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Abstract
Thousand grain weight (TGW) is an important determinant of rice yield, and correlates with grain size, plumpness and 
grain number per panicle. In rice, there are fewer association mapping studies relating grain weight traits using both SSR 
and SNP markers. In this study, in order to find robust SSR markers associated with TGW trait and mine elite accessions 
in rice, we investigated the TGW trait across six environments using a natural population consisted of 462 accessions, and 
then performed association mapping using both SSR and SNP markers. Using the six datasets from the six environments 
and their best linear unbiased estimator, we identified eight TGW associated SSR markers, with three environmentally 
stable and one newly found, on five chromosomes. The associated markers have genetic effect from 3.44% to 20.84%, and 
two of them carry stable elite allele with positive effect across different environments. Candidate interval association map-
ping using re-sequencing derived SNP/InDel markers further confirms the TGW-SSR association, and also suggests that 3 
TGW-SSR associations were high confident in intervals of size from 176 to 603 kb. These results not only shed more lights 
on the genetics of TGW trait, but also suggest that the multi-allelic SSR markers should be used as an alternative power tool 
in gene or QTL mapping.
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Introduction

Current food production is becoming limited because of 
shortages of cropland, water, and shortages of fertilizers that 
depend on fossil energy (Pimentel 2012). Today, used as 
the main food for more than half of the world’s population, 
rice is expected to give higher yield to meet the needs of the 
increasing population (Fageria 2007).

Crop yield is a quantitative trait and has complex genetic 
background. For rice, the panicle number, grain number, 
and grain weight are three main components of the yield. 
Beyond the panicle number per unit area and grain number 
per panicle, the improvement of grain weight is the major 
way to further increase the yield (Xing and Zhang 2010).

Grain weight is a synthetic reflect of grain length, width, 
thickness and plumpness. All these traits have been com-
prehensively studied using bi-parental populations through 
QTL mapping (Xing et al. 2002; Li et al. 2004, 2020; Weng 
et al. 2008; Wang et al. 2011; Tang et al. 2013; Xu et al. 
2015; Dong et al. 2018; Bazrkar-Khatibani et al. 2019), and 
hundreds of QTLs related to these traits were reported and 
stored in the Gramene QTL Database (Gupta et al. 2016).

Based on these or similar studies, many genes relating grain 
size or weight have been cloned. For example, GS3 (Fan et al. 
2006), GL3 (Zhang et al. 2012), GL7 (Wang et al. 2015), GW2 
(Song et al. 2007), qSW5 (Shomura et al. 2008), GW5 (Weng 
et al. 2008; Liu et al. 2017), GS5 (Li et al. 2011), GW8 (Wang 
et al. 2012), TGW3 (thousand grain weight) (Ying et al. 2018), 
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TGW2 (Ruan et al. 2020) and so on, were reported to regulate 
grain size and/or weight in rice.

Besides QTL mapping, linkage disequilibrium (LD) 
based association mapping was used to investigate the genet-
ics of grain weight-related traits in rice, and SNP markers 
derived from gene chips or genome sequencing were pre-
ferred (Huang et al. 2010; Huang et al. 2011; Zhao et al. 
2011; Yang et al. 2014; Begum et al. 2015; Liu et al. 2019). 
However, SSR markers have many advantages comparing 
with SNP markers, such as highly polymorphic nature, ease 
of development, and easy-using, and thus is essential for 
marker assistant selection (MAS) and crop improvement 
(Collard and MacKill 2008; Miah et al. 2013).

In rice, maybe due to a low automatic level and labor-
intensive, there is relatively fewer association mapping stud-
ies relating grain weight trait using SSR in large popula-
tion. In order to find robust SSR markers associated with 
TGW trait and mine elite accessions in rice, we performed a 
TGW-SSR association analysis cross six environments, and 
further confirmed the result using SNP markers. Our study 
is featured by 1) very high-quality phenotypes of TGW trait, 
2) genetic distinct germplasm lines, and 3) super polymor-
phic SSR markers. The result not only gives invaluable SSR 
marker which can be used in MAS, but also suggests that 
combining SSR and SNP markers should be a lower-cost 
way in finding trait-marker associations.

Results

The Phenotype Evaluation of TGW​

All the 462 rice accessions, consisted of 340 lines from 
China, 1 line from Japan, and 121 lines from Vietnam, 
were planted in six environments, i.e., three locations in 
two years (Table S1). In each environment, the lines were 
planted in four replications and phenotyped separately 
for each replication. As a result, 24 datasets (3 loca-
tions × 2 years × 4 replications) were obtained for TGW 

(Table S2). To get a good proxy of all the information in 
the 24 datasets, the BLUE (best linear unbiased estima-
tor) of TGW was calculated (Table S2).

In each environment, the four replications agree well with 
each other, and the correlation coefficient varies from 0.92 
to 0.99 between replications (Table S3). Thus, a total of 7 
datasets, including the mean values of the replications in 
each of the six environments and the BLUE, were used for 
the following analysis (Table 1; Table S2). The minimum, 
maximum, mean and median of the 7 datasets are in range of 
15.62–17.26, 31.87–35.50, 23.74–24.37 and 23.54–24.37 g, 
respectively (Table 1).

To analyze the stability of TGW under different envi-
ronments, the correlation coefficient among the six envi-
ronments was calculated. The result showed the correla-
tion coefficient of TGW has a range of 0.58–0.78 among 
the six environments, and all the environments, except for 
NJ14, have a correlation coefficient ≧0.83 with the BLUE 
(Table 1). Meanwhile, the distribution of TGW trait in the 
natural population consisted of 462 rice accessions fitted the 
normal distribution by normal distribution test (P > 0.01) 
(Table 1, Fig. 1), indicating that the trait is controlled by 
polygenes. The broad-sense heritability of TGW in our pop-
ulation was 80.44% calculated by using the datasets from the 
six environments.

The Marker Polymorphism and LD Analysis

To analyze the genetic diversity of the above 462 acces-
sions, a total of 264 evenly distributed SSR markers were 
genotyped (Tables S4, S5). Of these, 261 markers, with 17 to 
29 markers per chromosome, showed polymorphism among 
the accessions, and a total of 3361 alleles, ranging from 2 to 
47 with an average of 12.88 per locus, were found (Table 2).

For the polymorphic markers, the statistical parameters 
were similar among the 12 chromosomes (Table S4). The 
major allele frequency has a range of 0.11–0.98, with the 
median and mean of 0.28 and 0.35 respectively while the 
minor allele frequency has a range of 0.01–0.41, with the 

Table 1   The statistical parameters of the TGW trait in the 6 environments and BLUE

Note: Std.dev, stands for standard deviation; Nt.P, normal distribution test P value

Datasets Min Max Median Mean Std.dev Nt.P Correlation coefficient

NJ13 XY13 YY13 NJ14 XY14 YY14 BLUE

NJ13 15.62 34.23 23.88 23.85 2.82 0.61 1.00
XY13 17.26 35.50 24.37 24.37 2.57 0.16 0.69 1.00
YY13 15.62 34.23 23.88 23.85 2.82 0.61 0.76 0.78 1.00
NJ14 17.14 31.90 23.97 24.13 2.36 0.02 0.67 0.58 0.61 1.00
XY14 16.22 34.10 23.54 23.74 2.39 0.01 0.69 0.69 0.65 0.60 1.00
YY14 17.14 31.90 23.97 24.13 2.36 0.02 0.68 0.74 0.71 0.64 0.72 1.00
BLUE 17.60 32.50 24.08 24.18 2.20 0.14 0.88 0.87 0.89 0.79 0.83 0.86 1.00
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Fig. 1   The histogram of the 
TGW trait from the 7 datasets, 
i.e., a NJ13, b XY13, c YY13, 
d NJ14, e XY14, f YY14 and 
g BLUE. The horizontal axis 
stands for the TGW trait with 
unit “g”; the vertical axis stands 
for the count of accessions with 
the categorized TGW values
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median and mean of 0.14 and 0.16 respectively. These mark-
ers were very informative, 219 markers (83.91%) has a PIC 
(polymorphic information content) value > 0.5, only 6 mark-
ers were slightly informative (PIC < 0.2), and three marker 
(RM129, RM1108 and RM512) do not show polymorphism 
(PIC = 0) (Table S4). The PIC value was negatively corre-
lated with the major allele frequency (r = -0.98, P < 0.001) 
and positively correlated with allele number (r = 0.76, 
P < 0.001).

To evaluate the linkage relationship of the markers, allele-
level pairwise linkage disequilibrium for the 261 polymor-
phic markers in the 462 accessions were analyzed. As a 
result, 7,521,191 allele pairs were found. Of these, 766,571 
(10.19%) pairs, including 64,071 pair within the same chro-
mosome, showed strong LD (P < 0.001) (Table S6). For the 
allele pairs in strong LD, the minimum, maximum, median 
and mean of r2 were 0.018, 1.00, 0.06 and 0.13, whereas the 
allele frequency is 0.001, 0.99, 0.08 and 0.11.

Population Structure Analysis

Before conducting the marker and trait association analysis, 
we estimated the population structure using the polymorphic 
markers. The most likely number of subpopulations (K) in 
the 462 accessions was estimated to be 3 based on the delta 
K value (Fig. 2a). However, there was also a signal on K = 5 
(Fig. 2a). To further confirm the population structure of the 
accessions, a NJ (neighbor joining) tree was constructed using 
the SSR markers. Four main branches (I, II, III and IV), as 
well as sub-branches in each main branch, were evident in the 
tree (Fig. 2b). Since more than 3 branches were observed in 
the NJ tree, we selected K = 5 for the population structure, in 
which 172, 48, 98, 96 and 48 accessions were grouped into 
population 1 to 5 respectively (Fig. 2c). Vietnam accessions 
were mainly grouped into subpopulation 1, 3 and 4. A striking 
feature of materials was that their admixture level (the frac-
tion of genome from different subpopulations) was quite low, 
446 (92.53%) accessions inherited more than 90% fraction of 
their genome from their belonging subpopulation (Fig. 2c). 
Comparing the results of the Structure program and the NJ 
tree, subpopulation 2, 3 and 5 from the Structure result were 
mainly in branch I, IV and III, and subpopulation 1 and 4 were 
scattered in branch I & II, and III & IV respectively (Fig. 2b).

Association Mapping of SSR Marker and TGW​

To set the proper cut-off value (significance threshold) for 
the association mapping, 2000 times permutation tests were 
performed by reshuffled the original phenotype data and 
then association mapping. As a result, the 1% and 5% cut-off 
levels were set for the above 7 phenotype datasets respec-
tively for the real marker-phenotype association (Table 3).Ta
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In total, 19 marker-TGW association pairs, with marker 
R2 ranged from 3.44% -20.84%, were found, and 8 mark-
ers distributed in 5 chromosomes were involved (Table 4, 
Fig. 3). Of these association pairs, 5 were significant at the 
1% level, with the rest at the 5% level. Of the 7 datasets, 
no marker-TGW association pairs was found in dataset the 
NJ14, while 1 to 5 pairs in the other datasets. This result was 
consistent with the phenotype analysis result that the dataset 
NJ14 has a lower quality suggested by the correlation analy-
sis. Of the 8 associated markers, both RM566 and RM3600 
were identified in 4 datasets, and thus should be stable; and 
RM259 had the largest effect with R2 ranged from 12.38% 
in dataset YY14 to 20.84% in XY13 (Table 4).

To mine elite alleles for TGW trait, the allele effect of 
the above associated markers was predicted (Table S7). As 
a result, 108 negative values were detected, comparing 42 
positive values, suggesting that most alleles give a nega-
tive effect. Interestingly, there were 2 alleles, i.e. 237/237 bp 
(base pair) in marker M566, and 150/150 bp in marker 
RM3600, give stable positive effect in different environ-
ments, and there are 102 and 29 accessions carrying the 2 
alleles respectively. The average TGW of the 102 and 29 
accessions were 24.87 (calculated from the datasets XY13, 
XY14 and YY14) and 24.61 (calculated from the datasets 
XY13, YY13 and YY14) respectively, and both were sig-
nificantly larger than the global average value 24.01 (student 
t-test, P < 1E-03).
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Fig. 2   Population genetic architecture analysis of the 462 rice acces-
sions. a  rate of change of the likelihood distribution calculated as 
Delta K  b  the neighbor joining tree calculated based on the SSR 

markers in Tassel 3 program; the Roman number I, II, III and IV 
stands for four main branches  c  model based population structure 
defined by Structure program when K = 5

Table 3   The 1% and 5% cut-off 
for TGW association mapping 
calculated from 2000 times 
permutation

Marker type Level NJ13 XY13 YY13 NJ14 XY14 YY14 BLUE

SSR 1% 2.08E-03 1.84E-03 1.15E-03 1.11E-03 1.09E-03 1.58E-03 1.44E-03
5% 7.46E-03 6.61E-03 6.15E-03 4.35E-03 4.59E-03 5.66E-03 5.58E-03

SNP/InDel 
in target 
interval

1% 1.87E-05 4.42E-05 1.60E-05 8.77E-07 9.99E-07 7.90E-07 1.44E-05
5% 7.98E-05 1.03E-04 5.85E-05 7.24E-05 4.09E-06 4.21E-06 7.53E-05
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Candidate Interval Based Association Mapping 
of TGW Trait using SNP Markers

To further confirm the association mapping result above 
and give a higher resolution of the associated loci, the asso-
ciation mapping between the SNP/InDel variants flanking 
the target markers and TGW trait was performed using 57 
accessions (Table 5). Of the 8 associated markers, 7 (except 
RM244) were properly aligned to the reference genome, and 
the sequences with length ± 500 kb (kilo bases) flanking 
the markers were retrieved. Thus, a total of 7 MB genome 
segment were analyzed, and total of 98,599 variants, were 
identified (Table 5, Table S8). Based on cut-off values from 
permutations (Table 3), a total of 1,313 loci were found to 
significantly associated with TGW in at least one of the 7 
datasets at the significance 1% or 5% (Table 5, Table S9, 
Fig S1). The association mapping result showed that signifi-
cant association signals exist in each of the intervals flank-
ing the 7 markers, but most loci were located in the interval 
flanking the marker RM486, RM566 and RM255, while less 
were found in the interval flanking the rest of the markers 
(Table 5, Table S9). For the marker RM486, RM225 and 
RM566, most significant loci were located in the interval 
34,840–35,443 (603 kb in length), 3,009–3,292 (283 kb), 
and 14,602–14,778 kb (176 kb), respectively (Table S9).

Discussion

Despite of the controversy over the origins of rice (Fuller 
et al. 2007), the Asian-cultivated rice accessions occupy an 
important position, and is grown worldwide and comprises 
the staple food for half of the global population. Of the 462 
accessions used in this study, part was from Vietnam (lati-
tudes below 17°N), and part was from northeastern China 
and Japan, (latitudes above 45°N) (Table S1). We observed 
little genetic admixture among the accessions (Fig. 1), and 
this situation agrees well with previous studies (Liu et al. 
2015; Dang et al. 2016; Edzesi et al. 2016; Liu et al. 2017). 
This result may partly because that a fewer marker used in 
inferring the population structure, and some admixture may 
be missed out. However, the distinct genetic background is 
a true reflection of the feature of our materials. The 2 parts 
of our materials belongs to the subspecies indica (acces-
sions from Vietnam) and japonica (accessions from north-
eastern China and Japan) respectively. The two subspecies 
were rarely hybridized due to different flowering time (Liu 
et al. 1996). Therefore, these germplasm lines are invaluable 
for genetic studies and rice breeding. The high polymorphic 
feature of our materials was also reflected by our SSR result. 
We found 2 to 47 alleles with an average of 12.88 per locus, 
and the average PIC for all markers was 0.72. The polymor-
phic level of our population is higher than that from Garris Ta
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et al. (2005), Agrama et al. (2007) Vanniaraja et al. (2012) 
and Dang et al. (2015).

TGW is an important trait for many crops, such as maize, 
rice, soybean and wheat, and is quantitative trait which can 
be easily affected by environmental factors. In order to find 
robust SSR markers associated with TGW trait and mine elite 

lines in rice, we used 462 rice accessions and phenotyped 
them in 6 environments. A total of 24 datasets (including 
replications) were obtained, and an incredible consistency 
among these datasets indicating by high correlate coefficient 
was observed (Table 1, Tables S2, S3). There were some 
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Fig. 3   The manhattan plot of the TGW-SSR marker association in dataset a NJ13, b XY13, c YY13, d NJ14, e XY14, f YY14 and g BLUE. The 
blue and red line indicates the cut-off values at 1% and 5% level respectively
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studies that studied TGW gene mapping, but usually used 
datasets from 3 to 4 environments (Dang et al. 2015; Qiu 
et al. 2015; Feng et al. 2016). Given the development of the 
high-throughput and low-cost genotyping technology, pheno-
typing will become more and more important. In our associa-
tion mapping, 7 datasets were used, and all the datasets fit a 
normal distribution well (Table 1, Fig. 1). Comparing with 
other studies, our high quality phenotype datasets would lay 
a good foundation for the following QTL mapping.

Robust marker-trait association is essential in MAS. In 
this study, we found 8 SSR markers associating with TGW 
trait (Table 4). Of the 8 markers, RM3600 was a newly 
found; while the other 7 markers, i.e., RM259, RM486, 
RM218, RM225, RM314, RM566 and RM244, were 
reported to associate with TGW by previous studies (Mon-
cada et al. 2001; Cui et al. 2002; Hua et al. 2002; Zhuang 
et al. 2002; Gao et al. 2004; Jiang et al. 2004. However, 
none of these previous studies covered all the markers in 
one studies. Interestingly, these markers were also reported 
to associated with grain number (marker RM259) (Hua et al. 
2003), grain yield (marker RM486 and RM314) (Moncada 
et al. 2001), and biomass yield (marker RM225) (Lian et al. 
2005). Therefore, this result genetically explained why these 
trait correlates with each other.

Of the 462 accessions, there are 2 accessions, i.e. Z7238 
and Z5164, have higher TGW values, and are slightly out-
lied of others (Fig. 1, Fig S2). The TGW phenotype of the 
2 outliers is stable cross different environments (Fig S2), 
and thus should be controlled by genetical factors. In order 
to test whether our association result differ with or with-
out the 2 outliers, we performed the SSR-TGW association 
after removing the 2 outliers. As a result, the result was 
very similar: 6 of the 8 markers, except RM314 and RM244, 
were detected (Table S10). This may partly because that 
an inappropriate cut-off (i.e., the cut-off listed in Table 3, 
which were derived from the permutation of all the samples) 
was used. To sum up, our result is robust to a few outliers, 
because there are at least 10 accessions for each allele.

Of the 8 TGW associated markers, 3 markers, i.e. RM259, 
RM566 and RM3600, were identified in 3 out of the 6 envi-
ronments, and thus could be regarded as environmentally 
stable. Luckily, based on the stable markers, we identified 
2 alleles, i.e. 237/237 bp in marker M566 and 150/150 bp 
in marker RM3600, give stable positive effect in different 
environments, and 102 and 29 elite accessions carrying the 
2 alleles were found respectively (Table S7).

The re-sequencing data of 57 accessions was used for 
validating the SSR association mapping result and get-
ting a higher resolution of the associated loci. The size 
of ± 500 kb was used because it is a safe size for linkage 
disequilibrium is rice (Mather et al. 2007). We performed 
a permutation in testing SNP/InDel-TGW association 
using the whole genome-wide SNPs (11.54 Million) in our Ta
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re-sequenced population (57 samples), few significant sig-
nals were detected (data not shown). However, when using 
the SNP/InDel variants in our candidate intervals, signifi-
cant SNP-TGW associations were detected (Table 5). Due 
to LD of variants in association studies, the variants close 
to the true associated loci usually give strong association 
signals (Mather et al. 2007). Therefore, for our SNP/InDel-
TGW association result, we proposed that the number of 
significant TGW-associated loci in the target interval was a 
good proxy to validate the SSR-TGW association result. We 
found 974, 123 and 189 unique loci in the intervals flank-
ing the marker RM486, RM225 and RM566 respectively 
(Table 5). This result suggests that true TGW-associated loci 
should exist in the intervals. Furthermore, this result nar-
rowed down the candidate intervals to Chr1:34,840–35,443, 
Chr1:3,009–3,292, and Chr9:14,602–14,778 kb for marker 
RM486, RM225 and RM566 respectively (Table  S9). 
Whereas the marker RM259, RM218 and RM3600, few 
associated loci were found in their intervals (Table 5), and 
the probable explanations could be 1) there is no true TGW-
associated loci in the intervals, 2) the re-sequencing popula-
tion is not large enough to get a significant result, and 3) the 
true TGW-associated loci is outside of the intervals.

In this study, we also planned to test that multi-allelic 
SSR markers have a higher discrimination power than bi-
allelic SNP markers in association mapping. However, we 
tested the intervals flanking the 7 markers, and got signifi-
cant association signals in every interval when using SNP 
markers (Table 5). It seems that the low level polymor-
phism limitation of SNP markers was compensated by their 
abundance in chromosomes. On the other hand, if in strong 
LD block, SNP markers indeed have lower discrimination 
power, which is a common and annoying problem in gene 
or QTL mapping (Tsykun et al. 2017). Of the 8 TGW asso-
ciated markers we found, RM566 was in strong LD with 
7 markers (i.e., RM3600, RM3533, RM6570, RM201, 
OSR28, RM1013, and RM3912-2), and RM244 was in 
strong LD with 9 markers (i.e., RM216, RM311, RM1125, 
RM258, RM269, RM6160, RM590, RM333 and RM6646) 
(Table S6). We successfully ruled out the LD markers from 
the truly associated ones in our result (Table 4). This result 
may suggest that the multi-allelic SSR markers were an 
alternative tool to conquer LD in gene or QTL mapping. 
However, further comprehensive simulations should be per-
formed to prove this.

Methods

Plant Materials and Phenotyping of TGW​

A total of 462 rice accessions, stored and supplied by 
State Key Laboratory of Crop Genetics and Germplasm 

Enhancement (Nanjing Agricultural University), were used 
as the plant materials. Of these, 121 were from Vietnam, and 
340 were from China, 1 was from Japan (Table S1). These 
rice lines were representative germplasm resources of Asia 
and have been widely using in breeding research in China.

To evaluate the TGW phenotype, all the accessions were 
planted in 3 location for 2 years, i.e., Nanjing (the Experi-
ment Farm, Nanjing Agricultural University, 32.01°N, 
118.64°S) (short for NJ13 and NJ14), Xinyang (32.12°N, 
114.067°S) (short for XY13 and XY14) and Yuanyang 
(35.06°N, 113.94°S) (short for YY13 and YY14) in 2013 
and 2014. In each of the field experiments, 4 replications 
in randomized block design were used, and every line was 
planted in 5 rows, with 8 plants each row, 20 cm between 
rows and 17 cm between each plant. The plants were grown 
in normal rice growing season condition (from May to 
October each year) until totally mature. All the plants of 
each accession were harvested together, and the seed were 
dried for 4 days under sun. For the TGW phenotyping, 1000 
plump grains were random selected and weighted. This phe-
notyping process was repeated for 3 times, and the average 
value was used for further analysis.

SSR Marker Genotyping and Variants Detection

The genomic DNA of each accession was extracted from 
young leaf tissue using DNeasy Plant Mini Kits (QIAGEN, 
Hilden, Germany) according to the kit manual instruction. 
A total of 264 SSR markers were selected from the Gramene 
database (https​://archi​ve.grame​ne.org/) according to their 
distribution on the rice 12 chromosomes (Tello-Ruiz et al. 
2018) (Table S4). Primers were synthesized in Generay 
Biotech (Shanghai) Co., Ltd. (Shanghai, China). A 10 μl 
PCR reaction system was used: 10 mM tris–HCl (pH 9.0), 
50 mM KCl, 1.5 mM MgCl2, 0.1% triton X-100, 0.5 nM 
dNTPs, 0.14 pM primers, 0.5U Taq polymerase, and 20 ng 
template DNA. The amplification was performed using a 
PTC-100™ Peltier thermal cycler (MJ research™ Incorpo-
rated, The USA) based on a standard PCR condition. The 
PCR products were run on 8% polyacrylamide gel at 150 V 
for 1–1.5 h, and visualized using silver staining. The size of 
PCR product was calculated by the software Quantity One.

The genome re-sequencing was performed on an Illumina 
Hiseq2000 platform (Illumina, San Diego, USA) according 
to its standard sequencing protocol, and pair-end library with 
insert length of 300 bp was used. The rice genome assembly 
IRGSP-1.0 (c.v. Nipponbare) was downloaded from NCBI 
(https​://www.ncbi.nlm.nih.gov/assem​bly/GCF_00143​3935.1/) 
and used as the reference genome. Sequencing reads of the 
individuals were first filtered using Trimmomatic 0.33 (Bolger 
et al. 2014) and then mapped to the reference using BWA 
(Burrows Wheeler Aligner) 0.7.17 (Li and Durbin 2009). In 
both programs, default settings were used. After mapping, 
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duplicates marking, base quality re-calibrating, SNP/InDel 
joint calling were performed according to GATK (Genome 
Analysis Toolkit) best practice in GATK 3.8 (Van der Auwera 
et al. 2013). The resulting variants were filtered in Tassel5 
(Bradbury et al. 2007) with the following parameter: mini-
mum sample counts cut-off 20%, minor allele frequency cut-
off 0.05. The location of the SSR markers was determined 
based on alignment of their primer sequences and the refer-
ence genome, in which the tool short-blastn in BLAST 2.7 
(Camacho et al. 2008) was used.

Phenotype Statistical Analysis

All the description statistical analyses were performed in R 
language. The broad sense heritability was computed using the 
lme4 package (Douglas et al. 2014) using the formula H = Vg/
(Vg + Vge/L + Ve/RL), where Vg is the genetic variance, Vge is 
variance of genetic by environment, Ve is the error variance, 
and L is number of environment and R is the number of repeats 
in each environment. The BLUE value of each accession was 
calculated in the lme4 package based on the year × loca-
tion × replication matrix, with the accession as fix effect and 
year, location as random effect (Douglas et al. 2014).

Marker Diversity and Population Structure Analysis

The diversity of the SSR markers was analyzed in Pow-
erMarker 3.25. PIC was calculated for each marker 
using the following formula: PIC = 1—Σ(i from 1 to n)Pi

2—
Σ(i from 1 to n-1)Σ(j from i+1 to n) 2 × Pi

2Pj
2, where Pi and Pj 

are the allele frequencies at alleles i and j, respectively, 
and n is the number of alleles (Botstein et al. 1980). A 
higher PIC indicates that a marker is more useful for 
distinguishing individuals and understanding relation-
ships among them. The major and minor allele frequen-
cies refer to the frequency at which the first and second 
most common allele occurs in a given population, respec-
tively (Florez 2013). Due to lacking of polymorphism, 
three markers, i.e., RM129, RM1108 and RM512, were 
discarded in further analysis. For measuring SNP/InDel 
variants diversity, nucleotide diversity, defined by Nei 
and Li (1979), was calculated in VCFTOOLS 0.1.17.

The linkage disequilibrium between each pair of alleles 
from each pair of markers and their significance levels were 
analyzed in Arlequin 3.5.2 (Excoffier et al. 2005). The r2 
(r2 = DA × DB/pA(1-pA)pB(1-pB), whereas D = pAB-pA × pB) 
value was used to measure the level of LD between markers 
and the significance level (P-value) was calculated using 
an extension of Fisher exact probability test on contin-
gency tables (Excoffier et al. 2005). The allele pairs with 
P-value < 0.0001 were recorded as strong LD.

In the following analysis that using SSR markers, all 
the alleles that exist in with less than 10 accessions were 

set to missing. The number of subpopulations (K) of the 
materials was determined in Structure 2.3.4 (Pritchard 
et  al. 2000). The admixture model was used, and the 
length of burn-in period and the number of MCMC 
(Markov Chain Monte Carlo) replications after burn-in 
were set to 100,000 and 500,000 respectively. K equals 
2 to 10 was tested and 5 independent runs were made 
for each value of K. The log-likelihood mean value of 
the 5 runs at each K was used. The structure result was 
submitted to Structure Harvester (http://taylo​r0.biolo​gy. 
ucla.edu/struc​tureH​arves​ter/), and the optimal K value 
was determined based on the ΔK (ΔK = mean(|L’’K|)/
sd[L(K)]) due to the mean log-likelihood value increased 
over increased K (Evanno et al. 2005). The population 
structure matrix (Q) was generated based on the optimal 
K. The SSR marker based phylogenetic neighbor joining 
tree was calculated in Tassel 3 (Bradbury et al. 2007) and 
FigTree 1.4.3 was used to output the figure.

Association Mapping of TGW Trait

The associations between trait and SSR markers, and the 
effect of marker on the phenotype were calculated in Tassel 
3 following the method described by Emon et al (2015) with 
slightly modified, and the MLM (mixed linear model) was 
used. The heterozygous loci were removed in the calculation. 
The population structure Q matrix was from the calculation 
above, and the Kinship (K) matrix was calculated in Tassel 3 
Two thousands of permutation tests were used to help define 
the cut-off value (significance threshold) (Churchill and 
Doerge 1994). In the permutation, the original phenotype 
data was reshuffled and then performed association analysis 
in Tassel 3. Since no real associations between the SNPs 
and the ‘simulated’ phenotypes were expected, a threshold 
could be set based on these fake association mapping results.

In order to validate the SSR association mapping result 
and give a higher resolution of the associated loci, 57 of the 
462 accessions were randomly selected and re-sequenced 
(Table S8), and their SNP/InDel variants were called. The 
associations between the trait and SNP/InDel variants were 
calculated in Tassel 5 (Bradbury et al. 2007), and the GLM 
(general linear model) was used. In the SNP/InDel asso-
ciation mapping, we only focused on the region near the 
significant SSR markers identified in the SSR association 
analysis. An interval size of ± 500 kb flanking the target SSR 
markers was used. Similarly to the SSR-TGW association 
mapping above, the cut-off values of the SNP/InDel vari-
ants and TGW trait association were done using 2000 times 
permutation in Tassel 5.
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