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Abstract
Recombination-activating gene 1 (RAG1) is a vital player in V(D)J recombination, a fundamental process in primary B cell 
and T cell receptor diversification of the adaptive immune system. Current vertebrate RAG evolved from RAG transposon; 
however, it has been modified to play a crucial role in the adaptive system instead of being irreversibly silenced by CpG 
methylation. By interrogating a range of publicly available datasets, the current study investigated whether RAG1 has retained 
a disproportionate level of its original CpG dinucleotides compared to other genes, thereby rendering it more exposed to 
methylation-mediated mutation. Here, we show that 57.57% of RAG1 pathogenic mutations and 51.6% of RAG1 disease-
causing mutations were associated with CpG methylation, a percentage that was significantly higher than that of its RAG2 
cofactor alongside the whole genome. The CpG scores and densities for all RAG ancestors suggested that RAG transposon 
was CpG denser. The percentage of the ancestral CpG of RAG1 and RAG2 were 6% and 4.2%, respectively, with no prefer-
ence towards CG containing codons. Furthermore, CpG loci of RAG1 in sperms were significantly higher methylated than 
that of RAG2. In conclusion, RAG1 has been exposed to CpG mediated methylation mutagenesis more than RAG2 and the 
whole genome, presumably due to its late entry to the genome later with an initially higher CpG content.
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Introduction

Significant numbers of primary immunodeficiencies, such 
as severe combined immunodeficiency (SCID) and Omenn 
syndrome (OS), result from mutations in the recombination-
activating gene (RAG​). RAG1 and RAG2 proteins, encoded 
by the RAG1 and RAG2 genes, are critical for V(D)J recom-
bination process to recombine V (Variable), D (Diversity), 
and J (Joining) gene segments at antigen receptor loci and in 
turn, generate a vast array of the productive immunoglobu-
lin, or T cell receptor exons during lymphocyte develop-
ment. The V, D, or J gene segments are abutted by DNA 
recombination signal sequences (RSSs) and are specifically 
recognized by RAG1 [1]. RAG1 (within the RAG1:RAG2 
complex) binds to the RSSs to induce double DNA breaks 
(DDB) next to the coding segments to generate coding ends 
and joint ends. Both ends are processed by a non-homolo-
gous end joining (NHEJ) pathway [2]. RAG1 is proposed 
to have evolved from a RAG transposon that entered the 
vertebrate genome through horizontal gene transfer 500 mil-
lion years ago [3] and underwent a domestication process to 
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generate RAG recombinase with diminished transposition 
activity to perform the highly specialized function for a pow-
erful adaptive immune system [4]. Being a former transpo-
son, RAG1 is predicted to have been exposed to methylation 
during evolution as one main role of DNA methylation is 
inducing transcriptional silencing of transposable elements 
(TEs) that pose a continuous threat to the genome stability 
due to its intrinsic mobile nature [5–7].

DNA methylation occurs predominately, but not exclu-
sively, in the CpG dinucleotides, where a methyl group is 
introduced in the 5-carbon of Cytosine, followed by sponta-
neous hydrolytic deamination reaction converting cytosine 
into thymine (T) [8]. Cytosine (C) and guanine (G) bases 
account for 40% of the human genome. Although the hypo-
thetical expected content for CpG dinucleotides is 0.04, the 
actual value is between 0.008 and 0.01 [1–3]. This discrep-
ancy is chiefly mediated by DNA methylation-mediated 
mutagenesis. Indeed, 70–80% of CpG dinucleotides in the 
human genome are 5-methylated [9].

This study investigated to what extent methylation-
induced mutagenesis has contributed to RAG1 disease-
causing mutations by exploring online resources and check-
ing the inheritance of methylation-mediated mutations in 
RAG1 compared to RAG2. Furthermore, it aimed to test the 
hypothesis that the high mutation rate of RAG1 is because it 
still has many of its original CpG dinucleotides and, thus, is 
more prone to methylation-mediated mutagenesis compared 
to other genes. This purpose was achieved by analyzing the 
CpG densities and scores in the ancestral genes of RAG1 
and checking the ancestral CpG in RAG1/RAG2 coding 
sequences of other vertebrates. Finally, the study checked if 
the relatively high CpG density of RAG1 caused preference 
towards CG-containing codons when compared to RAG2 and 
the whole genome.

Materials and methods

Software

The following software were used in the current study: 
MegaX (Molecular Evolutionary Genetics Analysis) [10] 
64-bit, Excel, Expasy translate online tool.

Mining and investigation of RAG1 and RAG2 
mutations in publicly available data

Online repositories

The present study was concerned with substitutional point 
mutations identified through the coding sequences of RAG1 
and RAG2 in the National Center for Biotechnology Infor-
mation (NCBI) section of (ClinVar). The analysis excluded 

frameshift mutations. Mutations caused by CpG methylation 
(these were converted only to TpG or CpA) were identified 
by manual mapping of each mutation on RAG1 and RAG2 
coding sequences downloaded from ensemble and aligned 
with its protein translate (ExPASy – Online Translate tool) 
to confirm mutation position and codon change. The clinical 
significance of mutations in NCBI was as pathogenic(P), 
likely pathogenic (LP), benign (B), likely benign (LB), 
uncertain significance (Un.S), and conflicting interpretation 
of pathogenicity (CP). The website uses the term ‘conflict-
ing interpretation of pathogenicity’ (CP) to describe muta-
tions having conflicting data from different submitters. Our 
analysis included pathogenic, likely pathogenic mutations 
and ‘CP’ mutations submitted as P or LP more times than 
other interpretations. Supplementary tables S1 and S2 for 
RAG1 and RAG2 contain codon change, methylation status 
and clinical significance for each mutation. Finally, the per-
centage of (CpG) methylation-mediated mutations among all 
mutations linked to pathogenicity was calculated for RAG1 
and RAG2.

Published clinical data

The current study examined scientific journals for published 
clinical data of patients with RAG mutations [11–80] to 
explore the incidence of CpG methylation-mediated muta-
tions. This examination included patients’ ethnicity that 
duplicated mutations in patients of the same population were 
counted as one mutation unless patients belonged to unre-
lated families. Furthermore, we analyzed the data displayed 
by Lawless et al. [49] who innovated a tool referred to as the 
average mutation rate residue frequency (MRF) to predict 
the likelihood of clinically related mutations in RAG1 and 
RAG2. The higher the MRF score was, the higher the pos-
sibility of occurrence of clinically related mutations. They 
displayed MRF for a list of RAG1 and RAG​2 mutations. The 
current study categorized mutations into CpG and non-CpG 
methylation-induced mutations and calculated the average 
MRF and p-value.

Investigation of the methylation ratio of CpG loci 
in RAG1 and RAG2 by using the online available 
bisulfite seq data analysis of spermatozoa cells

To check if the methylation-mediated mutations are inher-
ited, this study examined the methylation in the germ cell 
(sperm). The current study determined methylated CpG loci 
of RAG1 and RAG2 by using the online available bisulfite 
sequence analysis, which depends on using bisulfite before 
the high-throughput sequencing for the differentiation 
between methylated and non-methylated cytosine. Bisulfite 
converts the non-methylated cytosine to uracil, which then 
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is read as thymine through sequencing, while methylated 
cytosine remains unchanged [81].

The genome data viewer displayed the methylation pat-
tern of only one sample via the link https://​www.​ncbi.​nlm.​
nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSM11​27119, and UCSC 
(University of California Santa Cruz) epigenome viewer 
Human chr11:36589563-36601310 - UCSC Genome 
Browser v309 (epigenomebrowser.org). For sampling, tes-
tis spermatozoa primary cells Donor 390ATA mapped by 
Illumina Bisulfite-Seq read and mappings were processed 
into graphs of methylation proportions. The genome viewer 
included the whole genome of the sample with an option 
to zoom in on the required position. The present study 
interpreted the methylation percent of the CpG loci from 
the genome browser, and calculated the percentage of each 
category, mean, and p-value between methylation ratios in 
RAG1 and RAG2.

Estimation of CpG density and CpG score 
in the ancestral RAG genes

As the proposed ancestors for RAGs, the sequences of the 
potential RAG relative: Hztransib, spRAG1L, spRAG2L, and 
ProtoRAG​ were downloaded from NCBI, and their CpG den-
sities were estimated. The CpG density was identified by 
calculating the total number of CG dinucleotides in the gene 
and comparing this to the overall gene length using the (Len) 
function in Microsoft Excel. CpG density was expressed as 
a percentage.

CpG score is a known tool used to assess the extent of 
genome exposure to DNA methylation [82, 83]. The higher 
the CpG score, the lower exposure to DNA methylation is. 
The CpG score was calculated by dividing the observed CpG 
density by the expected CpG density (G+C)/2)2.

Examination of ancestral CpGs for RAG1 and RAG2

The RAG1 cDNAs from different species were aligned and 
used to estimate the number of CpGs in the ancestral gene. 
The “Fasta” files for RAG1/RAG2 coding sequences of 40 
species were downloaded from the Ensemble. Species were 
selected to be representative of all categories: birds, reptiles, 
rodents, primates, mammals, and fish. The alignment results 
were exported from MegaX to Excel and then printed. CpG 
dinucleotides were checked throughout all 40 species, and 
we marked the ones where it is likely to have mutated via 
methylation-mediated mutagenesis. If there was just one or 
two CpGs at a position in all 40 species, this was likely to 
have arisen rather than to have been mutated in the remain-
ing 39 species. Therefore, the ancestral CpG dinucleotides 
were marked when detected in 3 or more species with seven 
or more TG/CA dinucleotides in other species or when 
CpG dinucleotides were detected in 10 or more species in a 

position. Finally, the percentage of these columns to the total 
number of nucleotides in the coding sequence was estimated 
and represented the ancestral CpG density.

Analysis of CG containing codons in RAG1 and RAG2 
compared with that in the human genome

RAG1 is a DNA-binding protein, so it is expected to have 
high Arginine “R” residues. Six codons encode Arginine: 
four CGXs (X is G, C, A or T), AGA, and AGG. We aimed 
to investigate whether most arginine residues are encoded 
by CGX, which may be the reason for RAG1’s high CpG 
density. The sequence analysis website (Codon Usage Cal-
culator - Free Online Analysis Tool - BiologicsCorp) veri-
fied the fraction of each arginine codon in RAG1.and results 
were compared with that in RAG2 and the human genome. 
Additionally, any other CG-containing codons were checked 
in both RAG1 and RAG2. Generally, CG-containing codons 
are CGT, CGC, CGA, and CGG for arginine; GCG for ala-
nine; TCG for serine; CCG for proline; and ACG for threo-
nine amino acids. These codons were also checked in the 
human genome using another sequence analysis tool called 
GenScript Codon Usage Frequency Table (chart) (https://​
www.​gensc​ript.​com/​tools/​codon-​frequ​ency-​table).

Statistical analysis

An independent sample t-test was used to compare the 
means between the two groups. The Z-score test was used 
to compare between two proportions.

Results

Pathogenic RAG1 mutations were associated 
with high CpG methylation status

RAG1 and RAG2 mutations are reportedly frequent in mul-
tiple primary immunodeficiencies. Mining the ClinVar tool 
at the NCBI database identified 393-point mutations at the 
coding sequence of RAG1, from whom 59 mutations were 
linked to disease pathogenicity. Stratifying pathogenic RAG1 
mutations revealed that 33/59 (55.9%) mutations were purely 
pathogenic, 17/59 (28.8%) were likely pathogenic, 8/59 
(13.56%) were reported to be pathogenic or likely patho-
genic, and only 1/59 (1.69%) mutation conflicting with path-
ogenicity (Fig. 1a). To investigate if RAG1 mutations with 
their related pathogenicity might be caused by CpG meth-
ylation, mapping the RAG1 Open Reading Frame (ORF) for 
CpG methylation was manually performed after excluding 
mutations marked with mixed or conflicting pathogenic-
ity. 57.57% (19/33) of the purely pathogenic RAG1 muta-
tions had at least one C: G > T: G or C: G > C: A change 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1127119
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1127119
https://www.genscript.com/tools/codon-frequency-table
https://www.genscript.com/tools/codon-frequency-table
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compared to 23.5% (4/17) mutations assigned as likely path-
ogenic (z score = 2.2882, p-value = 0.02) suggesting higher 
frequency of CpG methylation in RAG1 mutations that had 
clear pathogenic role across different disease etiologies.

The coding sequence of RAG2 had 216-point mutations, 
41 of which were described to have pathogenicity. Again, 
stratifying pathogenic RAG2 mutations revealed that 7/41 
(17.07%) mutations were purely pathogenic, 26/41 (63.4%) 
were likely pathogenic, 5/41 (12.19%) were reported to be 
pathogenic or likely pathogenic, and 3/38 (7.89%) muta-
tion conflicting with pathogenicity (Fig. 1b). Unlike RAG1, 
only 28.57% (2/7) and 7.69% (2/26) of the pure and likely 
pathogenic RAG2 mutations, respectively, were linked to 

CpG methylation (z score = −1.5, p-value = 0.13) prob-
ably highlighting other causative factors that are linked 
with RAG2 pathogenicity. As expected, the percentage of 
CpG methylation-mediated pathogenic mutations in RAG1 
was significantly higher than that of RAG2 (50.8% versus 
12.19%, z score = 3.9857, p-value < 0.0001).

To validate this data, we investigated papers reporting the 
role of RAG1 and RAG2 in primary immunodeficiencies and 
their methylation status. In line with the NCBI data, 51.64% 
(110 out of 213) of the total number of mutations in cases 
with immunodeficiencies or autoimmunity had CpG muta-
tions mediated by methylation in RAG1 coding sequence 
compared to 28.86% (28/97) in RAG2 coding sequence (z 

N C
1 1043R

10
8*

(P
/L

P)
R

11
2C

(L
P)

R
14

2*
(P

/L
P)

R
31

4W
(P

) 

W
95

9*
(P

)
R

97
5Q

(P
)

Q
98

1P
(P

)
K9

92
E 

(P
)

CND
87 217

RING
290 328

ZFA

355 376

Non-core Core

459

NBD
515 588 719 791 962 1008

DDBD PreR RNaseH ZnC2 CTDZnH2
R

32
8Y

(P
)

R
33

2*
(P

)
Y3

33
*(

P)
C

33
5R

(L
P)

R
39

4W
/Q

(P
/(P

/L
P)

) 
R

39
6C

/H
(P

/P
)

R
40

4W
/Q

 ((
P/

LP
)/P

)
Q

40
7E

(L
P)

R
41

0W
/Q

((P
/L

P)
/L

P)
L4

11
P 

(L
P)

D
42

9G
(P

)
M

43
5V

(P
/L

P)
A4

44
V(

P)
R

45
0*

(L
P)

R
47

4H
/C

(P
/P

)
S4

80
G

(L
P)

M
48

7R
(P

)

W
52

2C
 (P

)

. R
56

1H
/C

 (P
/P

)

Y5
89

*(
P)

R
62

4H
(P

)
E6

69
K(

LP
)

R
69

9W
(C

.P
)

E7
22

K(
P)

C
73

3*
(L

P)
R

73
7H

 (P
/L

P)
H

74
7P

(L
P)

E7
74

* 
(P

)
R

77
6W

 (L
P)

R
77

8W
/Q

 (P
/P

)
S7

83
*(

P/
LP

)
H

79
8R

(L
P)

A8
04

V(
LP

)

K8
30

*(
LP

)
R

84
1W

 (P
)  

 
N

85
5S

(L
P)

R
89

7*
/Q

(P
/L

P)
Y9

12
C

(P
) 

Q
91

7*
(L

P)
Y9

38
* (

P)

. .   .   . . . . .

. .. . . .. . ..  

. .   . . .    . . . .         . . . . . ..    . .   . . .

NBD389

389

459 ZnC2719 791

. . . .  . . . .  

. R
55

9S
(P

)

. ..   .   .

. .. R
71

6Q
/W

(L
P/

P)

..

N C
W

41
6L

(C
.P

)
W

43
0*

(L
P)

K4
40

N
(L

P)
P4

41
T(

LP
)

M
44

3I
/T

(L
P)

G
45

1A
(C

.P
)

W
45

3R
(L

P)
A4

56
T(

LP
)

M
45

9L
 (L

P)

.     . . . . . . .  . . .. . . . . . . . .  . .    .     .                                      

Non-coreCore

1 527
PHD fingerNAH CAH CTE

382 414 487350

M
1T

(P
/L

P)

G
35

A/
V(

P/
LP

)
R

39
G

(L
P)

C
41

W
(P

/L
P)

G
44

*(
P)

F6
2L

(L
P)

D
65

T(
P/

LP
)

R
73

C
/G

(L
P/

LP
)

T7
7N

(L
P)

Y9
1*

(L
P)

G
95

R
(P

/L
P)

R
14

8*
(P

)
G

15
7A

/R
/V

(L
P)

R
15

9C
/H

(P
/L

P)
N

17
3S

(L
P)

P1
80

H
(P

/L
P)

F1
83

L(
LP

)
Y1

95
D

(L
P)

E1
99

*(
P)

G
20

3E
(L

P)
I2

10
T(

P)
R

22
9Q

/L
/P

(C
.P

/L
P)

M
28

5R
(L

P)

G
31

9*
(P

)

PHD

. . . .  . . . . .   
414 487

Beta-propeller like structure

. ..

.

. .

a

b

Fig. 1   Point mutations with pathogenicity of RAG1 and RAG2 pro-
teins. a shows 59-point mutations with pathogenicity over the RAG1 
protein main domains, 50.8% of them are methylation-mediated 
mutations marked with red font. (noncore domains: CND, central 
non-core domain; RING, really interesting new gene, ZFA, zinc 
finger A, Core domains: NBD, nonamer binding domain; DDBD, 

dimerization and DNA binding domain; PreR, Pre-RNAse H; CTD, 
C-terminal domain); b shows 41-point mutations with pathogenicity 
spreading over the RAG2 protein main domains, 12.19% of them are 
methylation-mediated mutations. (non-core domains: NAH; N-ter-
minal acidic hinge, CAH, C-terminal acidic hinge, CTE; C-terminal 
extension)
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score = 3.74, p value = 0.0002). Noteworthy, the CpG muta-
tions mediated by methylation in the human genome were 
about 31.5%, a percentage lower than CpG mutations medi-
ated by methylation in the RAG1 coding sequence (z score 
= 3.25, p value = 0.001).

To investigate the probability of mutation for each amino 
acid residue in RAG1 and RAG2 proteins, Lawless and his 
colleagues innovated the average mutation rate residue fre-
quency (MRF) tool by multiplying residue frequency by 
mutation rate per residue [49]. They found a positive cor-
relation between MRF and the prediction of RAG1, but not 
RAG2, mutation-related pathogenicity. In 66 pathogenic 
RAG1 mutations analyzed by the same research group, we 
identified 27 CpG methylation-mediated mutations and 39 
non-CpG mutations with an average MRF of 0.04 and 0.02, 
respectively (t-value = 7.41515, p < 0.0001). 23/27 CpG-
related RAG1 mutations (85.18%) had an MRF maximum 
value (MRFmax) of 0.043 compared to the 0/41 RAG2 muta-
tion. In conclusion, the high frequency of CpG mutations 
mediated by methylation in the RAG1 (but not in the whole 
genome or RAG2) coding sequence suggests a role of DNA 
methylation in the pathogenesis of RAG1 mutation.

To discern whether high CpG frequency in the RAG1 
coding sequence is inherited or acquired, RAG1 methyla-
tion status in sperm samples should be checked. Typically, 
methylation needs to occur in the germ cells/progenitor cells 
for the mutations to happen and is manifested subsequently 
in lymphocytes. Searching the Genome Expression Omnibus 
(GEO) database for sperm bisulfite sequencing identified a 
study that includes one sample (donor 390ATA, accession: 
GSM1127119). Analyzing RAG1 and RAG2 methylation sta-
tus in that study showed that around 90.19% of RAG1 and 
55.56% of RAG2 CpG loci had a high methylation level. The 
methylation ratio of CpG loci in the RAG1 sequence was 
significantly higher than that in RAG2 (p-value = 0.001), 
suggesting that the high methylation ratio in the RAG1 
sequence compared to RAG2 might be inherited.

The CpG dinucleotides frequency was higher 
in the ancestral RAG transposons

RAG1 evolved from RAG transposon and was introduced 
into the vertebrate genome half a billion years ago. Inves-
tigation of the methylation status in RAG​ ancestors might 
explain the higher CpG density shown in human RAG1. 
Transib, SpRAG1L and SpRAG2L (in sea Urchin), and the 
ProtoRAGs BbRAG1L and BbRAG2L (in Lancelet) are DNA 
transposal superfamilies that had a sequence similarity to 
human RAG​. As in Table 1, the CpG density (and CpG 
score) for Helicoverpa Zea Transib, SpRAG1L, SpRAG2L, 
BbRAG1L, and BbRAG2L were 3% (0.83), 3.27% (0.48), 
2.5% (0.5), 2.7% (0.48), and 2.7% (0.49), respectively, com-
pared to 1.6% (0.27) and 0.56% (0.12) in human RAG1 and 

RAG2. High CpG densities and scores for all RAG​ relatives 
in comparison with the current RAG​ suggest that the original 
RAG​ transposons, from which the current RAG​ evolved, had 
high CpG density and were exposed to mutagenic deamina-
tion until they reached the current CpG density of 1.6% in 
RAG1.

After assessing the DNA methylation frequency in RAG​ 
ancestors, the study performed a subsequent comparative 
analysis of the CpG frequency in RAG1 and RAG2 sequences 
in other vertebrates. One hundred eighty-nine conserved/
mutant CG dinucleotides were identified across the aligned 
RAG1 coding sequences in 40 species, 23 of whom were 
conserved. CG > TG and CG > CA nucleotide changes were 
observed 95 and 56 times, respectively, while 15 CG > CA 
or TG loci were detected (Fig. 2). The vertebral CpG density 
in the RAG1 coding sequence, denoted by the total number 
of CpG loci (189) divided by the 3132 nucleotides in the 
RAG1 coding sequence, was 6.03% compared to only 4.2% 
(67 out of 1584) in the RAG2 coding sequence (z score = 
2.583, p value = 0.00988) (Fig. 3; supplementary table S3) 
further confirming the higher abundance of CpG in vertebral 
RAG1 sequence.

High abundance of CpG in RAG1 did not confer 
preference towards CG‑containing codons

RAG1 directly binds and cleaves DNA at the border of signal 
sequences, while RAG2 does not have a DNA binding affin-
ity but instead forms a RAG1-RAG2 complex. One explana-
tion of the RAG1 DNA binding activity is the higher Arginine 
amino acid content compared to that in RAG2. Arginine can 
be encoded by six codons (four CGX codons, AGA, or AGG), 
so the relatively large numbers of CpG dinucleotides in RAG1 
may induce a preference towards CGX codons encoding argi-
nine. To test this hypothesis, arginine-encoding sequences in 
RAG1 and RAG2 were counted. Table 2 shows that the RAG1 
protein includes 66 arginine residues: 31 CGX codons (46%) 
and 36 AGA/AGG codons (54%), whereas the human genome 

Table 1   The number and percentage of CpG and CpG score in the 
ancestral RAGs

Name Number 
of CpG

CpG density CpG score 
(CpG o/e 
ratio)

Helicoverpa Zea Transib 44 3% 0.83
(Sea Urchin) SpRAG1L 98 3.27% 0.48
SpRAG2L 38 2.5% 0.5
Lancelet ProtoRAG​ 128 2.7% 0.48
BbRAG1L 93 2.7% 0.49
BbRAG2L 35 3.14% 0.48
Homo Sapiens RAG 1 51 1.6% 0.27
Homo Sapiens RAG 2 9 0.56% 0.12



	 Immunologic Research

1 3

contains 60% CGX and 40% AGA/AGG (GenScript website). 
Other amino acids encoded by XCG codons, including alanine, 
serine, proline, and threonine, were also analyzed for their CG 
content. Once more, only 2/68 of alanine-encoded codons 
were GCG (2.9%), 2/85 serine-encoded codons were TCG 
(2.3%), 2/52 proline-encoded codons were CCG (3.8%), while 
2/40 (5%) threonine-encoded codons were ACG. Interestingly, 
the prevalence of these amino acids CG-containing-codons 
was lower than the corresponding human genome. Regarding 
RAG2, 8/18 of arginine-encoding codons were CGX (44.45%), 
10/18 were AGA/AGG (55.55%), while alanine, serine, pro-
line, and threonine amino acids were neither encoded by GCG, 
TCG, CCG, nor ACG in RAG2 protein. In conclusion, high 
CpG content in the RAG1 coding sequence did not confer any 
codon-usage bias in the relevant protein.

Discussion

RAG-mediated V(D)J recombination is essential for dura-
ble adaptive immunity. Therefore, mutations in the human 
RAG genes are correlated with a significant number of 
immunodeficiencies. In this study, we tried to determine 
whether the high mutation rate of RAG1 was because it 
retained many of its original CpG and, consequently, was 
more exposed to methylation-mediated mutagenesis than 
other genes. This study is the first to check the extent of 
CpG methylation contribution in RAG disease-causing 
mutations. A review of NCBI-identified pathogenic muta-
tions in the coding sequences of RAG1 demonstrated that 
CpG methylation was the causative for 57.57% of these 

Fig. 2   The representative figure 
for alignment of RAG1 coding 
sequences from 40 different 
species categorized into birds, 
reptiles, rodents, primates, 
mammals, and fish. Columns 
A, B, and C represent columns 
with ancestral CpGs through the 
species. Column A has 5 CG 
and 27 CA, and column B has 6 
CG and 34 TG
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mutations. Even after including others described as likely 
pathogenic and conflicting interpretations with patho-
genicity (specifically that has been submitted as patho-
genic/likely pathogenic more often than other clinical sig-
nificance interpretations), the percentage remained high 
(50.8%) and was significantly higher than 12.19%, the 
percent of RAG2 point mutations caused by CpG methyla-
tion to the whole RAG2 mutations linked to pathogenicity 
(p-value < 0.0001).

Then, this study inspected published clinical cases 
with immunodeficiencies and found that 51.6% and 
28.86% of patients with RAG1 and RAG2 mutations, cor-
respondingly, had CpG methylation-mediated mutagen-
esis (p-value=0.0002). Additionally, the RAG1 percent-
age is significantly higher than 31.5%, the percentage of 
the disease-causing methylation-mediated mutations in 
the human genome (p-value = 0.001) [84]. These findings 
agreed with the MRF values calculated by Lawless et al. 
[49] and analyzed in the present work. They used population 

genetics data from about 146,000 individuals for minor vari-
ant analysis. To validate the calculated scores of MRF, they 
used 44 previously identified pathogenic variants stated in 
patients and recombination activity scores from 110 mutated 
RAG1/2. Likewise, they compared probabilities with 98 cur-
rently reported diseased cases in humans. They also used 
a genome sequence dataset of 558 patients with primary 
immunodeficiency/wild-type RAG as negative controls. 
They found a positive correlation between the MFR values 
and pathogenicity prediction of RAG1 and not RAG2 muta-
tions [49].

Although CpG methylation-mediated mutation is known 
to be inherited [85], we had to confirm the methylation status 
at the CpG loci in RAG1 and RAG2 in specific way. After 
examining the methylation level through the online available 
bisulfite seq analysis of one spermatozoa sample, methyla-
tion levels for the CpG loci observed in RAG1 were signifi-
cantly higher than in RAG2 (p-value = 0.001), which might 
explain the higher mutation levels in RAG1 than in RAG2 in 

Fig. 3   The representative figure 
for alignment of RAG2 coding 
sequences from 40 different 
species categorized into birds, 
reptiles, rodents, primates, 
mammals, and fish. Columns 
A, B, and C represent columns 
with ancestral CpGs through the 
species. Column A has 4 CG 
and 36 TG, and column B has 3 
CG and 37 TG
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agreement with Zhou et al. who found a positive correlation 
between the methylation level and the mutational rate in the 
human germline (sperms and oocytes) when analyzed by 
whole genome bisulfite sequencing during the development 
stage [86].

Following that, the study undertook to identify the reason 
for the relatively high incidence of CpG methylation-medi-
ated mutations in RAG1 by examining its evolutionary roots. 
Since identifying V(D)J recombination, the standard features 
between this process and cut-and-paste transposition have 
had significant attention [87]. RAG cleaves adjacent to RSS, 
which is reminiscent of inverted terminal repeats (TIRs) tar-
geted by transposases, but instead of NHEJ, the transposon 
is inserted into the target DNA generating characteristic 
edges called target site duplication (TSD), whose length is 
variable according to the TE. These features, along with 
the discovery of RAG-mediated transposition, strengthen 
the hypothesis of V(D)J recombination evolution known as 
transposon/split receptor gene, which assumed that RAG1, 
RAG2, and the gene segments of antigen receptor loci have 
originated from the TE containing RAG1-like (RAG1L) and 
RAG2L genes flanked with TIRs [87–89]. Vertebrates’ RAG 
emerged by horizontal transfer to the genome of jawed ver-
tebrates as a RAG transposon at the time of the emanation 

of their complex adaptive immune system [90–92]. Believed 
all adaptive immunity components arose about 500 million 
years ago after the division of jawless vertebrates without 
any known source in the ancient species. So, it was called 
the immunological “big bang” [93]. Sequence similarities 
were identified between the current RAG1 and Transib fam-
ily of TEs. RAG1 consists of an active core region and a 
regulatory non-core region (Fig. 1). Transib resembles only 
the core region; its TIRs are like RSS, especially the hep-
tamer. Hztransib is the active member of this family and 
has a RAG​-like transposition manner, including the five bp 
TSDs left after transposition, so it is considered a precur-
sor for RAG transposon [91]. However, the Transib family 
lacks RAG2L. Both RAG1L and RAG2L are in the purple sea 
urchin (Strongylocentrotus purpuratus (SP)), which has an 
established evolution relation with the human genome [94]. 
SPRAG1L is like core RAG1 in addition to the N-terminal 
RING domain of the non-core, and SPRAG2L is like RAG2. 
Unlike other transposons, they have no TIRs or TSDs [92].

The ProtoRAG​ from the Chinese lancelets (Branchistoma 
belcheri (Bb)) consists of BbRAG1L and BbRAG2L genes, 
which have structural similarities with RAG1 and RAG2, 
respectively. Additionally, they are convergently tran-
scribed (as in the case of RAG1 and RAG2) and flanked 

Table 2   The percentage of CG 
containing codons (with red 
font) compared to non-CG-
containing codons for amino 
acids: arginine, alanine, serine, 
proline, and threonine in RAG1, 
RAG2, and the human genome

Amino acid codons RAG1 RAG2 Human genome

Percentage Number Percentage Number Percentage Number

Arginine CGT​ 12.12 45.5 8 11.11 44.45 2 8 60 93,458
CGC​ 6 4 22.22 4 19 217,130
CGA​ 6 4 5.5 1 11 126,113
CGG​ 21.2 14 5.5 1 21% 235,938
AGA​ 19.7 54.5 13 44.44 55.55 8 20 40 228,151
AGG​ 34.8 23 11.11 2 20 227,281

Alanine GCT​ 35.3 24 30 6 26 370,873
GCC​ 35.3 24 40 8 40 567,930
GCA​ 26.5 18 30 6 23 317,338
GCG​ 2.9 2 Zero Zero 11 150,708

Serine TCT​ 26.4 23 31 13 18 291,040
TCC​ 23 20 16.67 7 22 346,943
TCA​ 15 13 21.4 9 15 233,110
TCG​ 2.3 2 Zero Zero 6 89,429
AGT​ 17.24 15 16.67 7 15 237,404
AGC​ 16 14 14.29 6 24 385,113

Proline CCT​ 32.7 17 31 9 28 343,793
CCC​ 15.4 8 27.6 8 33 397,790
CCA​ 48 25 41.4 12 27 331,944
CCG​ 3.8 2 Zero Zero 11 139,414

Threonine ACT​ 37.5 15 37 13 24 255,582
ACC​ 43.5 17 17.14 6 36 382,050
ACA​ 15 6 45.7 16 28 294,223
ACG​ 5 2 Zero Zero 12 123,533
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with RSS-like TIRs. They left five bp TSDs after transposi-
tion. The structural similarity between BbRAG1L and RAG1 
exceeds the core and extends to include the RING/Zinc fin-
ger in the non-core region’s N-terminal region [92]. Many 
studies suggested models to illustrate how RAG​ has evolved 
from these transposons [4, 95–97], starting with Hztransib 
as the most ancient ancestor, passing with modifications and 
acquisition of RAG2L to get SPRAGL or ProtoRAG​, which 
underwent further changes to diminish the transposition 
activity and yield the current sophisticated immune system. 
The process of RAG​ transposon adaptation over the years, 
giving rise to the existing RAG, is called Transposon domes-
tication [98]. The methylation status of the ancestral RAGs 
was checked by calculating their CpG densities and scores. 
Zhou and his colleagues suggested the CpG score as an indi-
cator of the rate of germline CpG mutations through evolu-
tion. Additionally, they found an inverse correlation between 
the age of TEs and CpG density, in turn, CpG score [99].

Table 1 shows that CpG densities and scores for all RAG 
relatives were higher than that of the human RAG1, con-
firming that the original RAG1 transposon had higher CpG 
density when entered our genome. It is worth mentioning 
that CpG scores for SpRAG2L (0.5) and BbRAG2L (0.49) are 
slightly higher than that for SpRAG1L (0.48) and BbRAG2L 
(0.48), which is quite different from the present case of the 
human RAG​ where RAG2 CpG score (0.12) is lower than 
half that of RAG1(0.27) and even lower than that of the 
whole genome (0.2-0.25). This lower-than-expected CpG 
score of RAG2 is against the assumption that RAG2 entered 
the genome later than RAG1 and the hypothesis of Kapi-
tonov and Koonin about the common transposon from which 
both proteins evolved [3] unless RAG2 was exposed exclu-
sively to extensive CpG methylation mediated mutagenesis 
during evolution.

Besides, the CpG conversion into CpA, TpG, or both was 
identified in the aligned 40 RAG coding sequences from dif-
ferent vertebrates to investigate the original number of CpG 
dinucleotides in the ancient vertebrate RAG​. RAG1 had a 
higher fraction of ancestral (CpG)s (6%) than RAG2 (4.2%) 
and the current RAG1 CpG fraction (1.6%). Remarkably, we 
found the expected CpG content for RAG1 and RAG2 to be 
6% and 4.5%, respectively, based on the (C + G) percent in 
RAG1 (48.7%) and RAG2 (42.5%).

Lastly, the study tried to check if there is a relation 
between the comparatively high CpG density in RAG1 and 
the abundance of CG-containing codons. Non-even usage 
for the synonymous codons is observed in different species 
and is known as codon usage bias (CUB) [100]. Preference 
to specific codons rather than others of the same amino acid 
is affected mainly by mutation and natural selection [101, 
102]. Checking the CG-containing codons has revealed that 
the relatively high CpG density in RAG1, compared to RAG2 
and the whole genome, was not related to the high arginine 

residues present in such a DNA-binding protein like RAG1, 
as 54% of arginine residues were encoded with AGA/AGG, 
while the other four codons (CGG, CGC, CGA, and CGT) 
encoded only 46%. However, most arginine codons (60%) in 
the human genome were CGX, while only 40% were AGA/
AGG.

Conclusions

Disease causing methylation-mediated mutations occurred 
more frequently in RAG1 coding sequence compared to 
RAG2 and the human genome. RAG1 had higher CpG den-
sity and CpG score than RAG2 and the human genome, so 
it seemed that RAG1 kept most of its original CpG dinu-
cleotides. Further research should be done to discover the 
exact mechanism behind the extremely high methylation rate 
experienced by RAG2 during evolution.
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