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Abstract
Despite many efforts to alleviate the pathological conditions of Alzheimer’s disease (AD), effective therapeutic drugs have not
been developed, mainly because of the lack of molecular information about AD and animal models. We observed the reciprocal
regulation of AD-associated genes (AD genes) and their related functions. Upregulated AD genes were positioned in central
regions in the protein–protein interaction network and were involved in inflammation and DNA repair pathways. Downregulated
AD genes positioned in the periphery of the network were associated with metabolic pathways. Using these features of AD genes,
we found that 5×FAD, amyloid β-injected mice, and rats in the initial phases after bilateral common carotid artery occlusion
(BCCAO) exhibited patterns that were most similar to those of AD. In contrast, using differentially expressed genes from animal
models, we observed that 3×Tg and animals in late phases of BCCAO were positioned close to AD genes.
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Introduction

Alzheimer’s disease (AD) is a progressive and chronic neuro-
logical disorder that causes memory impairment and cognitive
deficits, primarily in the elderly. The majority of human AD
cases (> 95%) are sporadic non-Mendelian patients aged ≥ 65
years [1]. The pathological characteristics of AD include the
deposition of the peptide corresponding to amino acids 39–42
of amyloid beta (Aβ) and of the hyperphosphorylated forms
of the microtubule-associated tau protein in the brain [2, 3].
However, the recent failures of clinical trials of novel drugs
designed against Aβ have raised questions regarding the exact

role of Aβ in the neurobiology of AD, although the negative
results obtained in these trials do not disprove the possible
effectiveness of drugs in patients with early onset AD [4, 5].
Moreover, genome-wide association studies (GWASs) based
on a large population of patients with late-onset AD identified
several genetic loci, the most prominent of which are not
directly connected with Aβ and tau physiology [6, 7]. This
genetic difference between familial AD and sporadic AD
strongly suggests the involvement of separate processes in
the development of the two types of AD.

In addition to the clinical effectiveness of drugs, the
manner in which the animal models that are used in pre-
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clinical trials can simulate human AD should also be con-
sidered. Many AD animal models, including genetically
and nongenetically engineered animals, have been devel-
oped in the last two decades, and their pathophysiological
traits have been identified. Genetically modified transgen-
ic models focus primarily on mutated genes that were
identified in patients with familial AD, which include
APP, MAPT, PSEN1, and PSEN2 [8, 9]. These genes
have been used alone or in combination to produce animal
models with cognitive impairment. The functions of these
genes are mainly implicated directly in Aβ and/or tau
physiology, thus supporting the contention that the accu-
mulation of extracellular Aβ and/or intracellular tau could
lead to cognitive impairment in humans. In addition to
transgenic models of AD, pharmacological models that
reproduce transiently the symptomatic features of AD
have also been used widely, including the scopolamine-
induced [10] and streptozotocin-induced rodent models
[11]. Although transgenic and nontransgenic animal
models are valuable tools in the identification of the
mechanisms of AD pathologies, these models do not re-
produce all of the abnormalities observed in human AD.
In particular, most transgenic models do not replicate the
molecular features of sporadic AD, which is not caused
by mutations in genes directly associated with Aβ phys-
iology, as demonstrated by a massive genome-wide anal-
ysis [6]. These previous reports strongly suggest that, de-
spite the pathological similarities between animal models
of AD and human AD, such as memory loss and cognitive
impairment, the molecular processes resulting in those
pathological conditions may be different in each model,
depending on genetic or other causative factors.

Therefore, the identification of the molecular features of
AD and the evaluation of animal models of AD in terms of
these features are urgently required, to obtain information
about which model is optimal for the development of novel
anti-AD drugs. In the present study, we reanalyzed genes that
were shown to be associated with late-onset AD in external
sources of microarrays and evaluated their biological roles
using function- and network-based approaches. We observed
that the reciprocal regulation of genes and their associated
functions in AD depended on their expression levels. Using
these findings, the similarities between the features of various
AD models were measured and compared with those of hu-
man AD.

Materials and Methods

Animal Experiments

Transgenic mouse models, including those overexpressing the
mutated human NCSTN gene (KNL-HYD-TG0610, 10-

month-old male) [12], the mutated human PSEN2 gene
(KNL-HYD-TG0606, 12-month-old male) [13], and the
wild-type human MAPT gene (KNL-HYD-TG0601, 12-
month-old male) [14], were provided by the National
Institute of Food and Drug Safety Evaluation of Korea
(Cheongju, Korea). The C57BL/6N background strain was
used as the normal control for KNL-HYD-TG0610 and
KNL-HYD-TG0606 animals. C56BL/6Nwas used as the nor-
mal control for the MAPT model (KNL-HYD-TG0601).

To induce cognitive impairment using external chemicals,
scopolamine, Aβ, or streptozotocin were administered to ICR
male mice (7 weeks of age) purchased from Daehan Biolink
Co. Ltd. (Eumseong, Korea). Scopolamine (Sigma-Aldrich,
St. Louis, MO, USA) was administered by intraperitoneal
(i.p.) injection at a dose of 1 mg/kg 30min before the isolation
of brain tissues. The amyloid-β1–42 peptide (AnaSpec, Inc.,
Fremont, CA, USA) was dissolved in a PBS solution
(137 mM NaCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, and
2.7 mM KCl at pH 7.5) at a concentration of 1 mM/μL and
aggregated by incubation at 37 °C for 7 days prior to use. Aβ
(5 or 10 μM) or streptozotocin (2.5 or 3 mg/kg; Sigma-
Aldrich) was injected into the intracerebroventricular (i.c.v.)
region. During this process, ICR mice were positioned in a
stereotaxic frame and a midline sagittal incision was made on
the scalp. Holes were drilled in the skull over the lateral ven-
tricles using the following stereotaxic coordinates: − 0.46 mm
anteroposterior, 1 mm mediolateral, and 2 mm dorsoventral.
All injections were performed using a 5 μL Hamilton syringe
equipped with a 26S-gauge needle. Aβ or streptozotocin were
injected at the rate of 1 μL/min, to a final volume of 3 μL.
Brain tissues were prepared 14 days after i.c.v. injection of Aβ
or streptozotocin.

Twelve-week-old male Wistar rats from OrientBio
Inc. (Seongnam, Korea) were used for the surgical in-
duction of bilateral common carotid artery occlusion
(BCCAO). Rats were randomly divided into six groups
(sham and 21, 35, 45, 55, and 70 days after BCCAO).
BCCAO was induced as described previously, with
some modifications [15, 16]. Briefly, the rats were anes-
thetized using 5% isoflurane, and the bilateral common
carotid arteries were tightly double ligated with silk su-
tures. For the control sham group, the same procedure
was performed without BCCAO. For the study of aging,
male C57BL/6 mice aged 1.5, 4, 9, 17, and 22 months
and raised in a specific pathogen-free facility were ob-
tained from the Korea Basic Science Institute (Gwangju,
K o r e a ) . S i x -m o n t h - o l d m a l e 5 × FAD m i c e
(Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas)
were obtained from the Jackson Laboratory (Bar Harbor,
Maine, USA). The C57BL/6N background strain was
used as the normal control for 5×FAD animals. All an-
imals were housed individually in polycarbonate cages
at a controlled temperature of 23 ± 3 °C with 60%
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humidity and a 12-h light/dark cycle. Standard chow
diet (catalog no. 6112, Central Laboratory Animal Inc.,
Seoul, Korea) and water were provided ad libitum
throughout the experiment. All mice were fasted over-
night and anesthetized using 5% isoflurane before sac-
rifice. Every effort was made to minimize pain during
the experimental period. For biological analysis, brain
regions were dissected and frozen at − 80 °C until mi-
croarray analysis. All experimental procedures were ap-
proved by the Institutional Animal Care and Use
Committee of the Korea Institute of Oriental Medicine
and were performed in strict accordance with the rec-
ommendations of the Guide for the Care and Use of
Laboratory Animals of the Korea Institute of Oriental
Medicine.

Microarray Experiment

Total RNAs were purified from each brain region using an
RNeasy kit according to the manufacturer’s instructions
(Qiagen, Hilden, Germany). After checking the quality of
the RNA using a Bioanalyzer 2100 RNA Nano Kit (Agilent
Technologies, Santa Clara, CA, USA), only samples with an
RNA integrity number (RIN) > 7.0 were included in the mi-
croarray analysis. To minimize the effects of individual vari-
ability, RNAs isolated from tissues of three animals were
pooled in equal amounts, followed by amplification and label-
ing using a Low RNA Input Linear Amplification Kit PLUS,
according to the manufacturer’s instructions (Agilent
Technologies). Finally, labeled RNAs were hybridized to a
microarray (Agilent Mouse Whole Genome 44K for mouse
brain tissues and RatWhole Genome 44K for rat brain tissues)
using the Gene Expression Hybridization Kit, according to the
manufacturer’s instructions (Agilent Technologies). The ar-
rays were then scanned using an Agilent DNA Microarray
Scanner, and the raw signal intensities from the scanned image
were extracted using the Agilent Feature Extraction Software
(Agilent Technologies). Array information was deposited at
the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/
geo) public site under ID numbers GSE44289 and
GSE104031, respectively.

Microarray Analyses

Probes on arrays with signal intensities that were 1.4-fold
higher than the local background were selected exclu-
sively, as described previously [17, 18], and were then
normalized using the quantile method, which can adjust
the variability within and between samples [19].
Hierarchical clustering based on the expression levels
of genes was performed using the Gene Cluster 3.0 pro-
gram and visualized using the Java TreeView program
[20]. Mouse and rat gene symbols were compared with

human gene symbols based on the orthology database
maintained by the Jackson Laboratory (http://www.
informatics.jax.org).

Transcription Factor Binding Site Analysis

Frequency measurement of binding sites for transcription fac-
tors in the promoter region of genes was conducted by
implementing the MotifDb R package (version 1.18.0,
https://www.bioconductor.org/packages/release/bioc/html/
MotifDb.html) [21]. A total of 459 position weight matrices
were used as binding sites for each human transcription factor
from the JASPAR database (http://jaspar.genereg.net) [22].
The nucleotide sequences of the promoter region of genes
covering 2000 bp upstream to 500 bp downstream from the
transcription start site were obtained from the human full
genome sequences provided by the University of California,
Santa Cruz (UCSC hg38 version). The putative transcription
factor binding sites (TFBS) were predicted via sequence
matching of the promoter regions of genes with the position
weight matrix of each transcription factor using the
matchPWM algorithm with a minimum score of 0.9 for
counting a match [23]. The resultant matrices of the TFBS
frequency from genes were clustered to measure similarity
between genes by implementing Jaccard’s algorithm, which
minimizes the effects of the absence of TFBS at each gene
promoter [24, 25].

Gene Ontology and Pathway Analyses

A simple enrichment analysis for gene ontology (GO) terms
and pathways was performed using the Functional Annotation
Tool of Database for Annotation, Visualization and Integrated
Discovery (DAVID) [26], in which a modified Fisher’s exact
test was used and false discovery rate (FDR) was calculated
using the Benjamini–Hochberg procedure, as a measurement
of statistical significance. Based on the enriched GO terms
obtained from the DAVID analysis, nonredundant GO terms
and their connections based on semantic similarity were ob-
tained using the Reduce and Visualize Gene Ontology pro-
gram (REVIGO) [27].

A more systematic functional enrichment analysis was
performed using gene set enrichment analysis (GSEA),
which calculates the enrichment score by measuring the
correlation between gene sets and phenotypic class using
all genes included in each gene set [28]. After a random
permutation of 1000, statistical significance was presented
as nominal p values and FDR q values. As another mea-
surement of pathway enrichment using the expression
values of all genes included in each pathway, pathway
activity was examined by calculating the cumulative ef-
fect of the expression of all genes in each pathway [15,
18]. In brief, the log-transformed expressional ratios of
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genes relative to the normal control in each pathway were
added linearly with a weight of − 1 for genes that acted as
repressors, which were defined as proteins that inhibited
the process of signal transduction of the pathway. The
measured value of pathway activity was normalized by
dividing it by the size of the pathway. Statistical signifi-
cance was calculated by comparing the measured values
with those obtained from a random permutation of 1000.
The pathway information was obtained from the Kyoto
Encyclopedia of Genes and Genomes database (KEGG,
http://www.genome.jp/kegg/).

Node Degree Distribution in the Protein–Protein
Interaction Network

The distribution of the node degrees of genes was measured in
the protein–protein interaction (PPI) network, which was con-
structed using information from low-throughput experiments
obtained from the BioGRID database (version 3.4.149) [29].
After measuring the degrees of node included in a set of genes,
the proportion of those genes in a whole network was calcu-
lated by increasing degree values. When the number of genes
at a specific degree value was < 10, we added those genes to
the genes measured at the next degree value, to reduce fluctu-
ations resulting from small numbers.

Functional Network

Functional connections between GO terms were constructed
by implementing the ClueGO Cytoscape plugin application
(http://www.ici.upmc.fr/cluego/) [30]. Input genes were
queried into ClueGO using the following settings:
Benjamin–Hochberg FDR < 0.01, kappa score > 0.4, and GO
term fusion (to delete duplicated GO terms).

Distances in the PPI Network

To measure distances between two gene sets, each gene was
mapped onto the PPI network. Subsequently, the shortest
paths between two genes from each gene set were measured
using the igraph R package (version 1.0.10) [31]. After itera-
tion of this process for all pairs of genes from two gene sets,
we obtained a matrix of shortest paths. The averaged value
from the matrix of shortest paths was presented as the distance
between two sets of genes. Only sets of genes with a presence
in the PPI network > 50% were included. Identical processes
were carried out using randomly selected gene sets composed
of a varying number of genes, to adjust for the effect of the
size of gene sets (number of genes included in each gene set)
on distances.

Public Microarray Data

Eight public microarray datasets (GSE15222, GSE44772,
GSE33000, GSE48350, GSE5281, GSE53890, GSE30272,
and GSE1572), for the selection of AD- or age-associated
genes, and four microarray datasets (GSE31372, GSE36981,
GSE60911, and GSE80465), for animal model research, were
used in the present analysis. Information on all datasets was
deposited in the Gene Expression Omnibus (http://www.ncbi.
nlm.nih.gov/geo). The characteristics of datasets are
summarized in Supplementary Table 1. For datasets that
used two-color microarray systems, including GSE44772,
GSE33000, and GSE30272, background-subtracted raw in-
tensity values were normalized using the quantile method
[19]. For a one-color microarray system, raw CEL files were
imported into the affy R package (version 1.54.0) and normal-
ized using the Robust Multiarray Average (RMA) algorithm
[32]. The GSE48350, GSE5281, and GSE53890 datasets
were merged. To adjust for the batch effects resulting from
the use of various microarray datasets, we applied empirical
Bayesian methods by implementing the ComBat function in
the sva R package (version 3.24.4) [33]. We adjusted for the
effects of age and sex on the expression levels of genes using
robust regression.

Genes that were differentially expressed between AD and
nondemented individuals and genes that were associated with
age were selected using significance analysis of microarrays
(SAM) under the two-class response type or quantitative re-
sponse type options, respectively, with a random permutation
of 1000 [34]. The threshold values for gene selection were
determined to be FDR < 0.01 for each microarray dataset.
For GSE33000 (dataset 1) and GSE44772 (dataset 2), thresh-
old values were set more stringently at FDR < 0.001, to reduce
the number of selected genes.

Selection of Animal Models

The significance of the measurement of the similarity between
animal models and human AD was examined using a
permutation-based approach. For gene expression and path-
way activity analyses, equal-sized genes or pathways corre-
sponding to those isolated from human AD were randomly
selected for each animal model and their expression levels or
the activities of pathways were measured. For network analy-
sis using differentially expressed genes (DEGs) from each
animal model, we also randomly selected equal-sized genes
corresponding to the size of DEGs and measured distances in
the PPI network. This process was iterated 1000 times. From
the distribution of the averaged expression levels or activities
of pathways corresponding to randomly selected genes and
pathways, the proportion of random sets of genes and path-
ways that exhibited values of expression or activity that were
greater than the original values was calculated and used in
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statistical analyses. The threshold values of significance were
set at 0.01 and 0.05 for strong and weak correlation, respec-
tively. Animal models that satisfied this condition in both
directions (upregulation and downregulation) were selected
as significant models.

Data Availability All other data generated or analyzed during
this study are included in this published article and its supple-
mentary information files.

Results

The overall flow of the experiments performed here is shown
in Fig. 1. Briefly, multiple microarray datasets composed of
AD cases and nondemented individuals from public archives
were introduced into our analysis platform. Subsequently,
AD-associated genes (AD genes) were isolated from these
datasets, and their biological features were analyzed. As a
final step, the molecular characteristics of AD or AD genes
were applied to various animal models, to measure the corre-
lations between each model and human AD. The animal
models analyzed included transgenic, nontransgenic, and
pharmacological models.

Correlation Patterns Based on the Expression Levels
of Genes Among Samples

We identified genes associated with AD by analyzing micro-
array information archived in the GEO database. For this pur-
pose, four AD datasets (AD sets 1–4) and six aging datasets
(aging sets 1–6) comprising eight external microarray datasets
(GSE15222, GSE44772, GSE33000, GSE48350, GSE5281,
GSE53890, GSE30272, and GSE1572) [1, 35–41] were
imported into our analysis platform. These public microarray
datasets deal with diverse brain tissues from AD patients and/

or nondemented individuals. For the present analysis, samples
were limited to the cortex or hippocampus regions of the
brain. AD sets were composed of AD cases and nondemented
individuals, and aging sets were composed of only
nondemented individuals from each microarray dataset. The
characteristics of each microarray dataset are compared in
Supplementary Table 1. The relationship between individuals
was examined based on whole gene expression by measuring
the correlation patterns among them. As shown in Fig. 2a,
patients with AD and nondemented individuals showed dif-
ferent patterns of correlation. However, because the AD pa-
tient group was composed of more aged individuals than was
the nondemented group in all AD sets (p < 0.001), it was nec-
essary to adjust for the effects of age on gene expression.
Therefore, we examined the effects of age by assessing the
correlation patterns according to age among nondemented in-
dividuals (Fig. 2b). Interestingly, in many datasets (aging sets
1, 2, 4, and 6), younger individuals were correlated with youn-
ger individuals and older individuals were correlated with
older individuals (p < 0.01). Although we did not determine
the exact age threshold that discriminated the young from old
groups in the present analysis, the age of 65 years, which is
generally used to characterize late-onset AD, would be appro-
priate [42]. Thus, we excluded samples from individuals un-
der the age of 65 from the present research of AD. The clus-
tering patterns of whole gene expression among samples ex-
clusively from individuals over 65 years of age are shown in
Supplementary Fig. 1, in which we confirmed the segregation
between AD cases and nondemented individuals and which
indicates the presence of many differentially expressed genes
in patients with AD.

Selection of AD Genes

Although we excluded samples from individuals aged under
65 years, we further adjusted for age effects by eliminating

Fig. 1 Schematic diagram of the overall experimental procedure.
Microarray datasets composed of patients with AD and nondemented
individuals were analyzed, to isolate AD-associated genes (AD genes).
The functional characteristics of AD or AD genes were identified via
functional enrichment, pathway analysis, and network analysis. These

characteristics were used to evaluate various animal models of AD, in-
cluding transgenic, nontransgenic, and pharmacological models.
Similarities between animal models and human ADwere measured using
the expression levels of AD genes, pathway activities, and distances in the
PPI network
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age-associated genes. For this second-line adjustment for
age effects, we selected age-associated genes from
nondemented samples using the SAM algorithm under
the option of quantitative response type [34]. The plot of
gene distribution in SAM is shown in Supplementary
Fig. 2. Age-associated genes were selected as commonly
regulated genes (FDR < 0.01) in at least two datasets
(Supplementary Fig. 3). Finally, we selected 761 and
1561 genes as being upregulated and downregulated
age-associated genes, respectively. The validity of age-
associated genes is shown in Fig. 3a, which indicates
the presence of a close relationship between age and the
expression levels of age-associated genes (p < 0.001).

To obtain a defined set of AD genes, we also implemented
the SAM algorithm under the two-class discrimination option.
The resulting differentially expressed genes (DEGs) between
AD cases and nondemented individuals aged over 65 years
were selected (FDR < 0.01) from four AD sets. For AD sets 1
and 2, the threshold value was set more stringently at FDR <
0.001, to reduce the number of selected genes. The distribu-
tion of genes and the threshold for the determination of gene
selection in SAM are shown in Supplementary Fig. 4. To
eliminate the bias that is inherent in each microarray dataset,
we isolated genes that were commonly expressed inmore than

two datasets. The number of selected genes among datasets is
shown in Supplementary Fig. 5. A total of 980 and 1550 genes
were selected as the initial upregulated and downregulated
AD genes, respectively.

The relationship between these initial AD genes and age-
associated genes is shown in a Venn diagram, from which 282
(27.3% of the initial AD genes) upregulated and 795 (48.5%
of the initial AD genes) downregulated genes were commonly
selected (Fig. 3b). The significant overlap of genes observed
supports the contention that the molecular features of AD are
closely related with aging processes. Finally, by removing
common genes from the initial AD genes, we selected 748
and 844 genes as final upregulated and downregulated AD
genes, respectively. This final selection of genes was termed
AD genes. The expression profile shows that AD genes dis-
criminated AD cases from nondemented individuals
(p < 0.001), as shown in Fig. 3c. AD genes are listed in
Supplementary Table 2. The validity of AD genes was also
confirmed by implementing a GSEA in each dataset. As
shown in Fig. 3d, upregulated or downregulated AD genes
were highly enriched in individuals with AD or nondemented
individuals (p < 0.001 and FDR < 0.01), respectively, in all
datasets, thus proving the specific expression of AD genes in
the AD population.

Fig. 2 Correlation patterns of samples according to gene expression.
Correlations were measured between individuals from a four AD sets
and b six aging sets, using the log-based expression of genes.
Information about samples and intensities of correlation (Pearson’s cor-
relation coefficients) are shown in color bars. Samples were arranged
according to age. a AD patient group was composed of more aged indi-
viduals than was the nondemented group in all AD sets (p < 0.001). b For

aging sets, the levels of moving averaged coefficients of correlation are
indicated. The age of 65 years was designated as the threshold line.
Differences in the coefficients of samples from individuals who were
older and younger than 65 years were measured using Student’s t test.
Aging sets 1, 2, 4, and 6 showed significant differences in correlation (p <
0.01) between younger and older individuals

Mol Neurobiol (2018) 55:9234–9250 9239



Functional Association of AD Genes

We then evaluated the functional implication of AD genes
using a simple enrichment analysis of pathways and GO.
Signaling-related functions, such as inflammatory response,
cell cycle, and apoptosis, were associated with upregulated
AD genes, whereas various metabolism-related functions,
such as oxidative phosphorylation, ion transport, and amino
acid metabolism, were associated with downregulated AD
genes (p < 0.005 and FDR < 0.05), as shown in Table 1. In
particular, pathways related to neurological diseases, includ-
ing AD, Huntington’s disease, and Parkinson’s disease, were
associated with downregulated AD genes. This functional
segregation between upregulated and downregulated AD
genes was more clearly demonstrated in the distribution of
the nonredundant GO terms that were selected using the
REVIGO algorithm [27], as shown in Fig. 4a. Signaling func-
tions, such as transcriptional regulation, development, and in-
flammation, were enriched in upregulated AD genes, whereas
metabolic functions, such as ion transport, catabolic process-
es, and oxidation–reduction, were enriched in downregulated
AD genes. The functional segregation and differential expres-
sion of a large number of genes in AD cases imply the

presence of a complex interaction of genes and functions dur-
ing the processes leading to the pathological conditions of
AD. Therefore, we examined the manner in which AD-
associated functions are interconnected with each other using
a network analysis. Various signaling functions associated
with upregulated AD genes, including inflammatory response,
cell death, and development, were grouped in a large cluster
(FDR < 0.01). Metabolic functions associated with downreg-
ulated AD genes, which included nucleotide metabolism, car-
boxylic acid metabolism, and fatty acid metabolic processes,
were also closely connected with each other (Fig. 4b). This
interconnection of AD-associated functions may be the cause
of the diverse pathological traits observed in AD. We also
evaluated the altered activities of pathways (permutation p <
0.05) in AD cases and compared them with that observed for
nondemented individuals using the expression levels of all
genes included in each pathway, rather than using only AD
genes. Immune-related pathways were predominantly activat-
ed, whereas neurological pathways and metabolic pathways
were suppressed in AD individuals (Fig. 4c). This pattern of
functional differentiation was confirmed in a GSEA, which
showed that signaling pathways (including disease pathways
and immune pathways) were enriched, whereas metabolic

Fig. 3 Selection of genes associated with AD. a Genes associated with
aging (FDR < 0.01) were selected from SAM and hierarchically
clustered. The distribution of the moving averaged age of samples is
plotted in the lower region of the expression profile image with p value
from general regression analysis. b The distribution of initial AD-
associated genes and age-associated genes is shown in the Venn dia-
grams. Genes exclusively included in AD were finally selected as upreg-
ulated and downregulated AD genes. c Finally, selected AD genes were
hierarchically clustered based on expression levels. Two subgroups of

samples in each dataset were discriminated with yellow lines.
Differential distribution of AD and nondemented individuals in the two
subgroups (p < 0.001) was measured using chi-squared test with Yates’s
continuity correction. The rate of AD samples in clustering profiles is also
presented in the lower region of the image. d The effectiveness of AD
genes in discriminating AD samples from nondemented samples was
verified using GSEA. Upregulated and downregulated AD genes were
enriched in the AD and nondemented groups, respectively, in each dataset
(p < 0.001 and FDR < 0.01)
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pathways and neurological pathways were depleted in the AD
group (FDR < 0.1, Fig. 4d). A detailed list of these pathways
is provided in Supplementary Fig. 6. A similar segregation of
enriched GO terms was also observed using GSEA, as shown
in Supplementary Fig. 7. As gene expression is determined by
the type of transcription factor that binds to the promoter se-
quences, we analyzed the patterns of TFBS in AD genes.
Figure 4e shows that AD genes were segregated into two
major clusters based on TFBS similarity. Upregulated and
downregulated AD genes were differentially distributed into
each cluster, with statistical significance (p < 10−5), which in-
dicated that the reciprocal expression of AD genes could be
predetermined at the transcriptional level.

Network Analysis of AD Genes

We further investigated whether this functional segregation of
AD genes was also linked with positional segregation in the

PPI network structure, as it was reported that the molecular
function and position of genes are related in this network [43].
Before the characterization of AD genes in the network, we
confirmed that both upregulated and downregulated AD genes
exhibited the characteristics of a scale-free network
(Supplementary Fig. 8). In a proportional plot of node de-
grees, we observed a reciprocal relationship between upregu-
lated and downregulated AD genes. The proportion of genes
with a high level of degrees was increased in upregulated AD
genes, but was decreased in downregulated AD genes (Fig.
5a). In fact, the average of node degrees was higher in upreg-
ulated vs downregulated AD genes (p < 0.001) (Fig. 5b). We
found that the general signaling and metabolic genes archived
in KEGG also showed reciprocal patterns of node degree dis-
tribution, similar to that observed for upregulated and down-
regulated AD genes, respectively (Fig. 5c). This result con-
firmed that the functional segregation of AD genes, whichwas
dependent on expression levels, may be correlated with

Fig. 4 Functional characterization of AD genes. a The enrichment of GO
terms associated with AD genes was measured using the DAVID and
REVIGO program. Representative GO terms and their related
nonredundant terms (p < 0.005 and FDR < 0.05) were presented in
identical colors. b The functional connections of enriched GO terms
associated with AD genes were measured using ClueGO. The related
GO terms were segregated in each cluster (FDR< 0.01) and represented
using the same color. The representative GO terms are indicated for each
cluster. The size of node represents the significance of the GO term.
Functionally related GO terms are partially overlapped. c Pathways that
were differentially activated between AD and nondemented individuals
(permutation p < 0.05) were selected, and their activities are visualized
using a color scale. Columns represent individual samples, and rows

represent pathways. The functional categories of pathways are
displayed in color bars. d Pathways that were enriched commonly in all
datasets (FDR < 0.1) were selected using GSEA. Enrichment scores for
each pathway are represented as black and white intensities, as shown in
the scale bar. e Upregulated and downregulated AD genes were clustered
hierarchically based on the similarity of the TFBS structure in the
promoter region (− 2000 to + 500 bp from the transcription start site).
The positions of upregulated and downregulated AD genes are
highlighted in the upper bar using red and blue colors, respectively.
Differential distribution of AD genes between the two clusters was
analyzed using chi-squared test with Yates’s continuity correction (p <
10−5). The color bar indicates the level of similarity, from red (i.e., high)
to green (i.e., low), with arbitrary units
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positional segregation of genes in the PPI network. In addition
to the degree distribution of genes, we measured the shortest
path lengths between genes in the PPI network, to identify the
nearest pathways to AD genes. First, we observed that near–
distant gene sets were also functionally similar, based on
genes in pathways. We then measured the pathways that in-
cluded AD genes. As shown in Fig. 5d, pathways were
grouped into seven clusters according to distance similarities.
Each cluster of pathways represents a specific biological func-
tion. For example, pathway cluster 1, which included upreg-
ulated AD genes, is composed of nucleotide metabolism-
related pathways, such as DNA repair and RNA transcription
pathways. In addition, pathway cluster 1 was also correlated
with signaling pathways, such as the Wnt, TGFβ, cell cycle,
and p53 pathways of pathway cluster 6. Conversely, down-
regulated AD genes were closely correlated with metabolism-
related pathways, such as glucose metabolism, amino acid
metabolism, and fatty acid metabolism pathways in pathway
cluster 3. During this process, we were not able to observe the
size effects of pathways in measurements of distances be-
tween gene sets, as shown in Supplementary Fig. 9. The full
list of pathways included in each cluster is shown in
Supplementary Fig. 10. Pathways adjacent to AD genes with

a similarity score > 3.35, corresponding to the top 90% path-
ways, were depicted in detail, as shown in Fig. 5e. It is evident
that upregulated and downregulated AD genes were mainly
linked with pathway clusters 1 and 3, respectively.

Evaluation of Animal Models of AD

The animal models used in the present study and their char-
acteristics are listed in Table 2 and Supplementary Table 3.
Among them, information pertaining to gene expression in
TgCRND8 (GSE31372), 3×Tg-AD (GSE36981), 3×Tg/
Polβ (GSE60911), and APP23 mice (GSE80465) was obtain-
ed from a public database. We compared the animal models
regarding three aspects: (1) expression levels of AD genes, (2)
activities of pathways, and (3) distance in the network. First,
the expression levels of AD genes were compared among
animal models. We found that 5×FADmice (forebrain, hippo-
campus, and frontal cortex), the frontal cortex and hippocam-
pus of rats in the initial phases (14 and 21 days) after BCCAO,
and the hippocampus of Aβ-injected mice (10 μM) showed a
similar pattern of gene expression compared with those of
humanADgenes (Fig. 6a). Intriguingly, we observed different
patterns of gene expression and pathway activity depending

Fig. 5 Network characteristics of AD genes. a The proportion of AD
genes at each degree value was measured in a whole PPI network.
Regression analysis was performed using generalized linear models. b
The distribution of the degrees of node genes was compared between
upregulated and downregulated AD genes. Statistical significance was
assessed using Student’s t test. c The proportion of functionally related
genes at each degree value was measured in a whole PPI network. Genes
in each functional category were obtained from KEGG. d The distances
of AD genes to pathways were examined by measuring the shortest path

length among each gene set. The positions of upregulated and
downregulated AD genes are indicated with arrows. Clusters of
pathways were numbered according to representative biological
functions, which are shown at the right side of the image. e Pathways
that were positioned close to AD genes (similarity score > 3.35
corresponding to the highest 90%) were selected as AD-adjacent path-
ways. Edge thickness represents the level of the similarity score between
two nodes. The colors of nodes indicate the biological functions of path-
ways, similar to the pathway clusters in the network
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on the regions (cortex and hippocampus) of the brain, partic-
ularly in Aβ-injected mice and BCCAO rat models (Fig. 6a).
A quantitative plot of gene expression clearly showed the

reciprocal regulation of AD genes in the three models men-
tioned above compared with the other models (Fig. 6b). In
addition to these three models, APP23 animals also exhibited

Table 2 Functional evaluation of animal models

Animal models Experimentsa

Expressions of
AD genes

Pathway activities Distances in network
to AD genes

Models Conditions Tissues

Aged mice 1.5 months Cortex

4 months

17 months

22 months

NCSTN model Basal forebrain

Hippocampus

Cortex

PSEN2 model Basal forebrain

Hippocampus

Cortex

MAPT model Basal forebrain

Hippocampus

Cortex

5×FAD Basal forebrain ● ●
Hippocampus ● ●
Cortex ● ●

Aβ-injected model 5 μM Cortex

Hippocampus ●
10 μM Cortex

Hippocampus ● ●
Streptozotocin model 2.5 mg/kg Cortex

Hippocampus

3 mg/kg Cortex

Hippocampus

Scopolamine model 1 mg/kg Hippocampus

BCCAO 14 days after surgery Cortex ● ●
21 days ● ●
45 days O

70 days

14 days Hippocampus ● ●
21 days ● ●
35 days ●
45 days O ●
55 days ●
70 days ●

TgCRND8 mice Forebrain

3×Tg-AD-H mice Homozygous Hippocampus ●
3×Tg-AD-h mice Hemizygous Hippocampus ●
3×Tg/WT Polβ Cortex ●
3×Tg/Polβ(+/−) Cortex ●
APP23 mice Forebrain O O ●

a Black and empty circles indicate strong (p < 0.01) and weak (p < 0.05) relationships of models, respectively, at each experimental condition
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similar patterns of gene expression, although the expression
levels were low. Similar clustering patterns of animal models
with age-associated genes were observed, as shown in
Supplementary Fig. 11, suggesting that these three models
may also be used as models of aging. The activities of path-
ways that showed differential regulation in ADweremeasured
in animal models (Fig. 6a). Consistent with the gene expres-
sion measurements, the pathway activities in 5×FAD mice,
rats with BCCAO (initial phases), and Aβ-injected mice
(hippocampus) were similar to those observed in human
AD, as immune disease-related pathways were upregulated
and metabolism and neurological pathways were downregu-
lated (Fig. 6b). In fact, the averaged expression levels of AD
genes were correlated with pathway activities among animal
models (Fig. 6c). The two methods mentioned above were
based on the direct use of the expression levels of genes. We
then examined the distances of genes in the PPI network using
DEGs rather than AD genes. DEGs were selected using 2-fold
criteria for the animal models analyzed here, whereas FDR <
0.1 under the two-class response type option of SAM was
used as a criterion for the selection of DEGs from animal
models from the GEO database (TgCRND8, 3×Tg, and
APP23 models). The plot of gene distribution from animal
models in SAM is shown in Supplementary Fig. 12. Using

DEGs, we determined the number of animal models that were
connected to preselected pathways adjacent to AD genes,
which were the nearest pathways from AD genes (Fig. 5e).
We achieved this by measuring the distances between each
animal model and AD-adjacent pathways. As shown in Fig.
7a, 3×Tg, APP23, and late-phase (45, 55, and 70 days after
surgery) BCCAO models were positioned close to AD-
adjacent pathways consisting of mainly pathway cluster 1
(nucleotide metabolism and repair pathways) and pathway
cluster 3 (general metabolism pathways) for upregulated and
downregulated AD genes, respectively (Fig. 5e).
Subsequently, we compared directly the similarities in dis-
tances in the PPI network between animal models. For upreg-
ulated DEGs, 5×FADmice, initial-phase (14 and 21 days after
surgery) BCCAO rats, and Aβ-injected mice (hippocampus)
were clustered in one group, whereas 3×Tg, APP23, and late-
phase BCCAO models were clustered with upregulated AD
genes in another group (Fig. 7b). The 3×Tg, APP23, and late-
phase BCCAO models were also co-clustered with downreg-
ulated AD genes. The similarities of distances in the network
observed between models suggest that the features of the
3×Tg, APP23, and late-phase BCCAO models are close to
those of human AD. However, this result of distances in the
network seems to be different from previous results of

Fig. 6 Functional evaluation of animal models. a Expression profile of
AD genes and AD pathway activities in animal models. AD pathways
were selected as those that were differentially activated between AD and
nondemented individuals. b The expression levels of AD genes or AD
pathway activities in animal models were quantitatively compared. Red
and blue bars indicate averaged values obtained using upregulated AD
genes (or repressed pathway activities) and downregulated AD genes (or
depressed pathway activities), respectively. Animal models showing

patterns of gene expressions that were similar to those of AD genes or
activities of pathways similar to those of humanAD are indicated in black
(p < 0.01) and white (p < 0.05) circles and were determined based on a
random permutation-based approach, as described in the BMaterials and
Methods^ section. Values are presented as means ± standard errors. c The
correlation was measured between the averaged expression levels of AD
genes and pathway activities in animal models
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expression patterns and pathway activities, which showed that
5×FAD, initial-phase BCCAO, and Aβ-injected models
(hippocampus) were more similar with human AD than were
the other models. DEGs from each animal model were used to
measure the distances in the network, rather than AD genes.
Considering that there was a lack of overlap between AD
genes and DEGs (Supplementary Fig. 13), distance in the
network based on DEGs should be considered to provide re-
sults that are independent from those based on the direct com-
parison of AD gene expression. DEGs represent the most-
altered genes in each animal model; therefore, they determine
the phenotypic characteristics of each animal model, including
AD-like pathological traits. Therefore, a closeness in distance
between DEGs and AD genes implies that this model may be
representative of the pathological characteristics of human
AD.We summarized the results of these comparisons between
animal models in Table 2.

Discussion

Genetic studies have shown that early onset AD is caused by
dominantly inherited mutations in APP,MAPT,MPSEN1, and
PSEN2. The functional implications of these risk genes
strongly suggest the amyloid cascade hypothesis, which

postulates that changes in Aβ homeostasis lead to the aggre-
gation and deposition of Aβ and, eventually, to the patholog-
ical conditions of AD. Interestingly, it has been reported that
these genes can also be associated with late-onset AD, as rare
variants [44–47]. However, a GWAS analysis showed that
various biological functions that are not directly associated
with Aβ physiology, including lipid (cholesterol) metabolism,
immune response, and endocytosis, were involved in late-
onset AD [48]. This molecular information regarding AD sug-
gests that various biological functions are implicated in the
pathophysiology of AD.

In the present study, many genes were also shown to be
differentially expressed in AD cases compared with
nondemented individuals, supporting the alteration of diverse
biological functions in AD. The measurement of pathway ac-
tivities showed that neurological pathways (neurological dis-
eases, addiction-related pathways, and synaptic functions) and
metabolic pathways (oxidative phosphorylation, amino acid
metabolism, and the insulin pathway) were downregulated,
whereas immune disease-related pathways were markedly up-
regulated in AD. In particular, immune functions have been
reported as being among the primary targets of anti-AD drugs,
as the activation of immune cells (microglia and astrocytes)
and their related signaling pathways seems to be involved in
neuroinflammation in AD [1, 49]. Therefore, the activation of

Fig. 7 Network evaluation of animal models. a Distances between
animal models and AD-adjacent pathways were examined by measuring
the shortest path length using DEGs from animal models. AD-adjacent
pathways were selected as the closest pathways to AD genes, as shown in
Fig. 5e. Genes that were differentially expressed by at least 2-fold com-
pared with normal controls in each animal model were selected as DEGs.
For 3×Tg, APP23, and TgCRND8 models, genes with FDR < 0.01 were
used as DEGs. The ratio of DEG-adjacent pathways (similarity score >

3.35) amongAD-adjacent pathways was measured. Black circles indicate
animal models showing a high similarity (p < 0.01) in pathway distribu-
tion to those observed for AD genes, as measured by random
permutation-based calculation. b The similarities between animal models
were measured based on distances of DEGs in the network. Animal
models were then hierarchically clustered based on distances. The posi-
tions of upregulated and downregulated AD genes are highlighted in red
color. Clusters of samples are indicated by yellow lines
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pathways related to neuroinflammation and neuronal cell
death observed in the present study seems to support the im-
portance of the immune reaction in the process of AD.
Conversely, the suppression of metabolism-related pathways
and neurological disease pathways evidenced the presence of
other important factors in the pathology of AD. Moreover, we
observed a close proximity between metabolic pathways and
neurological disease pathways in the network distance analy-
sis of pathways. Many reports also indicated the presence of
metabolic dysregulation in AD, such as dysregulation of the
insulin pathway and the resulting impairment of glucose me-
tabolism [50–52]. Consistently, in the present analysis, the
insulin and energy metabolism pathways (such as oxidative
phosphorylation) were suppressed or associated with down-
regulated AD genes. In addition, previous reports of an asso-
ciation between immunity and metabolic diseases, such as
diabetes [53], suggest that whole biological functions that
were shown to be enriched in the present study, such as im-
mune function, metabolic functions, and neuronal disease
pathways, could be interconnected to result in the pathological
conditions of AD. Therefore, we speculate that, for the devel-
opment of effective therapeutic agents against AD, multiple
targets, including immune and metabolic functions, should be
considered simultaneously.

Moreover, we observed that the topological segregation of
AD genes was dependent on their expression levels.
Upregulated genes, such as signaling-related genes, tended to
be located more centrally in the PPI network, whereas down-
regulated genes, such as metabolism-related genes, tended to
be located more peripherally in the network. In addition to the
enrichment analysis of functions, a distribution analysis of AD
genes in the PPI network confirmed the reciprocal segregation
of the biological functions of AD genes and a close association
between the function and topology of genes in the network. In
accordance with the results of the direct measurement of path-
way activity, upregulated and downregulated AD genes
showed reciprocal associations with signaling pathways (path-
way clusters 1 and 6) and metabolism pathways (pathway
cluster 3), respectively. We reported previously the reciprocal
regulation of biological functions between signaling pathways
and metabolic pathways in diverse biological situations [15,
17, 18] which suggests that the reciprocal regulation of gene
expression and biological functions may be the global regula-
tory mechanism that is predetermined in the promoter se-
quences of genes. Protein modification such as glycosylation,
acetylation, and phosphorylation is also thought to play an
important role in the reciprocal regulation of metabolism and
signaling processes [54].

Based on the molecular features of AD described above, we
assessed the similarity between the features of various animal
models and those of human AD. Models of AD can be classi-
fied into two categories: genetically modified and
nongenetically modified models. Regarding the former, we

used transgenic models such as the 5×FAD, mutated PSEN,
or wild-type MAPT overexpression models. In addition, we
incorporated public sources of microarray datasets of widely
used transgenic mice, such as the TgCRND8, APP23, and
3×Tg models. All transgenic models used here involved the
overexpression of mutated genes associated with Aβ and/or
tau pathophysiology, including APP, NCSTN, PSEN1,
PSEN2, and MAPT. As these transgenic models are based on
genes that are mutated in familial AD, they do not represent the
molecular features of human sporadic late-onset AD. Therefore,
as nongenetic models of AD or dementia, we incorporated var-
ious types of models, such as aged mice, models with BCCAO,
i.c.v.-injected Aβmice, i.c.v.-administered streptozotocin mice,
and scopolamine-treated mice [10, 55]. In particular, rats with
BCCAO, which have been used as models of vascular demen-
tia, were induced by permanent occlusion of the bilateral com-
mon carotid arteries, to result in chronic cerebral hypoperfu-
sion. The biphasic regulation of gene expression and associated
functions in the BCCAOmodel were previously reported by us.
In this model, immune functions were activated in the initial
phase (14 and 21 days) after operation, while neurological func-
tions were suppressed in later phases [15].

The measurement of the expression levels of AD genes
revealed that three models, i.e., 5×FAD mice, the hippocam-
pus of Aβ-injected mice, and initial-phase BCCAO rats,
showed patterns that were consistent with those of human
AD. A pathway activity analysis also demonstrated that three
models were most similar with human AD, in which neuro-
logical and metabolic pathways were downregulated, while
diverse immune disease pathways were markedly upregulat-
ed. Although we measured three animal models that mimic
human AD, it was difficult to identify common molecular
elements that were present in all three models, as the
BCCAO model, unlike the other two models, is not a trans-
genic model aimed at interfering with Aβ physiology.
However, the report thatβ-secretase 1 (BACE1) and Aβwere
upregulated in BCCAO rats [56] may imply the importance of
Aβ pathology in this model. Nevertheless, considering that
the other transgenic models evaluated in the present study also
exhibit direct or indirect dysregulation of Aβ physiology, our
results suggest that there may be functional differences among
Aβ-based animal models.

In addition to differences between models, we observed
differences in expression patterns of AD genes depending on
regions of the brain. In Aβ-injected mice and BCCAO rats
especially, the cortex region showed different expression pat-
terns of AD genes or age-associated genes when compared
with those of the hippocampus. We speculated that this re-
gional specificity could be attributed to the way each model
was constructed. For example, Aβ delicately injected into the
cerebral ventricle could affect the hippocampus and cortex
regions in temporal sequence. In addition, occlusion of the
bilateral common carotid arteries could result in selective
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damage to brain regions, although more supportive evidence
should be provided. We expect that regional differences in the
brain between animal models could provide important infor-
mation about changes in cognitive function in AD, because
each region in the brain has different roles in cognitive func-
tion and further provides different causal factors for cognitive
decline in pathological conditions of AD [57, 58].

Conversely, the measurement of distances in the PPI net-
work showed that late-phase (45, 55, and 70 days after sur-
gery) BCCAO rats and transgenic mice such as the 3×Tg and
APP23 models were positioned most closely to AD genes.
Because we used DEGs from each animal model in this net-
work analysis, rather than AD genes, the results pertaining to
network distances should be considered separately from the
results of AD gene expression. Therefore, it can be concluded
that three models, 5×FADmice, Aβ-injected mice, and initial-
phase BCCAO rats, may be used as suitable models for the
observation of the pathway activities and expression levels of
AD genes that characterize the molecular features of human
AD, whereas late-phase BCCAO and transgenic models (in-
cluding 3×Tg and APP23 models) may be used for the obser-
vation of phenotypic changes resulting from model-specific
genes as molecular targets for the evaluation of novel drugs.

In this research, we included only individuals who were
aged over 65 years for the isolation of genes associated with
late-onset AD. However, taking into consideration that aging
is a critical factor in late-onset AD, age-related changes in
gene expression may affect greatly the processes of onset
and further progression of AD. As shown in Fig. 2b, the pat-
tern of overall gene expression was different between young
(under age 65) and old (over age 65) individuals, evidencing
changes in the expression of numerous genes during the pro-
cess of aging, as reported previously at the genome level [59].
The close relationship between AD genes and age-associated
genes can also be verified by the close distances of these two
sets of genes in the PPI network, as shown in Supplementary
Fig. 14. This similarity may provide an explanation for the
high prevalence of AD among the elderly population, al-
though the factors that trigger the onset of AD remain to be
identified. Although we mainly focused on AD rather than the
aging process in the present study, considering that age is a
definite risk factor for late-onset AD, the causal effects of age
in development of AD should be investigated. The recent
view that AD is initiated decades before clinical manifestation
of cognitive decline suggests that AD could be on a continu-
um of aging in the brain [60, 61]. Animal models, especially
mice, have been reported to show age-related losses of cogni-
tive function [62, 63], which suggests that aged-animal
models could be applied to AD research related to cognitive
aging. However, in the brain of aged mice, we did not observe
any significant changes in the expression of AD genes or age-
associated genes. A previous report also showed that only a
small number of genes have evolved to be coexpressed in the

brain in humans and mice [59], suggesting differences in their
aging process. Therefore, aged mouse models should be used
carefully in research of aging or aging-related diseases.

In conclusion, we identified a group of AD genes from
multiple sources of gene expression datasets and observed
their reciprocal regulation with specific biological functions,
which were dependent on expression levels. Our results may
explain the diverse pathological aspects of AD, such as the
immunological activation and impaired glucose metabolism
that are observed often in patients with AD. Based on these
molecular features, we assessed the similarities between AD
animal models and human AD. The 5×FAD, Aβ-injected
mouse, and initial-phase BCCAO rat models showed patterns
of gene expression that were similar to those of AD genes.
However, when we used DEGs from each animal model in a
topological measurement of distances, 3×Tg, APP23, and
late-phase BCCAO models were positioned close to AD
genes. Therefore, in the development of therapeutic agents
against AD, multitarget approaches affecting multiple func-
tions, such as signaling, immune, and metabolic functions,
should be considered first and appropriate animal models
should be used, depending on the specific targets that are to
be evaluated in the measurement of drug effectiveness at the
molecular level.
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