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Abstract
In the last years, technological advancements for the analysis of electroencephalography (EEG) recordings have permitted to
investigate neural activity and connectivity in the human brain with unprecedented precision and reliability. A crucial element for
accurate EEG source reconstruction is the construction of a realistic headmodel, incorporating information on electrode positions
and head tissue distribution. In this paper, we introduce MR-TIM, a toolbox for head tissue modelling from structural magnetic
resonance (MR) images. The toolbox consists of three modules: 1) image pre-processing – the raw MR image is denoised and
prepared for further analyses; 2) tissue probability mapping – template tissue probability maps (TPMs) in individual space are
generated from the MR image; 3) tissue segmentation – information from all the TPMs is integrated such that each voxel in the
MR image is assigned to a specific tissue. MR-TIM generates highly realistic 3D masks, five of which are associated with brain
structures (brain and cerebellar grey matter, brain and cerebellar white matter, and brainstem) and the remaining seven with other
head tissues (cerebrospinal fluid, spongy and compact bones, eyes, muscle, fat and skin). Our validation, conducted on MR
images collected in healthy volunteers and patients as well as an MR template image from an open-source repository, demon-
strates that MR-TIM is more accurate than alternative approaches for whole-head tissue segmentation. We hope that MR-TIM,
by yielding an increased precision in head modelling, will contribute to a more widespread use of EEG as a brain imaging
technique.

Keywords Headmodelling .Magnetic resonance imaging .Headsegmentation .Tissueprobabilitymapping . Imageprocessing .

Source localization

Introduction

Electroencephalography (EEG) measures the variation of
electrical potentials over the scalp, which are generated by
neural activity. Due to its high temporal resolution, this tech-
nique is particularly suited for the investigation of neural dy-
namics during task performance as well as during resting state
(Mantini et al. 2007; Michel and Murray 2012; Liu et al.
2017). Most EEG studies conduct analyses of neural dynam-
ics in the sensor space. However, recent technological

developments have also enabled the use of EEG signals for
the reconstruction of neural sources. When source localization
is performed, EEG can be used as a non-invasive neuroimag-
ing technique, in alternative to magnetoencephalography
(Hipp et al. 2012; Michel and Murray 2012) and functional
magnetic resonance imaging (Ganzetti and Mantini 2013;
Mantini et al. 2007; Marino et al. 2019; Samogin et al.
2019). A first crucial element to ensure the reliability of
EEG source localizations is the use of high-density electrode
montages, including more than hundred sensors (Liu et al.
2017; Samogin et al. 2019; Seeber et al. 2019). It is also
fundamental that an accurate individual head model is built,
integrating information on the electrode positions over the
scalp and on the spatial distribution of head tissues (Michel
et al. 2004). This model is used to estimate how neural activity
propagates from the sources inside the brain to the sensors,
providing crucial information for an accurate source localiza-
tion (Hallez et al. 2007).
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Increasingly accurate techniques for head modelling have
become available in the course of the years. Initially, the hu-
man head was modelled as a simple homogeneous sphere, and
subsequently as three (or four) concentric spherical layers
distinguishing brain, skull and scalp (and cerebrospinal fluid
– CSF) compartments (Berg and Scherg 1994; Homma et al.
1994; Sun 1997). These approaches required to make strong
approximations concerning the positioning of the EEG elec-
trodes over the scalp surface. The extent of these approxima-
tions reduced considerably when magnetic resonance (MR)
images started being used to estimate scalp, skull and brain
meshes for individual participants. Boundary element
methods (BEMs) that relied on those meshes for the construc-
tion of the head model were developed (Akalin-Acar and
Gencer 2004; Hamalainen and Sarvas 1989). An important
limitation associated with the use of BEMs is that the meshes
cannot intersect each other. This leads to an oversimplification
of skull and brain layers, as well as the impossibility to sepa-
rate grey and white matter (GM/WM) and to appropriately
model the cerebrospinal fluid (CSF).

From this standpoint, an important advancement in head
modelling for EEG analysis was brought by the introduction
of finite element methods (FEMs) (Lew et al. 2009; Rullmann
et al. 2009; Wolters et al. 2007) and finite difference methods
(FDMs) (Cuartas Morales et al. 2019; Hallez et al. 2005;
Saleheen and Ng 1997). Both these approaches use the struc-
tural MR image to define flexible arrays of hexahedral or
tetrahedral elements, based on which the propagation of neu-
ral currents in the head can be computed. It should be consid-
ered, however, that each hexahedral/tetrahedral element needs
to be associated with a conductivity value that is characteristic
of the specific tissue it belongs to (Akhtari et al. 2002;
Baumann et al. 1997; Haueisen et al. 1997). To address this
requirement, the structural MR image needs to be accurately
segmented into the different head tissues. There is no intrinsic
limitation on the number of head tissues that can be defined,
provided that a specific conductivity value can be assigned to
each tissue.

The introduction of FEMs and FDMs has given strong
impulse to the use of highly realistic head models, requiring
the segmentation of a structural MR image to accurately de-
fine the head tissue distribution (Montes-Restrepo et al. 2014;
Ramon et al. 2006; Vatta et al. 2009). Over the years, MR
segmentation methods have been largely improved, and
extended to higher numbers of tissue classes. Wagner et al.
(2014) proposed a semi-automated six-tissue (GM, WM,
CSF, compact bone, spongy bone and skin) segmentation
method, which was based on multimodal MR imaging data.
Holdefer et al. (2006) defined eight tissue compartments (GM,
WM, CSF, compact bone, spongy bone, blood, soft tissues
and skin), but their approach yet required heavy manual inter-
vention. Li et al. (2016) presented an automated segmentation
method with seven tissues (GM, WM, CSF, eyes, bone, flesh

and air), based on both MR and computed tomography (CT)
images. It should be considered, however, that the availability
of both MR and CT images of the same participant is very
uncommon in EEG studies.

An alternative approach to the segmentation of MR images
in individual space is the use of already segmented template
MR images. We previously used this approach to build a head
model including twelve tissue classes (brain GM, cerebellar
GM, brain WM, cerebellar WM, brainstem, CSF, spongy
bone, compact bone, muscle, fat, eyes and skin) (Liu et al.
2017; Liu et al. 2018; Samogin et al. 2019; Zhao et al.
2019). An advantage of this solution is that a high number
of tissue classes can be easily obtained (Iacono et al. 2015);
however, spatial distortions are likely to occur, considering
that the segmented template image needs to be warped to
individual space.

Our recent studies based on high-density EEG showed that
source localizations can be strongly improved by using very
realistic head models (Liu et al. 2017; Liu et al. 2018). In light
of those findings, we aimed at further improving the current
methods for head tissue modelling based on structural MR
images. In this study, we introduce MR-TIM, which stands
for MR-based head tissue modelling. This is a software tool-
box to perform an automated segmentation of a T1-weighted
MR image in 12 tissue classes. The performance of MR-TIM
was evaluated both qualitatively and quantitatively. In partic-
ular, we used MR images from individual participants as well
as segmented images associated with an MR template. In this
manner, wewere able to provide evidence for an improvement
in segmentation precision as compared to alternative
solutions.

Methods

MR-TIM was written in the MATLAB environment
(MathWorks, Natick, MA, US), and subsequently integrated
in the SPM12 software package (http://www.fil.ion.ucl.ac.uk/
spm/software/spm12) to be used as a toolbox. Its code, which
is available under a GNU General Public License, can be
downloaded from NITRC at https://www.nitrc.org/projects/
mr-tim, and from GitHub at https://github.com/gtaberna/
mrtim.

Toolbox Overview

MR-TIM is divided into three main modules: 1) image pre-
processing; 2) tissue probability mapping; 3) tissue segmen-
tation (Supplementary Fig. 1). With the first module, the MR
image is denoised and prepared for further analyses; with the
secondmodule, tissue probability maps in individual space are
generated from the MR image; with the third module, infor-
mation from all the tissue probability maps is integrated such
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that each voxel in theMR image is assigned to a specific tissue
(Fig. 1). Settings and parameters for each module can be se-
lected through a graphical user interface integrated in SPM12
(Supplementary Fig. 1). A detailed description of the modules
is provided in the following sections.

Image Pre-Processing

The raw T1-weighted MR image, in NIFTI format and with
the name anatomy.nii, is pre-processed to reduce background
noise and to correct for intensity inhomogeneity. First of all,
the image is resampled at 1 mm isotropic resolution, and spa-
tially smoothed. Next, intensity inhomogeneity is attenuated
using the bias correction tool in the SPM12 segmentation
toolbox. Finally, all the intensities below a selected intensity
threshold are set to zero. The spatial smoothing kernel and the
intensity threshold are set to 1 mm full width half maximum
and 5% of the maximum image value, respectively. The user
can tune these parameters through the graphical user interface.
The pre-processedMR image is saved as anatomy_prepro.nii.

Tissue Probability Mapping

The pre-processed MR image is then given as input to the
segmentation tool of SPM12, along with the tissue probability
maps (TPMs) in the Montreal Neurological Institute (MNI)
standard space. The TPM is a 3D image with intensity values
ranging between 0 and 1, representing the likelihood that each
pixel belongs to the specific tissue class. The TPMs in MNI
space implemented in MR-TIM are derived from the MIDA
model (Iacono et al. 2015) and are associated with the follow-
ing twelve tissue classes: brain GM, cerebellar GM, brain
WM, cerebellar WM, brainstem, CSF, spongy bone, compact
bone, eyes, muscle, fat, and background (Liu et al. 2017; Liu
et al. 2018) (see Supplementary Fig. 3). The output of the
SPM12 segmentation tool is a set of TPMs in individual MR
space. These TPMs, each corresponding to a TPM in MNI
space, are estimated based on the intensity profile in the pre-
processed MR image. They are saved in a 4D image called
anatomy_prepro_tpm.nii.

Tissue Segmentation

The TPMs in individual space are used as priors for the definition
of the tissue classes. Morphological and intensity-related opera-
tions are used to generate a set of 3D masks, one for each tissue.
These masks are generated in a sequential manner (from the brain
to the skull, to the soft head tissues), and finally integrated in a
single 3D image containing the segmented head. A priori informa-
tion on the anatomy of the human head is used to constrain the
tissue spatial distribution. Specifically, the CSF is set to fill the
ventricles and the subarachnoid space around the brain (GM and
WM); the compact bone is set to surround the external surface of
the CSF and the whole surface of the spongy bone. Also, the soft
head tissues (muscle and fat) and the skin lay outside the skull and
brain. Once all 3D masks, one for each tissue class, are created,
they are integrated in the same space. A maximum likelihood
approach based on the TPMs is used to resolve cases of overlap
between tissues, or to fill gaps. The final output of the tissue
segmentation is a 3D image named anatomy_prepro_segment.nii,
with voxel values in the range from 0 to 12. The value 0 defines
the background area external to the head and the other labels define
the twelve tissues. Optionally, the user can choose to save, along
with this labelled image, also the binary masks of each segmented
tissue. If needed, 3D meshes can be generated using external soft-
ware that can read and process NIFTI files.

Validation

MR Datasets

We used five structural MR datasets for the validation of our
method. The first dataset contained 6 MR images collected in
healthy young volunteers, on which we primarily conducted
qualitative analyses. Then we moved to template MR data
from an open-source online database, which also contained a
segmented image. This permitted us to conduct qualitative as
well as quantitative analyses. Finally, we performed a large-
scale validation on MR images from three other online data-
bases, which were collected using different MR scanners, in
healthy participants and patients of different age.

Fig. 1 Workflow of the MR-TIM
analysis for structural MR im-
ages. The analysis is accom-
plished through three main mod-
ules: image pre-processing, tissue
probability mapping and tissue
segmentation. The final output is
a segmented image and
(optionally) a 3D mask for each
segmented tissue
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Individual MR Data Each participant gave written informed
consent to the experimental procedures, which were approved
by the Ethics Committee of the KU Leuven. For each partic-
ipant, a structural T1-weighted MR image was collected with
a Philips Achieva 3.0 T MRI system and a 32-channel head
coil. The images were acquired with a magnetization-prepared
rapid-acquisition gradient-echo (MPRAGE) sequence with
the following parameters: TR = 9.6 ms; TE = 4.6 ms; voxel
size = 1 × 1 × 1.2 mm3; field of view = 250 × 250; 160
coronal slices.

Template MR Data We also used data from the Scientific
Computing and Imaging Institute (SCI) Head Model of the
University of Utah (https://www.sci.utah.edu/sci-headmodel.
html) (Warner et al. 2019). This open-source repository con-
tains a high-resolution (1 mm isotropic) T1-weighted image,
as well as a seven-layer whole-head segmented image includ-
ing the following tissue classes: GM, WM, CSF, skull, sinus,
eyes, and scalp. This segmented image was obtained follow-
ing a manual procedure using the FSL toolbox (Jenkinson
et al. 2012) and the Seg3D software (NIH Center for
Integrative Biomedical Computing, University of Utah,
www.seg3d.org).

Database MR Data Finally, we used MR images from three
databases: the IXI database of the Imperial College of London
(https://brain-development.org/ixi-dataset/); the Autism Brain
Imaging Data Exchange (ABIDE) database (http://fcon_1000.
projects.nitrc.org); the SchizConnect database (http://
schizconnect.org). The IXI database contains structural T1-
weighted images collected in participants with age ranging
between 20 and 86 years, using either a Philips Intera 3.0 T
or a Philips Gyroscan Intera 1.5 T MRI system. For our val-
idation, we extracted a total of 40 MR images: (a) 10 from
young participants (age 20–35 years), acquired with the 3.0 T
scanner; (b) 10 from young participants (age 20–35 years),
acquired with the 1.5 T scanner; (c) 10 from elderly partici-
pants (age 60–75 years), acquired with the 3.0 T scanner; (d)
10 from elderly participants (age 60–75 years), acquired with
the 1.5 T scanner. The ABIDE database contains structural
T1-weighted images collected in patients with autism spec-
trum disorder (ASD); we specifically extracted MR images
from 10 participants (age 18–25), collected using a Philips
Achieva 3.0 T MRI system. The SchizConnect database con-
tains structural T1-weighted images collected in patients with
schizophrenia; we specifically extracted MR images from 10
participants (age 19–66), collected using a Siemens Trio Tim
3.0 T MRI system.

Method Assessment

We initially conducted a qualitative assessment of MR-
TIM, applying the method to the MR data from individual

participants. Three other methods were used for compar-
ison. The first one, which was earlier proposed by our
g roup , segment s the MR image by warp ing a
precomputed 12-layer segmentation in MNI space to in-
dividual space (Liu et al. 2017). In the following, we will
refer to this approach as ‘warping of template
segmentation’, or WTS. The second alternative method
is based on the segmentation scripts available in the
Fieldtrip toolbox (http://www.fieldtriptoolbox.org)
(Oostenveld et al. 2011), which is used by a wide com-
munity of researchers. The FieldTrip segmentation can
yield up to five tissue classes (GM, WM, CSF, skull and
scalp), but in standard settings it produces the three tissue
classes to be used for BEMs (brain, skull, scalp). The
third method is integrated in the BrainStorm software
(http://neuroimage.usc.edu/brainstorm) (Tadel et al.
2011), and relies on tissue segmentation by FreeSurfer
(https://surfer.nmr.mgh.harvard.edu) (Fischl 2012). The
output of the segmentation produced by BrainStorm has
similar format as the one of FieldTrip. For qualitative
comparisons of the results produced by MR-TIM, WTS,
FieldTrip and BrainStorm, meshes were created using
3DSlicer (https://www.slicer.org) (Kikinis et al. 2014).

It should be noted that no ground truth is available for
individual MR images. To address this limitation, we also
analysed data available from the SCI Head Model, which
included both a T1-weighted MR image and its corre-
sponding segmentation. First, we conducted a qualitative
analysis of the SCI MR data, processed using MR-TIM,
WTS, FieldTrip and BrainStorm, respectively. Then, we
used the segmented image from the SCI Head Model as
reference, and we performed quantitative analyses.
Considering that the SCI segmentation contained seven
tissue classes, the output of MR-TIM and WTS was
post-processed, combining brain GM with cerebellar
GM, brain WM with cerebellar WM and brainstem,
spongy bone with compact bone (skull), muscle with fat
and skin (scalp). Since the segmentation produced by
FieldTrip and BrainStorm contained maximum five clas-
ses, these two methods were not included in the quantita-
tive analysis. For each tissue class in the SCI Head Model
(excluding the sinus) and for the background (BG), we
defined three indices to quantify the precision of MR-
TIM and WTS. The first index is the Spatial Overlap

index K defined as K ¼ A∩Bj j
Bj j (Cardenes et al. 2009); the

second one is the Dice index D, defined as D ¼ 2 A∩Bj j
Aj jþ Bj j

(Dice 1945); the third one is the Jaccard index J, defined

as J ¼ A∩Bj j
A∪Bj j (Jaccard 1912). In the formulas above, A is

the test image and B is the reference image, whereas A ∪ B
and A ∩ B are the union and intersection of A and B,
respectively. The notation |∙| indicates the sum of voxels
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included in the image. All the three indices defined above
are in the range between 0 and 1, with 1 reflecting perfect
overlap between images and 0 no overlap.

Finally, we processed theMR images from the IXI, ABIDE
and SchizConnect databases with bothMR-TIM andWTS, so
to obtain 12-layer segmentations. They were scored by two
independent raters, who did not have any information
concerning how the specific MR image was collected and
processed, but were not blinded to which tissue should have
been assessed. For each tissue class and each segmentation
method, the raters assigned a qualitative segmentation score,
defined as follows: excellent, good, doubtful or failed
(Klapwijk et al. 2019). First, we quantified the inter-rater re-
liability of the segmentation scores for IXI, ABIDE and
SchizConnect databases, respectively, using the linear weight-
ed Cohen’s kappa coefficient κ (Cohen 1960). In addition, the
segmentation scores obtained from the IXI database were an-
alyzed using a linear regression model with three factors: age
(young vs. elderly), scanner type (3 T scanner vs. 1.5 T scan-
ner) and segmentation method (MR-TIM vs. WTS). In this
manner, we tested if and to what extent each of the factors
contributed to the differences across segmentation scores.

Results

UsingMR-TIM, we performed an automated whole-head seg-
mentation in twelve tissue classes from individual MR images
(see Fig. 2 and Supplementary Fig. 2 for a detailed example).
A valid segmentation was obtained for all six MR images
included in the study. Aiming at comparing the output pro-
duced by MR-TIM with other methods, we processed the
individual MR images also with WTS, FieldTrip and
BrainStorm. We built and plotted 3D surfaces for the five
tissues generated by all four methods: scalp, skull, GM, WM
and CSF. Visual inspection of the results evidenced a relative

good correspondence between the skin layers generated by
MR-TIM, FieldTrip and BrainStorm, and between skull,
GM and WM layers generated by MR-TIM and WTS (Fig.
3 and Supplementary Figs. 4–7). Conversely, relatively large
spatial distortions were observed in the skin layer produced by
WTS. Also, the skull layer generated by FieldTrip and
BrainStorm appeared to be very smooth and with
oversimplified geometry.

Results in line with those obtained from individual MR
images were obtained when MR-TIM, WTS, FieldTrip and
BrainStorm were applied to the MR image of the SCI Head
Model (Fig. 4). In this case, however, we could use the corre-
sponding segmented image as reference, and could also con-
duct quantitative analyses for MR-TIM and WTS (Fig. 5).
Specifically, we obtained an average Spatial Overlap index
equal to 0.71 (range 0.51–0.99) for WTS and 0.86 (range
0.73–0.99) for MR-TIM (Fig. 5a-b). We found an improve-
ment in the segmentation of MR-TIM compared to WTS for
all tissue classes except for the CSF (Fig. 5c); more specifi-
cally, the major differences in terms of Spatial Overlap were
observed for WM (+ 39.3%), eyes (+23.9%), scalp (+16.7%)
and GM (+16.4%). The results that we obtained when
assessing the segmentation performance with the Spatial
Overlap index were corroborated by those produced using
the Dice and Jaccard indices (Supplementary Figs. 8 and 9).

The validation performed using the IXI database allowed
us to examine the generalizability of the results from data
collected with different scanners and in individuals with dif-
ferent age (Fig. 6). We observed overall high segmentation
scores, with 42.2% and 35.5% excellent, for young and old
participants respectively, as well as 52.6% and 60.1% good,
respectively; 38.3% excellent and 57.4% good for the 3.0 T
MR scanner, 39.4% excellent and 55.3% good for the 1.5 T
MR scanner; 53.5% excellent and 45.2% good for MR-TIM,
24.2% excellent and 67.5% good for WTS. Linear regression
analysis revealed significant differences between

Fig. 2 Sample output of whole-
head automated segmentation
produced by MR-TIM. The re-
sults obtained on the MR image
from subject S01 are shown in
volumetric space. The 12 tissue
classes are represented with dif-
ferent colours
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segmentation methods (p < 0.0001), with MR-TIM
outperforming WTS. No significant differences were found
between age groups (p = 0.128) and scanner types (p =
0.955). The analysis of individual tissue classes evidenced that
the improvement of MR-TIM compared to WTS was to be
primarily ascribed to the segmentation of grey matter,
brainstem, skin and muscles. On the other hand, relatively less
accurate segmentation for MR-TIMwere observed for spongy
bone, fat and eyes. MR-TIM yielded an improved segmenta-
tion of the CSF on the MR images from the IXI database,
which is not in line with the results obtained from the SCI
Head Model. Specifically, we obtained a rate of excellent
evaluations for CSF across participants equal to 55.0% and
16.3% for MR-TIM and WTS, respectively. The

segmentation scores of the two raters were in moderate/
substantial agreement, with κ = 0.57 (95% C.I., 0.48–0.66).

When we segmented MR images of patients, we obtained
comparable performance as compared to that of healthy indi-
viduals.We had overall high segmentation scores, with 24.0%
excellent and 63.3% good for ASD patients, as well as 27.7%
excellent and 64.2% good for schizophrenia patients. Also, we
obtained 40.4% excellent and 54.8% good for MR-TIM,
11.3% excellent and 72.7% good for WTS (Fig. 7). Again,
the segmentation scores of the two raters were in a
moderate/substantial agreement, with κ = 0.52 (95% C.I.,
0.34–0.70) for ABIDE and κ = 0.49 (95% C.I., 0.29–0.69)
for SchizConnect.

Fig. 3 3D surfaces of scalp, skull
and brain, estimated byMR-TIM,
WTS, FieldTrip and BrainStorm
using an individual MR image.
The results were obtained using
the MR image from subject S01
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Discussion

Our previous work showed that an increased precision in head
modelling can be crucial to ensure the accuracy of EEG source
localizations (Liu et al. 2017; Liu et al. 2018), fostering the use
of EEG as brain imaging technique (Samogin et al. 2019;
Zhao et al. 2019). Aiming at providing a valid and reliable

approach to head modelling, we previously proposed to reg-
ister a 12-layer template segmentation to individual space (Liu
et al. 2017), according to a WTS approach. Other existing
solutions permit to obtain segmentations with a lower number
of head tissues, and typically require manual fine-tuning
(Holdefer et al. 2006; Li et al. 2016; Wagner et al. 2014).
Although the WTS solution has its own merits, an important

Fig. 4 3D surfaces of scalp, skull
and brain estimated by MR-TIM,
WTS, FieldTrip and BrainStorm
using a template MR image. The
results were obtained using the
MR image from the SCI Head
Model
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limitation needs to be considered: registration errors from tem-
plate to individual space can inevitably occur, and primarily
affect head tissue definition. Aiming at addressing this limita-
tion, we developed MR-TIM, a toolbox that permits highly
realistic segmentation of a structural MR image in 12 head
tissue classes. Our validation confirmed that MR-TIM can
reliably define head tissue classes in individual space. This
permits to take full advantage of recent developments in for-
ward modelling (Cuartas Morales et al. 2019), with positive
impact on EEG source localizations (Michel et al. 2004).

Analysis of Method Features and Performance

A large number of EEG source localization studies rely on
BEMs for the creation of the leadfield matrix, which mathe-
matically describes how neural currents in the cortex are re-
lated to the potentials measured by EEG sensors over the scalp
(Michel et al. 2004). The use of BEMs typically requires the
segmentation of head tissues in only three classes: brain, skull
and scalp. FEMs and FDMs have however demonstrated a
superior precision compared to BEMs for the calculation of
the leadfield matrix, in particular when highly realistic head
segmentations are used (Cuartas Morales et al. 2019; Hallez
et al. 2007).

Manual or semi-manual approaches can be used to obtain
highly realistic head segmentations (Briend et al. 2020;
Holdefer et al. 2006; Wagner et al. 2014). However, these
approaches can be very time-consuming, and are in particular
operator-dependent. They are therefore unsuitable for use in
large-scale analyses of EEG data, and do not ensure reproduc-
ibility of EEG imaging results even in studies with a relatively
small number of participants. Alternatively, high-resolution
segmented images of the human head have been proposed as
an important aid for EEG forward modelling (Huang et al.
2016; Warner et al. 2019). Those images can be very helpful
to conduct simulations or can be used in studies in which
information on electrode positions is unavailable. It is evident,
however, that a high precision in the calculation of the
leadfield matrix can be achieved only when electrode posi-
tions are collected and are spatially aligned with the MR im-
age of the same participant. It is for this reason that, in our
previous studies, we have used the WTS approach. In partic-
ular, we warped a precomputed 12-layer segmentation inMNI
space to individual space (Liu et al. 2017). We demonstrated

�Fig. 5 Tissue estimation performance of MR-TIM and WTS, measured
using the Spatial Overlap index. The SCI Head Model segmentation is
used as reference, and compared against the results produced by (A) MR-
TIM and (B) WTS. Each value in the confusion tables represents the
Spatial Overlap index between tissue masks. (C) The difference in the
Spatial Overlap index obtained using MR-TIM andWTS, respectively, is
shown as well. GM: grey matter; WM: white matter; CSF: cerebrospinal
fluid; BG: background
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that this WTS approach, in combination with FEM for the
leadfield matrix calculation, can lead to a remarkable preci-
sion in the reconstruction of EEG brain networks (Liu et al.
2018).

The development of MR-TIM takes its origin from the
observation that our solution for head tissue segmentation
could be improved, possibly leading to an increased precision
in EEG source reconstruction. Specifically, we aimed to de-
velop a novel, completely automated technique that could
segment head tissues in individual MR space. This solution,
which we called MR-TIM, has three main steps (Fig. 1): the
first one is aimed at standardizing the input MR image; the
second one generates 12 distinct TPMs by combining topo-
logical and intensity information contained in the MR image;
the third step integrates the information contained in the TPMs
to assign each voxel in the MR image to one of the 12 tissue
classes.

The quality of the segmentation produced byMR-TIMwas
satisfactory (Figs. 2-4), as to enable head modelling. In par-
ticular, the MR-TIM segmentation of the template MR image
from the SCI HeadModel showed a high degree of correspon-
dence with the SCI segmented image (Figs. 4-5). With some
exceptions, we observed good match between the single-
t issue masks obtained using MR-TIM and WTS.
Conversely, the tissue classes identified by FieldTrip
(Oostenveld et al. 2011) and BrainStorm (Tadel et al. 2011)
differed substantially from those of MR-TIM and WTS. In

particular, the skull compartment was very smooth and did
not seem to have realistic morphology (Figs. 3-4).

Upon close inspection, we found that MR-TIM presented
discontinuities for some tissues, and particularly the skull. The
reconstruction of the skull was probably the most challenging
task, as the compact and spongy bone layers are very thin (Fig.
3-4). Quantitative analyses showed that the skull reconstruc-
tion of MR-TIM was more accurate than for WTS (Fig. 5).

We also found that WTS was characterized by spatial dis-
tortions for external head layers, including the skin (Fig. 3-4).
This may be due to the fact that spatial normalization algo-
rithms are optimized for the registration of the brain
(Ashburner and Friston 1999; Friston et al. 1995), rather than
of the whole head. Notably, we found differences between
MR-TIM and WTS also for WM, with the first method show-
ing better correspondence with the reference segmentation
(Fig. 5). Also in this case, the result may be explained by an
intrinsic difficulty in the spatial registration of subcortical
regions.

The results obtained using MR images from the IXI data-
base revealed that MR-TIM was not significantly influenced
by the age of the participants and by the MR scanner system
used for acquisition (Fig. 6). On the other hand, its use resulted
in a significant improvement in segmentation performance as
compared to WTS. Also, MR-TIM produced satisfactory re-
sults with MR images collected in patients with ASD and
schizophrenia (Fig. 7), which are neurological conditions

Fig. 6 Qualitative segmentation scores based on the scale: excellent,
good, doubtful and failed. Scores related to the 40 MR images from the
IXI dataset. The stacked bar plots compare the scores for MR-TIM (left)

andWTS (right) segmentation methods, divided per groups of: age of the
participant, young (20–35 years old) and older individuals (60–75 years
old); MR scanner type, 3.0 T and 1.5 T

Fig. 7 Qualitative segmentation scores based on the scale: excellent,
good, doubtful and failed. Scores related to the 20 MR images from the
ABIDE and SchizConnect databases. The stacked bar plots compare the

scores for MR-TIM (left) and WTS (right) segmentation methods, divid-
ed per groups of mental disorder of the participant: autism spectrum
disorders (ASD) and schizophrenia
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characterized by increased brain size and ventricular enlarge-
ment, respectively.

Limitations and Future Work

A number of limitations of the study should be mentioned.
First of all, the performance of MR-TIM was compared with
only three other head segmentation methods based on T1-
weighted MR images, WTS, FieldTrip and BrainStorm.
Notably, MR-TIM has been developed for use with T1-
weighted MR data, but it could be extended in the future to
process also T2-weighted MR and CT data. This further de-
velopment would then provide the opportunity to compare
MR-TIM with other methods that rely also on T2-weighted
MR (Wagner et al. 2014) or CT images (Li et al. 2016).

As a second limitation, we would like to mention that MR-
TIM, in its current implementation, is not suited to process
images collected in participants with brain lesions, as those
produced by stroke, brain tumour or traumatic brain injury.
The presence of a lesion in the brain, in particular if cortical,
may have a strong impact on EEG source localizations (Irimia
et al. 2013). For this reason, our future methodological work
will be directed towards an upgrade of MR-TIM, such that the
toolbox can be used with MR images from bran-lesioned
patients.

A third limitation is the fact that reference segmentations
were not available for the MR images from the IXI, ABIDE
and SchizConnect databases. Accordingly, we could only
conduct qualitative assessments of the MR-TIM output. We
specifically used a four-step scale ranging from failed to
excellent, to facilitate the comparability of our results with
those of other studies (Klapwijk et al. 2019).

Finally, we would like to point out the fact that, once the
segmentation has been performed, a specific conductivity val-
ue needs to be associated with each tissue for the creation of
the head model (Michel et al. 2004). A large number of EEG
studies rely on conductivity values from the literature
(McCann et al. 2019). Nonetheless, a direct estimate of the
conductivity values in individual participants would be highly
desirable to increase the accuracy of EEG forward modelling,
hence of EEG source localizations.

Conclusion

In this study we have introduced MR-TIM, a toolbox to
perform fully automated whole-head tissue segmentation
from structural MR images. MR-TIM generates highly re-
alistic 3D masks, five of which are associated with brain
structures (brain GM, cerebellar GM, brain WM, cerebellar
WM and brainstem) and seven with other head tissues
(CSF, spongy bone, compact bone, eyes, muscle, fat and
skin). Our validation, conducted on MR images collected

in healthy volunteers and patients, as well as on an MR
template image from an open-source repository, demon-
strates that MR-TIM is more accurate than alternative ap-
proaches for whole-head tissue segmentation. We hope
that MR-TIM, by yielding an increased precision in head
modelling, will contribute to a more widespread use of
EEG as a brain imaging technique.

Information Sharing Statement

MR-TIM software is distributed according to a GNU General
Public License, and is available for download at https://www.
nitrc.org/projects/mr-tim and at https://github.com/gtaberna/
mrtim.
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