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Abstract
Cell division is essential for organismal growth and tissue homeostasis. It is exceptionally significant in tissues chronically 
exposed to intrinsic and external damage, like the liver. After decades of studying the regulation of cell cycle by extracel-
lular signals, there are still gaps in our knowledge on how these two interact with metabolic pathways in vivo. Studying the 
cross-talk of these pathways has direct clinical implications as defects in cell division, signaling pathways, and metabolic 
homeostasis are frequently observed in liver diseases. In this review, we will focus on recent reports which describe various 
functions of cell cycle regulators in hepatic homeostasis. We will describe the interplay between the cell cycle and metabolism 
during liver regeneration after acute and chronic damage. We will focus our attention on non-alcoholic fatty liver disease, 
especially non-alcoholic steatohepatitis. The global incidence of non-alcoholic fatty liver disease is increasing exponentially. 
Therefore, understanding the interplay between cell cycle regulators and metabolism may lead to the discovery of novel 
therapeutic targets amenable to intervention.
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Introduction

The liver is the largest solid organ in the mammalian body. 
It fulfills essential roles in the gastrointestinal tract, control-
ling metabolism, detoxification, digestion, and many other 
essential processes [1]. Due to its functions and the strategic 
location alongside the gastrointestinal tract, it is constantly 
exposed to intrinsic and external damage. To maintain 

functionality, the liver has retained an impressive capacity 
to regenerate after injury [2]. The mechanisms underlying 
liver regeneration are classified into acute or chronic dam-
age depending on nature, timing, and duration of the injury 
[3]. The critical difference is that regeneration after acute 
damage represents a synchronized physiological process [4]. 
In contrast, chronic damage is characterized by cycles of 
damage-regeneration similar to a wound healing response 
(Fig. 1). In this review, we will explore the interaction 
between metabolism and cell cycle in tissue regeneration 
after partial hepatectomy as a model of acute damage. Next, 
we will compare these processes in chronic damage, focus-
ing especially in non-alcoholic fatty liver disease (NAFLD).

NAFLD represents the most frequent chronic liver 
disease in the world. It is characterized by the accumu-
lation of lipid droplets in hepatic cells [5], combined 
with dysregulation of metabolism and cellular division 
[4]. Many questions remain open about the role of cell 
cycle and metabolic pathways during hepatic regeneration 
after acute and chronic damage. To resolve some of these 
questions, this review is divided into two parts: (1) in the 
first section, we will summarize recent data on various 
roles of cell cycle genes involved in hepatocyte division. 
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Simultaneously, we will describe in detail the functions of 
metabolic genes during liver regeneration after hepatec-
tomy as an example of acute liver damage (Fig. 1a). Then, 
(2) we will briefly outline data of studies on the regula-
tion of the cell cycle in murine models of NAFLD as an 
example of chronic damage. Ultimately, we will propose 
potential nodes for targeting the interface between the cell 

cycle and metabolism to improve NAFLD treatment. Liver 
regeneration after hepatectomy is the standard method to 
study the synchronized regulation of cell cycle and metab-
olism in vivo. However, it is essential to highlight that the 
mechanism of tissue regeneration after resection is differ-
ent from that of NAFLD.

Fig. 1   Principles of liver disease, injury, and regeneration. Cur-
rently, liver resection and transplantation are the first line therapy 
offered to patients with a range of liver diseases. a Diseased livers 
display impaired capacity of regeneration after resection. Liver regen-
eration is a mechanism by which hepatic cells compensate for the 
loss of liver mass. It is well synchronized, and in a relatively short 
period of time, the liver returns to its normal size by proliferation of 
hepatic cells. b One of the most common diseases in the clinical set-
ting displays a significant increase in accumulation of lipids in the 
parenchyma of hepatocytes and is known as non-alcoholic fatty liver 
disease (NAFLD). NAFLD leads to chronic damage of the hepatic 

parenchyma, promoting cycles of parenchyma damage and regen-
eration, leading to fibrosis and activation of immune cells recruited 
to clear debris. When cycles of damage/regeneration continue in 
the long-term, there will be more fibrosis and increased inflamma-
tion leading to non-alcoholic steatohepatitis (NASH). NASH may 
evolve to liver cirrhosis, cancer, and end-stage liver disease. During 
the development of NAFLD and progression to NASH, the capacity 
of regeneration of the liver by compensatory cellular hyperplasia is 
dramatically reduced as shown in the colored triangle in which red 
implies high and blue low capacity of regeneration
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The regulation of the cell cycle, signaling, 
and metabolism during acute hepatic 
damage and regeneration

Liver regeneration after acute injury strands for an adap-
tive response by which the liver compensates for the loss of 
functional tissue using cellular hypertrophy (increase in the 
size of hepatic cells) and/or hyperplasia ([2, 3], Fig. 1a). Two 
features render liver regeneration unique compared to repair 
and healing of other tissues. First, before injury, hepatocytes 
are in a quiescent state. However, when the liver is con-
fronted with damage hepatocytes are able to re-enter the cell 
cycle despite being fully differentiated. Therefore, they may 
function as “facultative” stem cells (for more details on the 
role of liver stem cells in liver regeneration refer to [2]). Sec-
ond, hepatic regeneration is well synchronized. Third, the 
rate of cellular division during regeneration is controlled by 
several factors. Growth factors from other organs including 
cytokines from an inflammatory response, metabolic signals, 
circadian rhythm, and blood pressure are among the most 
significant ones [2].

The best-described models to study liver regeneration 
after acute damage are (1) liver resection (partial hepatec-
tomy [3]) and (2) toxicological damage [6]. The essential 
difference is that the latter induces parenchymatic necrosis, 
and hepatocyte proliferation is integrated into a complex 
wound healing response with fibrosis and inflammation 
[6]. In contrast, 2/3 liver resection activates cell division 
in the absence of any cellular lesion [3]. In the following 
discussion, the regenerative response of the liver to partial 
hepatectomy will be divided into three groups of processes, 
namely: (1) the activation of cellular signaling pathways; 
(2) regulation of cell cycle progression; and (3) remodeling 
of metabolism (Fig. 1a). While these events are occurring 
simultaneously, the proposed classification solely aims to 
facilitate the description. We will initially introduce general 
ideas about the regulation of these three processes indepen-
dently. Subsequently, we will highlight potential nodes of 
interaction between the three groups of biological processes.

Regulation of cellular signaling during liver 
regeneration

Resection of 2/3 of the liver activates an acute phase 
response followed by a profound rearrangement of the entire 
cellular signaling network [7]. Based on the consecutive 
activation of a diverse group of transcription factors (TFs), 
the process of liver regeneration is conceptually divided into 
three phases: priming, progression, and termination (Fig. 2). 
The initiation phase is characterized by a fast activation of 
early-response genes [2] with a dramatic increase in blood 
pressure [8]. Collectively, these initiating events have been 

associated with the release of IL-6 and activation of the IL-
6-gp130-Stat3 axis in Kupffer cells [9]. IL-6 from Kupffer 
cells activates the IL-6 receptor gp130 in hepatocytes which 
in turn will phosphorylate STAT3, causing increases in tran-
scriptional activity (Fig. 2). Early response TFs promote the 
activation of a second group known as late-response genes 
that undergo de novo transcription and translation [2]. 
Combined with other TFs activated by growth factors like 
hepatocyte and epidermal growth factors (EGF, HGF), the 
IL-6-gp130 axis activates expression of key cell cycle genes 
[10–15].

Cell cycle genes drive the progression phase until the 
onset of the termination phase [16]. Within 1–2 weeks after 
resection, any remaining cellular division will eventually 
cease in murine livers. As such, two weeks after resection, 
the liver will adjust to the initial pre-resection size and func-
tion while in other mammals the process may take longer 
time. The final stage of regeneration is characterized by 
the termination phase. Here, the liver-to-body weight ratio 
is carefully adjusted. The ratio is regulated by the rate of 
hepatic division and apoptosis until the liver reaches an 
adequate size and all normal physiological functions are 
restored [17, 18].

Regulation of the cell cycle: the role of hypertrophy 
and cellular division during regeneration

Another distinctive feature of liver regeneration is the 
dynamic alterations in cellular hypertrophy and division 
[19]. Normally, after hepatocytes are primed by injury, they 
temporarily increase in size with a subsequent activation of 
cell cycle genes and cellular division [17]. However, we and 
others have shown that an increase in hepatocyte size alone 
is sufficient to recover organ mass in the absence of cell divi-
sion in mice. For example deletion of the cell cycle genes 
Skp2 or Cdk1 [20–23] does not impair regeneration. In addi-
tion, early observations indicated that components of the 
mTOR-AKT signaling are essential to activate an alternative 
regenerative response to promote tissue recovery by com-
pensatory cellular hypertrophy [19, 24, 25]. Nevertheless, 
we also observed that compensatory cellular hypertrophy is 
sufficient for mass recovery, but liver functions are reduced 
[26]. On top of that, our recent unpublished data suggest that 
in the long-term, increases in the size of hepatocytes may 
induce activation of an inflammatory response and fibrosis. 
In conclusion, in the short term cell hypertrophy may offer 
an alternative form of tissue regeneration, but may not be 
sufficient for recovery of liver functions.

During liver regeneration, hepatocytes display an equiva-
lent pattern of expression of cell cycle genes comparable to 
that observed in cell culture models in vitro (for an exhaus-
tive review on cell cycle regulators refer to Refs. [27, 28] 
and Fig. 2). For example, before liver resection, most genes 
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involved in cell division like Cdk1 and cyclin B are downreg-
ulated. Instead genes involved in quiescence like p21Cip1/Waf1 
and p27Kip1 are highly expressed [12, 29–31]. During the 
initiation phase of liver regeneration, the expression of 
genes involved in G1 progression like cyclin D and Cdk4 is 
induced [29]. Finally, during the progression phase of regen-
eration most cell cycle genes are actively expressed [32, 33] 
(Fig. 3). However, there are several exceptions to this rule. 
For example, the murine cyclin B transcript is regulated at 
different time points during liver regeneration, with a peak 
of expression that coincides with the peak of DNA replica-
tion (S-phase, ≈ 36 h after resection) [34, 35]. Additionally, 
in regenerating livers cyclin A and cyclin B are observed in 
the cytoplasmic, nuclear, and membrane containing frac-
tions [36, 37]. In the same way, Cdk1 is expressed as early 
as 30 h after hepatectomy, which is the period of DNA rep-
lication in regenerating hepatocytes [38]. These observa-
tions suggest that Cdk1 may display novel functions outside 
of mitosis, which is supported by recent data [26, 38] but 
was not observed in vitro models. Collectively, these results 
suggest that Cdk1 and its partners cyclin A and cyclin B, 
may possess non-canonical functions in the liver, different 

to the ones described in cell culture systems. We and others 
have shown that during liver regeneration Cdk1 controls cell 
size and cell division [39], cell metabolism [26], and DNA 
replication [38, 40]. However, little data is available on the 
partners cyclin A and cyclin B. Hence, further studies may 
be essential to understand the roles of these cyclins during 
liver regeneration.

Metabolic regulation during liver regeneration 
after acute liver damage

The liver is a vital center for homeostasis of glucose, lipid, 
and overall metabolism [41]. Therefore, acute tissue dam-
age imposes significant stress to the general metabolic per-
formance of the whole organ. Nevertheless, during liver 
regeneration after 2/3 liver resection, hepatocytes are able 
to remodel their metabolic network to promote regenera-
tion while maintaining overall systemic metabolic balance. 
These early observations suggest that liver metabolism is 
robust. In this sense, metabolic pathways compensate for 
the loss of many individual enzymes, which is supported by 
mouse genetics [42–45]. However, liver specific deletion of 

Fig. 2   Regulation of cell cycle by auto and paracrine signaling dur-
ing liver regeneration. Liver regeneration is a well synchronized 
process by which the liver recovers in response to acute damage. In 
the most studied model of liver regeneration, 2/3 of the liver mass 
is removed which triggers a cascade of activation of signaling path-
ways within hepatocytes promoting regeneration. The first wave of 
genes is activated by autocrine and paracrine signals. These transcrip-
tion factors are known as early response genes of liver regeneration 
which license the expression of cell cycle genes during the initiation 
phase of the regenerative process. The second wave of transcription 

factors, known as delayed response genes of liver regeneration, fur-
ther promotes cell cycle progression allowing hepatocytes to enter 
the S-phase of cell cycle. DNA replication is one of the only cellular 
autonomous processes in hepatocytes, and it always occurs between 
32 and 38 h after liver resection, and it is marked by a peak in expres-
sion of cell cycle genes, like CDKs and cyclins. After one or two 
rounds of cell division, most genes that promote cellular proliferation 
will be reduced in expression and the regenerative process enters the 
termination phase. The last phase is characterized by a balance of cell 
division and apoptosis, until the liver reaches the optimal size
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some enzymes including nicotinamide phosphoribosyl trans-
ferase (Nampt) and several members of the P450 cytochrome 
reductase family leads to lethality after partial hepatectomy 
[46–48].

The changes in metabolic demands usually induce small 
rearrangements in metabolism through local mechanisms 
without substantial rewiring of the overall metabolic network 
[41]. However, 2/3 partial hepatectomy leads to both loss of 
tissue mass and glycogen, a major energy reservoir for sys-
temic glucose and energy metabolism [49]. Major resection 
of glycogen in the liver, leads to a substantial reduction in 
blood glucose. This is particularly apparent during the initia-
tion phase of liver regeneration when there is a significant 
increase in the oxidative status as a response to a whole body 
induction of catabolism [49]. Because glucose supply via 
glycogenolysis is limited, the energy required to promote 
liver regeneration may be partly acquired from alternative 
sources that are actively transported into hepatocyte, such 
as lipids [50]. In fact, deletion of the Caveolin1 (Cav1) gene 
induced hepatic failure during early phases of liver regenera-
tion, indicating that lipid import into hepatocytes is essential 
to drive regeneration [51]. CAV1 is essential to transport 
lipids into hepatocytes. Therefore, these observations are 
in agreement with temporary hepatic steatosis being a key 
feature of the early stages of liver regeneration [52, 53]. 
Interestingly, physiological steatosis does not overlap with 
cell division during liver regeneration, which may imply that 

lipid metabolism and cell division are strictly temporally 
separated. However, these ideas need to be further tested.

During the termination phase of liver regeneration, 
hepatic gluconeogenic functions regain homeostatic levels, 
marked by a sharp increase in expression of Akt [44]. These 
events are followed by the activation of biosynthetic path-
ways to promote tissue homeostasis, accumulation of glyco-
gen as well as normal glucose and lipid metabolic processes. 
Based on the main two primary sources of energy, we would 
like to propose a division of metabolic-related events dur-
ing liver regeneration in two phases (1) oxidative and (2) 
biosynthetic (Fig. 4). The oxidation phase is distinguished 
by oxidative metabolism correlated to increases in cell size. 
This would last from the early minutes after liver resection 
to 30 h, when hepatic DNA synthesis starts to peak (Fig. 4). 
After that, the biosynthetic pathways will be active until 
metabolic homeostasis is reached.

Interactions between cell cycle regulators 
and metabolism during acute liver damage

Reduction in blood glucose represents one of the primary 
metabolic markers of hepatic regeneration [26]. The char-
acteristic short-term hypoglycemia is required for adequate 
liver regeneration. This is supported by clinical data indicat-
ing that patients with hyperglycemia typically experience 
an adverse regenerative outcome [54]. Another cause for 
decreased concentration of glucose in serum is the reduced 

Fig. 3   Regulation of cell cycle progression, cellular division and 
hypertrophy during regeneration. The progression phase of liver 
regeneration depends on the synchronized expression of cell cycle 
genes. Within hepatocytes, cyclins and CDKs, as well as their inhibi-

tors, show a similar expression pattern to that observed in vitro mod-
els of cell culture. However, many new functions have been shown 
recently, such as regulation of DNA replication by CDK1, or interac-
tions with metabolic pathways
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expression of metabolic enzymes during the priming and 
progression phases [17]. We have recently published similar 
findings in mice employing a combination of transcriptomic, 
metabolomic and advanced molecular imaging [26].

During cellular division CDK1 phosphorylates specific 
subunits of the mitochondrial oxidative phosphorylation 
complex I [55, 56]. In this sense, CDK1 may couple cell 
division and energy metabolism. In post-mitotic tissues, 
CDK1 regulates gluconeogenic pathways by phosphoryla-
tion of FOXO-1 [57] and glycolytic genes like PFKFB3 [58, 
59]. Following this line of evidence, we published that abla-
tion of CDK1 in hepatocytes led to a significant reduction 
in NADH concentration because mitochondrial function is 
suboptimal [60]. These observations are in agreement with 
recent reports suggesting that deletion of Nampt reduced 
hepatocyte proliferation during regeneration [47]. Collec-
tively, these results suggest an interplay between the oxida-
tive state of hepatocytes and CDK1. Deletion of Cdk1 in the 
liver led to a significant reduction in mitochondrial meta-
bolic processes during S-phase [26]. A standard explanation 
for this is that DNA replication and oxidative metabolism 
are not compatible. Reactive oxygen species (ROS) gener-
ated as a side-product of oxidative metabolism would be 
detrimental when the maintenance of DNA fidelity is most 
critical [61, 62].

Cholesterol and the cell cycle

In the previous sections, we highlighted that hepatic accu-
mulation of lipid droplets is associated with the initiation of 
regeneration and not cellular division. Therefore, we specu-
late that the presence of either lipid droplets or their com-
ponents are incompatible with proliferation. A lipid droplet 
is composed by triglycerides, lipoproteins, cholesterol and 
other components [63]. Cholesterol represents the funda-
mental structural component and thus is essential for its 
formation. In mammals there are two main sources of cho-
lesterol, (1) gastrointestinal digestion and (2) biosynthesis. 
Regardless of the source, cholesterol is stored and metabo-
lized as esterified cholesterol in pericentral hepatocytes 
[64]. As mentioned earlier, during liver regeneration the 
metabolic capacity of hepatocytes is heavily reduced, and it 
is expected that cholesterol production may be hindered as 
well. In fact, our preliminary data show that concentration of 
serum total, free and esterified cholesterol are significantly 
reduced during liver regeneration (unpublished).

In mice, hepatic Srebp-1c is an essential gene for the 
transcriptional activation of enzymes involved in choles-
terol metabolic processes. Deletion of Srebp-1c in hepato-
cytes led to increased accumulation of cholesterol [65], with 
no changes in the composition of other lipids. When mice 

Fig. 4   Interaction of cell cycle genes with major metabolic path-
ways. After 2/3 mass removal, there are significant changes in hemo-
dynamic pressure in the liver, leading to oxidative stress. Moreover, 
resection of 70% of the hepatic glycogen stores leads to hypoglyce-
mia, which in turn promotes lipolysis of adipose tissue. These lipids 
are transported into hepatocytes in the initiation phase of regenera-
tion and produce energy through oxidation. When DNA replication 

and cellular division starts, there is a reduction of oxidation and con-
comitantly activation of biosynthetic pathways. In this context, CDK1 
may regulate metabolite production in the mitochondria, like NADH 
and FAD, or it may directly phosphorylate transcription factors like 
SREBP-1c, or other enzymes involved in anabolic pathways like 
PFKFB3
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without Srebp-1c were subjected to 2/3 partial hepatectomy, 
hepatocyte division was significantly enhanced in compari-
son to wild type mice [65]. This was in agreement with pre-
vious observations that showed reduced expression of CDK1 
and less mitotic cells upon cholesterol starvation [66, 67]. 
Together, these studies further support the idea that there 
might be a relationship between cholesterol metabolism 
and cellular division. We have shown that reduced division 
rate of cells during liver regeneration, led to a significant 
reduction in expression of enzymes from cholesterol and 
mevalonate pathway, suggesting an interaction between the 
machinery that regulates cell cycle and that of cholesterol 
synthesis. This is further supported by experiments indicat-
ing that during cell cycle progression, cells regulate their 
lipid composition and localization [68]. We are currently 
dissecting the molecular mechanism by which CDK1 may 
regulate cholesterol synthesis in hepatocytes. Forthcoming 
work should address the association between the formation 
of lipid droplets during physiological steatosis and cellular 
division during liver regeneration independently.

The bidirectional interaction of metabolism 
and cell division during liver regeneration 
after chronic damage

NAFLD is characterized by a sustained insult to the paren-
chyma, with alternating cycles of damage and regeneration. 
The liver does not regenerate optimally in patients with 
NAFLD, NASH, and/or obese patients [69, 70]. Indeed, 
it has been proposed that steatosis in patients before liver 
resection is a risk factor for liver failure after hepatectomy 
[70] and causes postoperative complications [71]. Growing 
evidence has indicated that NAFLD is typically associated 
with increased synthesis of lipids derived from long-chain 
fatty acids, like palmitic and linoleic acids [72]. These 
macromolecules promote the characteristic inflammatory 
response through the production of lipotoxic molecules 
[72]. However, and more importantly, these bioactive lipid 
precursors usually activate lipid peroxidation, with a con-
comitant reduction in mitochondria function and increased 
oxidative stress by production of ROS [72]. In this context, 
cell cycle progression is impaired, with concomitant activa-
tion of apoptosis which further promotes inflammation and 
fibrosis. In contrast to a healthy liver, hepatocyte-dependent 
regeneration is diminished in the chronically damaged liver. 
In this section, the potential associations between cell divi-
sion and metabolism will be discussed in two in models of 
diabetes, obesity, NAFLD, and NASH.

Hepatocyte cell cycle progression in genetic models 
of obesity and diabetes

NAFLD evolves from the response of altered (1) lipid trans-
port into hepatocytes; (2) increased production of lipids from 
hepatocytes; as well as (3) reduced export and consumption 
of lipids [63]. In diabetes and obesity, NAFLD is accompa-
nied by changes in insulin metabolism [5]. In hepatocytes, 
insulin promotes the biosynthesis of lipids by inhibiting fatty 
acid oxidation, with leptin being essential for the insulin 
response [73]. Murine models with mutations in either leptin 
or the leptin receptor gene led to body fat accumulation, and 
the onset of obesity and diabetes mellitus. Initial observa-
tions using these mouse models demonstrated impaired cell 
cycle progression of hepatocytes after liver regeneration. For 
example, hepatocytes from Zucker rats arrested in G1, with 
a concomitant lower expression of cyclin D1 after hepatec-
tomy [74]. These initial results led to the hypothesis that 
accumulation of fat droplets may negatively regulate hepatic 
cell division and reduce cell proliferation. Besides, in ob/ob 
mice survival rate after liver resection was significantly also 
lower than in wild type. These mice do not produce leptin, 
and displayed significant hypoglycemia as well as impaired 
hepatocellular proliferation after liver resection [75]. These 
effects occur with no difference in serum concentration of 
pro-proliferative hormones during liver regeneration like 
TNFα, IL-6, and insulin. In a third model, fa/fa rats dis-
played elevated concentration of leptin in blood and a similar 
reduction in the survival after hepatectomy [76]. Nonethe-
less, leptin replacement restored TNFα and IL-6 release and 
induced cyclin D1, suggesting that leptin may play a central 
role in the interaction between cell cycle regulators and lipid 
metabolism [77]. A conflicting result arises from the fact 
that leptin supplementation improved hepatic division, but 
did not reduce the onset of liver failure [78, 79]. In addition, 
intraperitoneal injection of leptin in wild type mice with 
no obesity increased mitotic counts during liver regenera-
tion [78]. Collectively, these results suggest that adipokines 
play a significant role in hepatocellular proliferation. Similar 
results were observed in a model of fatty liver in ALPPS 
rats [80]. In summary, leptin is essential for hepatic division 
and together with other factors may act in recovery after 
hepatectomy [81]. Subsequent research should address the 
role of adipokines like leptin in regulation of hepatic cell 
cycle genes.

Cell cycle progression in models of diet 
manipulation

To promote lipid overloading independently of a genetic 
mutation, many experiments provide mice with a high-
fat diet (HFD). These models are more clinically-relevant 
compared to mice with mutations in enzymes. HFD leads 
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to high calorie intake, body weight increase, liver steatosis 
and reduced regeneration caused by metabolic surplus [82, 
83]. Liver regeneration in mice fed with HFD was accom-
panied by increased TNF-α potentially amplified by leptin 
which promoted increased levels of IκBα preventing NF-κB 
activation. Consequently, expression of NF-κB target genes, 
including cyclin D1 was reduced [82] (Fig. 5) leading to 
a decrease in proliferation of hepatocytes. Mice fed with 
HFD display a delayed incorporation of BrdU after surgery 
[84], indicating that steatosis not only inhibits cell division 
but also delays DNA replication. Expression of cyclin D1 
and cyclin E2 are usually higher before partial hepatectomy 
in mice fed with HFD. However, there was no significant 
difference in expression between mice fed with HFD and 
Chow diets during liver regeneration [84]. In contrast, cyc-
lin A2 and cyclin B1 are significantly reduced during liver 
regeneration in mice fed with HFD, further suggesting that 
cell division might be impaired [82]. In conclusion, these 
observations suggest that leptin-related steatosis due to HFD 
may regulate cell cycle progression differentially by down-
stream control of the inflammatory pathway NF-κB, which 
is supported by studies done in mice with lipodystrophy 
[85]. Lipid synthesis and degradation, as well as the correct 
localization of the corresponding enzymes are essential for 
cell division [68]. To the same extent, cell cycle effectors 
regulate directly or indirectly lipid synthesis in hepatocytes. 

To follow up on these topics, in the next section we will 
summarize current data on how cell cycle regulators control 
lipid synthesis. We will particularly focus on a novel axis 
of molecular signaling that we describe as the p21-CDK1-
E2F1-lipid synthesis axis.

Lipid metabolism and cell cycle in NAFLD

NAFLD pathogenesis displays a broad phenotype ranging 
from cellular steatosis, characterized by micro and mac-
rovesicles, to NASH with substantial inflammation and fibro-
sis. As mentioned above, an increasing amount of evidence 
indicates that the synthesis of a particular group of lipids in 
NAFLD hepatocytes may initiate the activation of inflamma-
tion. In recent years, several reports have suggested that the 
direct consequence of the chronic metabolic inflammation is 
the activation of senescence-associated secretory phenotype 
(SASP) [4] with a concomitant increase in expression of the 
senescence marker p21Cip1/Waf1 [86]. Cellular senescence is 
a biological process activated by an irreversible cell cycle 
arrest. Replicative senescence is associated with aging of 
tissues, mainly caused by shortening of the telomeres. In 
contrast, stress-induced premature senescence is caused by 
DNA damage caused by intra or extracellular factors such as 
oxidative stress. Either type of senescence leads to a DNA 

Fig. 5   Bidirectional regulation of cell cycle and metabolism in 
NAFLD. Development of NAFLD depends on daily habits, diabe-
tes, obesity, genetic predispositions and/or other cooperating fac-
tors. Recently, a common SNP in p53 in NAFLD patients hinted that 
hyperactivation of this transcription factor may promote fatty liver 
disease. The proposed involves increases in the expression of p21. 
Alternatively, other SNPs have been found in p21 that lead to its 

overexpression in NAFLD. Importantly, p21 may predispose to stea-
tohepatitis by two mechanisms that may or may not work together. 
Initially, by increasing phosphorylation of the retinoblastoma protein 
(RB), it may promote constant activation of the transcription factor 
E2F1 leading to increase in lipogenesis. Similarly, blocking functions 
of CDK1 may lead to increases in oxidative stress which promotes 
NAFLD due to chronic damage
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damage response, which inhibits cell cycle progression. In 
NAFLD, chronic metabolic surplus generates many of the 
molecules involved in cellular senescence, like ROS, with 
a concomitant change in gene expression. Several genome 
wide association studies (GWAS) have found a significant 
correlation between increased frequency of single-nucleo-
tide polymorphisms (SNPs) in the Cdkn1a gene (encoding 
p21Cip1/Waf1) that leads to increased p21Cip1/Waf1 expression 
in NAFLD [86, 87]. Increases in expression of p21Cip1/Waf1 
is one of the main markers of senescence [87], because it is 
a potent negative regulator of CDK1 activity. Moreover, our 
data demonstrates that long term deletion of Cdk1 in hepatic 
cells induced hepatic expression of p21Cip1/Waf1, cellular 
senescence, fibrosis and inflammation (unpublished data). 
In this section we will summarize the current role of hepatic 
cell cycle regulators in lipid biosynthesis, senescence and 
onset of NAFLD.

The p21‑Cdk1‑E2F1 axis

Recent findings have indicated that NAFLD livers display 
lower expression of Cdk1 [88]. CDK1 is essential for mitotic 
division, but in hepatic cells CDK1 may have other functions 
beyond mitosis. For example, we have shown that deletion 
of Cdk1 in hepatocytes leads to increases in nuclear and 
cell size [21]. DNA re-replication by endoreduplication may 
be the underlying cause of this effect. During endoredupli-
cation, hepatic cells may generate oxidative stress leading 
to chronic liver damage [88]. In this setting, p21Cip1/Waf1 
negatively regulates CDK1, and therefore increased levels 
of p21Cip1/Waf1 in liver disease may correlate with reduced 
activity of CDK1 [88]. Therefore, it may be therapeutically 
feasible to reduce the expression of p21Cip1/Waf1 in hepato-
cytes to reduce NAFLD. However, the pleiotropic functions 
of p21Cip1/Waf1 are likely to make it an “undruggable” tar-
get. Interestingly, it was recently shown that senotherapeu-
tic drugs improved liver regeneration when p21 was over-
expressed further suggesting that SASP may inhibit liver 
regeneration [89].

An important function for p21Cip1/Waf1 is the transcrip-
tional regulation of cell cycle genes. Typically, p21Cip1/

Waf1 binds with high affinity to and inhibits CDK2/cyclin 
E activity [39] which leads to hypo-phosphorylation of the 
RB protein [90]. Hypophosphorylated RB remains bound 
to E2F1, repressing its activation and cell cycle progres-
sion. Recent results highlighted a number of novel meta-
bolic functions of E2F1 [91]. For example, E2F1 mRNA and 
protein are increased in NASH livers [92]. On top of that, 
hepatic deletion of E2f1 significantly decreased fibrosis as a 
consequence of downregulation of the Egr-1 gene [93, 94]. 
Moreover, E2F1 regulates the expression of essential genes 
in lipid synthesis such as Acaca, Fasn, Scd1, Srebp1c, and 
Chrebp [92]. The interaction of p21Cip1/Waf1 with CDK1 may 

lead to inactivation of E2F1. E2F1 also drives the expres-
sion of Cdk1 [94]. In this fashion, p21Cip1/Waf1 regulates cell 
cycle progression (Fig. 5), cellular division, senescence 
and metabolism through the expression of numerous genes, 
including lipogenic enzymes {for review see [95]}.

Finally, the transcription of p21Cip1/Waf1 is activated by 
p53. In response to DNA damage, p53 promotes the expres-
sion of p21Cip1/Waf1, leading to cell cycle arrest and senes-
cence [22, 96, 97]. Simultaneously, p53 regulates the tran-
scription of many genes involved in glycolysis, lipogenesis 
and other metabolic pathways [98]. Particularly interesting 
is the discovery of frequent SNPs variants in p53 that predis-
pose patients to develop obesity and NAFLD [99] (Fig. 5). 
When these variants were introduced in mice fed with HFD, 
they caused significant increases in body weight with liver 
steatosis, inflammation, and fibrosis [100]. These mice 
also displayed a remarkable increase in the expression of 
p21Cip1/Waf1 and inflammatory genes. Moreover, under fast-
ing conditions, hepatic cells accumulate lipid droplets which 
correlate with increased expression of both p53 [99, 100] 
and p21 [86, 87]. Collectively, these observations suggest 
that p53 may fulfill essential roles upstream of p21 Cip1/Waf1 
and Cdk1 in NAFLD.

Conclusion and future perspective

The regulation of cell cycle progression, its components and 
the interactions among them has been meticulously stud-
ied for more than four decades. Most of the basic functions 
discovered in vitro have been validated in vivo with similar 
physiological significance. However, an increasing number 
of studies now indicate that a large number of cell cycle 
regulators, including CDK1, influence metabolism which are 
new interactions that may not depend on cell cycle progres-
sion. This may not be surprising as cells need to integrate 
their growth with cell proliferation, into a wider network of 
biosynthetic pathways. However, this point has been largely 
ignored as the focus has been in the upstream signaling path-
ways regulating cell cycle progression. Studying the inter-
play between cell cycle and metabolism in detail will lead 
to development of more refined therapies for the treatment 
of diseases.

Particularly important is to understand the role of key 
cell cycle regulators CDK1 and p21 in regulating metabolic 
pathways during acute and chronic liver damage. The rea-
soning behind this is that if there is a distinction between 
the pro-regenerative functions of these two, and other func-
tions, then it may be able to target them in NAFLD. It is well 
established that liver regeneration is dramatically reduced in 
patients with NAFLD, and therefore resection and transplan-
tation is not an ideal therapy for this group of patients. This 
is exacerbated in the more advanced stage of disease, like 
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NASH. In this setting, targeting pro-regenerative pathways 
of hepatocytes may lead to a better outcome. Our group has 
actively studied the non-canonical functions of Cdk1, but 
those of p21 have been neglected. For example, we have 
preliminary data indicating that downregulation of Cdk1 
may lead to a NAFLD-like phenotype in the long term, with 
fibrosis and steatosis. Thus, in NAFLD patients it would be 
therapeutically relevant to disrupt the p21-Cdk1 axis, with 
increasing Cdk1 functions while reducing those of p21. 
However, there is a gap on our understanding of the func-
tions of increased expression of p21 and its activity in the 
context of deletion of Cdk1, or if the observed phenotype is 
a Cdk1-autonomous effect.

Finally, studies of NAFLD have focused mostly on target-
ing inflammatory or non- parenchymal cells. Thus, study-
ing the cell cycle and non-canonical functions of p21 and 
Cdk1 in hepatocytes may lead to far reaching therapeutic 
approaches for either early NAFLD or specially advanced 
NASH. Ideally personalized therapies may be developed, in 
which expression of p21 would be reduced in patients with 
SNPs in the promoter region. Following this approach, we 
will be able to reduce the signaling associated with increased 
p21 activity. These future discoveries will have direct impli-
cations in the development of therapeutic agents targeting 
both, metabolism and cell division, for these common liver 
diseases, NAFLD and NASH.
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