gray (ε = 25), and black (ε = 50) dashed
lines represent the relationship between the two variables and its change
with ε, for visualization purposes. The first instance where the determi-
nant becomes negative (onset of the Turing bifurcation) is marked with a
black arrow. b Real part of the maximum eigenvalue for all Jacobian

matrices or the RMA model against the predator movement rate ε.
Colors for visualization purposes only indicate the different modes (each
one associated with a site). The onset of the Turing bifurcation also indi-
cated as a black arrow. c Same as in a but for theMMmodel. d Same as in
b but for the MM model. We can see in all cases how an increase in ε
leads to a Turing bifurcation. RMAmodel parameters: r= 4,K= 7.533, d=
1.8, e= 0.4, α= 9.533, η= 0.105. MMmodel parameters (from Nakao and
Mikhailov 2010): A = 0.0557, B= 35, K= 17.95, d= 0.4, r = 1/9
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Fig. 5 a Time series for the MM
model (ε = 18, DR = 0.06)
showing the onset of the Turing
bifurcation and how it leads to
different steady-state densities for
both predators (purple) and prey
(orange). b 100-site underlying
species network where the dy-
namics in a occur, showing how,
for low prey movement rate
(DR = 0.06), the steady-state den-
sities that differ from the nonspa-
tial values occur in the hubs of the
network (red = high density, blue
= low density, yellow = density
comparable to nonspatial steady-
state density). c As in a but for
larger prey movement rate (DR =
0.45). dAs in b but forDR = 0.45,
showing how for larger prey
movement rates, the alternative
steady-state solutions occur in
peripheral nodes (same color code
as in b). Parameter values as in
Fig. 4
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deviation equal to 1). An extinction event was assumed to
occur whenever a local population density fell below 10−4.
To evaluate robustness to fluctuations, we calculated the av-
erage portfolio effect (PE) for the metapopulation (Anderson
et al. 2015; Schindler et al. 2015) after transients have subsid-
ed using the same stochastic model. The PE is calculated as
the average coefficient of variation (CV) in population abun-
dance across each population, divided by the CVof the aggre-
gate:

PE ¼ CVindh i
CVtot

; ð60Þ

where 〈CVind〉 is the standard deviation of the abundance of
each population individually, divided by their mean abun-
dance at equilibrium, averaged across all sites, and CVtot is
the same but for the sum of abundances across all populations.
As CVtot decreases relative to that of the constituent popula-
tions, PE > 1, and the metapopulation becomes more robust
by dampening the fluctuations of its constituent populations.
Portfolio effects greater than unity typically are associated
with lower levels of synchronization (Loreau and de
Mazancourt 2008; Anderson et al. 2015), increasing the po-
tential for demographic rescue between populations, thus
buffering the metapopulation against extinction.

In our spatial model, the Turing instability leads to a greater
chance of local extinction with larger ε (measured as the num-
ber of local patches that at any point in time fall below 10−4,
Fig. 6b), but larger portfolio effects (Fig. 6c), suggesting that
although the risk of local extinction is higher, the overall ro-
bustness of the metapopulation may be enhanced. Moreover,
there is a sizeable region of parameter space where the Turing
bifurcation has been crossed, the portfolio effect is large, and
where the probability of local extinctions is low. The existence
of this region suggests that there is an intermediate dispersal
rate that promotes persistence both by minimizing local ex-
t inc t ions and by increas ing the capaci ty of the

metapopulations to buffer against variation in individual pop-
ulation densities. Thus, with the onset of the Turing instability,
even though local extinction spikes, rescue effects are strong,
which increases overall persistence. These results suggest that
instability may facilitate—rather than limit—the persistence
of predator–prey systems, and this more nuanced perspective
is particularly relevant when comparing local extinctions,
which are likely temporary, to the persistence of the larger
metapopulation.

Whereas Levin’s results showed the importance of spatially
induced instabilities for pattern formation, we have shown that
these same instabilities can lead to higher portfolio effects,
which increases the potential for ecological rescue, thereby
offsetting the spike in local extinction risk associated with
increased dispersal rates. Importantly, both Levin’s original
work and our results stress the importance of spatial instabil-
ities in shaping species persistence and perhaps buffering
metapopulations against extinction.

Final thoughts

Revisiting Levin (1974), we have reviewed and expanded
upon the original message: space and spatial processes have
paramount consequences for the persistence and dynamics of
interacting populations. The spatial structure and dispersal of
species can promote the coexistence of competing species and
can lead to spatial pattern formation, which in turn may in-
crease species persistence. In this paper, we have explored
some of the broader consequences of Levin’s message, while
placing these classic results in the context of recent advances,
revealing the importance and utility of the Laplacian matrix as
a way to assess ecological dynamics without necessarily
knowing in advance the regulatory processes controlling
inter- and intraspecific interactions. Together, these results
highlight the importance of taking spatial structure into
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Fig. 6 a Frequency of Turing unstable dynamics for all combinations of
the average node degree and predator movement rate and 50 site
underlying spatial networks. Each combination of parameters was run
100 times. b Same as in a but the number of local extinctions is

quantified. c Same as in a and b, but where the portfolio of the whole
metapopulation was quantified, where a portfolio equal to 1 suggests
larger global extinction probability and a larger portfolio suggests a
lower global extinction probability. All the other parameters as in Fig. 4

278 Theor Ecol (2019) 12:265–281



account, especially in a context of future ecosystems, where
an increasingly fragmented landscape will require the incor-
poration of spatial constraints into our understanding of eco-
logical relationships. Space, both the constraints it imposes
and the freedom it allows, elevates the dynamical richness that
we observe in ecological systems and, as we have seen, can
both facilitate and limit persistence, depending on its structure.
As our understanding of the role of space and spatial processes
continues to develop, it is opportune to recall the continued
impact of the framework introduced by Levin in 1974 on
contemporary theoretical approaches, and in what directions
our ideas and methods have since dispersed.
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