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Opinion statement

Heart valve disease is a major health burden, treated by either valve repair or valve
replacement, depending on the affected valve. Nearly 300,000 valve replacements are
performed worldwide per year. Valve replacement is lifesaving, but not without compli-
cations. The in situ tissue-engineered heart valve is a promising alternative to current
treatments, but the translation of this novel technology to the clinic still faces several
challenges. These challenges originate from the variety encountered in the patient
population, the conversion of an implant into a living tissue, the highly mechanical nature
of the heart valve, the complex homeostatic tissue that has to be reached at the end stage
of the regenerating heart valve, and all the biomaterial properties that can be controlled to
obtain this tissue. Many of these challenges are multidimensional and multiscalar, and
both the macroscopic properties of the complete heart valve and the microscopic proper-
ties of the patient’s cells interacting with the materials have to be optimal. Using newly
developed in vitro models, or bioreactors, where variables of interest can be controlled
tightly and complex mixtures of cell populations similar to those encountered in the
regenerating valve can be cultured, it is likely that the challenges can be overcome.
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Introduction

Heart valve disease is a major health burden. The dis-
ease encompasses various defects of one or more of the
four heart valves that, when in a severe state, can ham-
per proper blood flow through the heart. In the adult,
the mitral valve and the aortic valve are the most com-
monly affected, with the main defects of the valves
being either stenosis (incomplete opening) or regurgi-
tation (incomplete closing). There are multiple causes
of heart valve disease, with the most prevalent causes
being bacterially induced acute rheumatoid fever (pre-
dominantly in lower-income countries) to age-related
degeneration of the aortic and mitral valve (predomi-
nantly in higher-income countries) [1]. The main cur-
rent therapeutic options are valve replacement or valve
repair, with valve repair being an increasingly preferred
therapy for mitral valve regurgitation [2]. Valves can be
replaced by a mechanical valve or a bioprosthetic allo-
graft (porcine) valve, or, in rare cases, a homograft
(donor) valve. This replacement procedure is performed
nearly 300,000 times globally each year [3]. Valve re-
placements are lifesaving, but not without complica-
t i on s : mechan i c a l v a l v e s r equ i r e l i f e long
anticoagulation, whereas allografts can undergo calcifi-
cation or mechanical failure. This can result in a 50%
structural valve degeneration rate within 10 years [4]. In
addition, both the mechanical replacement, the allo-
graft, and the homograft have no capacity for growth,
a major problem in the pediatric population suffering
from congenital heart valve disease. To address this
issue, the tissue-engineered heart valve (TEHV) has been
under investigation for over 30 years as an alternative
replacement therapy, starting with in vitro endothelial-
ization of biological valves [5]. Initial trileaflet TEHV
consisting of autologous cells seeded in vitro on a
preshaped biodegradable scaffold to form a non-
immunogenic heart valve graft mimicking the native
valve with a capacity to grow maintained functional
up to 20 weeks [6]. In the development of TEHV, there
has been much attention to the load-bearing function,
extracellular matrix (ECM) formation, remodeling, and
cellular behavior of TEHVs, all on a macroscopic scale
of the tissue. This allowed the TEHVs to be improved
for materials used, scaffold design, cells used for
seeding, and culturing conditions, to obtain the most
robust valve for implantation [7].

As the heart valve is a highly mechanical tissue,
exposed to both flow and stretch, important im-
provements in tissue structural integrity were made

when cell culture of the scaffolds was performed
under mechanical stimulation, resulting in improved
cell and ECM organization leading to better mechan-
ical performance [6]. Although these studies were
instrumental in advancing the development and un-
derstanding of TEHV technology, these living valves
have several practically insurmountable challenges:
strict regulations around therapies with living mate-
rial, the complexity of in vitro culturing, and the
logistical problems due to the inability to store
valves all make it difficult to commercially imple-
ment the TEHV as heart valve therapy. These chal-
lenges are currently addressed in two ways, either by
treating the TEHV with a decellularization step
(dTEHV), or by implanting a scaffold graft directly
into the patient for in situ conversion into a living
t i s sue by the hos t ’ s ce l l s ( in s i tu TEHV) .
Decellularization removes the native cells and pre-
serves the ECM generated in an in vitro bioreactor
[8]. Cells from the host infiltrate the graft and form a
novel autologous living heart valve. Before implan-
tation, the dTEHVs can be stored and therefore are
easier to translate to the clinic. The partial degra-
dat ion of scaf fold mater ia l and biological
functionalization with ECM of the graft in the bio-
reactor prepares the dTEHV optimally for biocom-
patibility at implantation. Both in ovine and non-
human primate models, these dTEHV have success-
fully replaced pulmonary heart valves with in vivo
functionality of up to 24 weeks [9, 10••]. Still, the
logistics of generating dTEHVs is complex and costly
due to the bioreactors. To prevent this complexity,
the therapy of cell-free, fully synthetic, in situ TEHV
is now gaining momentum.

For in situ TEHV, the main advantage is that no
in vitro culture is required at all. The lack of biological
components on the scaffold reduces the immunogenic-
ity of the in situ TEHV. A main drawback is that the
formation of the novel tissue depends on the intrinsic
regenerative capacity of the host. Especially in cases of
congenital heart valve disease, metabolic disease, or
immunologic defects, this may result in disrupted for-
mation of tissue [11]. There has been much progress in
defining the production conditions of both dTEHV and
in situ TEHV that result in functionality in vivo, but this
is a multiscale challenge, wherein mechanistic under-
standing of the contribution of all the biological, chem-
ical, and mechanical contributors to the regenerating
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heart valve niche is virtually missing. Therefore, it is
imperative to supplement the macroscopic understand-
ing of heart valve mechanics and biological processes
with the microscopic understanding of cellular biology,
cellular signaling, and mechanics, leading to a homeo-
static tissue. Important progress in in situ TEHV was
recently published in a study in sheep, that showed

stability and functionality of in situ TEHV at 12 months
after implantation, without formation of pathological
calcifications [12••].

This review aims to address the current challenges of
present TEHV strategies, which remain to be overcome
in order to achieve successful translation of TEHV to the
clinic (Fig.1).

Challenges of in situ TEHV translation
Patient-related challenges to tissue engineered heart valves

The concept of in situ tissue engineering depends on both the materials used to
build the grafts and the host response to the implanted graft. Considering that
the complete cellular contents of a self-seeding graft are derived from the
recipient, the quality of these cell sources will directly influence the success rate
of the grafts. A major challenge to tissue engineering strategies is to determine
which patient-related factors will influence the process of repopulating the cell-
free grafts in situ, and how to anticipate these factors in the design of the graft.
Though the precise origin and character of the cellular response to scaffold
material is difficult to define, it is generally assumed that a population of

Fig. 1. dTEHV and in situ TEHV.
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progenitor cells will be required to achieve the development of a living heart
valve replacement. A number of risk factors have been associated with impaired
function of progenitor cells in those patient populations that will benefit from
cardiovascular tissue engineered grafts. Risk factors such as diabetes mellitus
and age are associated with lower levels of circulating progenitor (CD34+) cells
[13].These risk factors may have a direct effect on the functionality of the
progenitor cells, reducing their migratory or prolific capacity [13, 14]. Progen-
itor cells derived from patients with type II diabetes adhere less well to endo-
thelial cells and are less capable of participating in the formation of vascular
structures in Matrigel assays [15]. In self-seeding grafts, cell migration is para-
mount to the repopulation of the cell-free materials. Cellular migration is
related to the number of CD34+ cells, which are significantly lower in smokers
and individuals with a family history of coronary artery disease [14]. Any
patient-related factor that will impede progenitor migration is therefore amajor
challenge to the success of TEHVs, if not accounted for properly.

A patient population that might benefit greatly from living cardiovascular
replacement grafts are patients with congenital disease. Encouragingly, there is
evidence that children have significantly higher levels of CD34+/KDR+ cells,
suggesting a greater capacity for regeneration and possibly a higher likelihood
of successfully populating cell-free grafts [16]. In mature patients, there may be
a potential for maximizing the number and function of progenitor cells prior to
implanting cell-free grafts by administering mobilizing agents. Granulocyte
colony stimulating factor has previously been administered to patients to
maximize the CD34+ cell response to myocardial infarction. A tripling was
found of the maximum white blood cell count with a 5 to 7 fold increase in
CD34 cells after a 4 to 5 day treatment schedule. While this increase did not
significantly improve left ventricular function in this study, it demonstrates that
increasing the number of CD34+ progenitor cells in mature patients is feasible
and safe [17]. Screening and potentially pre-treatment of patients prior to
implantation of TEHVs, therefore, will likely be an important step in bringing
tissue-engineered cardiovascular grafts to the clinic.

Cell biology-related challenges
The cellular niche is themost important contributor to the tissue formation of a
TEHV. A great diversity of circulating cells come into contact with the scaffold
after implantation, and the respective contribution of the different cell types to
tissue generation is only beginning to be understood. For many different tissue
engineering applications, the first reaction after implantation is the infiltration
of immune cells initiating a foreign body response. Infiltrating monocytes/
macrophages can subsequently assume a phenotype on a spectrum ranging
from pro-inflammatory cells to tissue regenerating cells, the M1 to M2 pheno-
type. In this simplified characterization classical, interferon-γ activated, M1-
macrophages represent the inflammatory end of the spectrum, whereas alter-
natively, interleukin-4 activated, M2-macrophages represent the regenerating
end, although current insights reveal the need for characterization by molecu-
larly defined complex activation states [18]. These immune cells will slowly
degrade the scaffold material and replace it with tissue. Engineering methods to
control this balance to standardize patient outcome is vital. Traditionally,
cytokines such as interleukins and IFNγ play an important role in directing

71 Page 4 of 13 Curr Treat Options Cardio Med (2017) 19: 71



macrophage fate [18], but other signaling pathways are also involved. For
instance, a recent study in a mice myocardial infarction model revealed that
removing aWnt transporter,Wntless, results in a shift towardsM2macrophages
leading to increased angiogenesis in the infarct region [19]. The Notch signaling
pathway is also involved inmacrophage polarization. Activation of the pathway
is associated with M1 polarization and can even overrule other cytokine in-
ducers applied [20, 21]. This has been successfully investigated as a possible
therapeutic target in reducing vein graft failure. Targeting Dll4 of either endo-
thelial or macrophage origin, indicated that the Dll4 presented bymacrophages
contributed to vein graft lesions [22]. This exemplifies that macrophage fate can
be controlled in many ways; however, the successful and robust implementa-
tion of this control requires clever biological engineering and thorough testing.

Early tissue formation ideally transitions into stable tissue, leading to a
homeostatic valve that mimics the native, healthy valve as closely as possible.
In the native valve, the main cell types are the valvular endothelial cells (VECs)
and the valvular interstitial cells (VICs). The interaction between VECs and VICs
maintains the structural integrity of the native heart valve. Both VECs and VICs
come in a multitude of different phenotypic variants, with five VIC subtypes
described with various functions in development, physiology and pathology
[23, 24]. In vivo experiments with dTEHV show that at stages of 4 weeks valves
are already partially lined with endothelium and the interstitium contains
vimentin positive, αSMA negative cells, possibly indicative of quiescent
fibroblast-like cells, although αSMA positive cells are also seen indicating the
presence of activated contractile cells [9, 10••]. Specific characterization of the
specific cell type in the interstitium is challenging. How the transition from early
tissue formation to a mature valve takes place is poorly understood, but may be
initiated by endothelialization from circulating endothelial progenitor cells,
followed by endothelial to mesenchymal transition (EndoMT). The process of
EndoMT also plays an important role in both early and late stages of native
valve development [25, 26]. If early stages of tissue formation can be controlled,
it is possible that the subsequent maturation of the in situ TEHV introduces less
variation across patients; however, experiments to test this are complex. As the
scaffold is already partially degraded at these stages, this step in the tissue-
forming process is more difficult to control from the scaffold design and may
require pharmacological interventions that in their turn are more difficult to
specifically deliver to the heart valve niche.

Challenges in cellular biomechanics
Heart valves are tissues that are highly exposed tomechanical cues. During each
cardiac cycle, the valves ensure the correct direction of the blood flow through
the heart’s atria and ventricles. Alternating systole and diastole creates pressure
gradients across the valves. When this gradient is against the correct flow
direction, the valves close and are stretched, stopping the blood flow. When
the pressure gradient is in the correct flow direction, the valves open, blood
flows through the orifice and stretch on the leaflets is released. After implanta-
tion of an in situ TEHV, the scaffoldmaterial is the main load-bearing structure.
As the material is degraded and replaced by ECM and cells, the mechanical
properties of the valve change, but integrity has to be maintained throughout
the whole process. As the ECM becomes the load-bearing component of the
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valve, these loads have continuous effect on the organization of cells and the
remodeling of the ECM, similar to the native heart valve [27]. This has large
effects on themechanical cues experienced by the cells in these valves. Tomimic
these conditions and to precondition TEHV and dTEHV for implantation,
in vitro bioreactors are implemented that mechanically load the tissue.
In vivo experiments, however, resulted in regurgitation and leaflet retraction
[28, 29]. Leaflet retraction in TEHV and dTEHV is an effect of the imbalance of
the load exerted on the valve under diastole and the contractility and anisotropy
of the cells in the leaflets [30]. Approaches to understand these effects through
computational modeling revealed fundamental improvements of design to
minimize regurgitation through balancing of hemodynamic forces and tissue
organization. Subsequent redesigning of valve geometry and tissue anisotropy
have led to improved valve coaptation area and tissue stability and may
highlight the way forward in obtaining ideal valve design [31, 32•]. How the
balance of macroscopic and microscopic forces affects in situ TEHV remains to
be investigated.

Several studies investigated the cellular mechanisms pathways in cells
responding to mechanical forces as predictors of cell fate, as mechanical cues
can contribute to pathological states of the cells [33, 34].

The Notch signaling pathway, mentioned before in macrophage polariza-
tion, is emerging now as a possible mediator of mechanotransduction. The
Notch signaling pathway is a direct cell-cell contact signaling pathway of great
importance in general organization of tissues, especially cardiovascular devel-
opment. Notch is known to be crucial in various stages of heart valve biology,
initially in the formation of endocardial cushions and control of EndoMT, up to
themaintenance of cells in non-calcific state in themature valve [26]. Defects in
the Notch signaling pathway, both in the receptors (Notch 1–4), the ligands
(Jag1 and 2, Dll1, 3 and 4), as well as the effector genes (Rbpjk) result in
congenital defects including outflow tract malformations and heart valve de-
fects [35]. Notch1 was the first gene found to cause familial BAV and calcific
AoVD [36]. Defects in Notch signaling alter cellular response in both to VICs
under strain and VECs under shear forces, predisposing cells for a calcific fate
[37, 38]. This is in line with other tissues where the Notch signaling pathway is
directly responsive to mechanical cues, although the functional outcome varies
across tissues, indicating complex regulatory mechanisms [39, 40]. Altered
cellular responses to mechanical cues in tissue-forming cells with Notch defects
make this another example of congenital defects that may complicate the
implementation of in situ TEHV.

Guiding tissue formation by bioactive materials
Another way to guide the tissue formation, in addition to preconditioning the
patient to mobilize the proper cell populations, is by modifying material to be
optimally suited to guide tissue formation through cell fate choices. The main
body of research into bioactivating polymeric materials has focused on repro-
ducing extracellular matrix elements such as collagens [41] and glycosamino-
glycans [42] capable of adhering cells [43]. This approach is based on the
concept that tissues derive their mechanical and biological characteristics from
a cellular population on one hand, and a structural matrix to adhere to on the
other. In in situ tissue engineering, however, a third element, namely that of
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novel tissue development, plays a major role. A very high level of tissue
development is needed to produce enough ECM to fully take over from poly-
meric graft material and stimulate and maintain a cellular population. The
requirements of in situ tissue engineered grafts have a lot in common with
wound healing and tissue repair. Choosing candidates for bioactivity in cell-free
constructs, therefore, should be based not only on cellular adhesion but also
focus on triggering the developmental cues required to build up a fully func-
tional biological tissue from scratch. Inspiration for biologically active mole-
cules that may help orchestrate an appropriate tissue development may be
found in repair processes such as ischaemic damage, which is known to trigger
the mobilization and homing of cell populations capable of regenerating tissue
and repairing damage [44]. Chemokines are molecules that are capable of both
inducing cellular migration and cellular development. Proteins such as stromal
cell-derived factor 1a (SDF1a) and monocyte chemoattrative protein1 (MCP1)
have previously been investigated in an in situ tissue engineering context [45••,
46]. Targeting Notch is notoriously difficult due to aspecificity following from
the multitude of receptors and ligands involved and the risk of off-target effects,
but novel engineered peptides may hold potential for harnessing these devel-
opmental signals [47•, 48]. In addition, factors such as platelet-derived growth
factor PDGF [49] and vascular endothelial growth factor (VEGF) [50] show
promising results in incorporating specific bioactivity into synthetic materials
using a wide range of delivery methods [44]. An exciting though challenging
aspect of in situ tissue engineering is the search for molecules that both attract
and orchestrate populations of cells to go through the developmental stages of
building up a previously non-existent living tissue.

Scaffold-related challenges
When moving from in vitro engineered dTEHV to in situ TEHV, the challenges
for the scaffolds used become apparent. Importantly, the biological processes
related to valvular tissue formation and regeneration need to be stimulated,
orchestrated, and controlled with a single, non-living and preferably degrading
scaffold. From amaterials point of view, these challenges aremultidimensional.
At the microscopic level, it is necessary to build the right niche for spatiotem-
poral control of cell recruitment, behavior (proliferation, differentiation, matrix
production), quiescence, maintenance, and growth. This can be done via ma-
nipulating the biological, biochemical, and biophysical properties of scaffolds
in close interplay with physiological environments [51]. The final purpose
being to guide the tissue towards the functional layers found in the native heart
valve, the ventricularis, fibrosa, and spongiosa, and the corresponding cell/ECM
composition of these layers.

On the mesoscale level, it is important to control scaffold mechanical
behavior. Opening and closing of the valve induce local deformations, and
the stress distribution across the valve and subsequent anisotropy can make the
difference between a regurgitating or a tightly sealed valve. The scaffolds degra-
dation rate is of importance to maintain integrity in early stages of tissue
formation and is mainly dependent on materials and processing: e.g.,
electrospinning, printing, or molding.

At the macroscale level, the handling and implantation of the scaffold are
relevant during surgery, either as a surgical implant or minimally invasive
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delivery, e.g., as transcatheter valve replacement [52]. In the case of minimally
invasive delivery, after implantation, the valve has to deploy from the shape of
delivery into its functional shape. These properties are difficult to control with
decellularised matrices, but synthetic matrices can offer full control at each
length scale and with extraordinary reproducibility.

Challenges in modeling tissue regeneration
To accelerate the process of material design across length scales, bioengineering
approaches like high-throughput analysis are crucial. In vivo experiments need
to be the last step before translation occurs. Butmuch information on the posed
challenges can be obtained in vitro. Particularly, when looking at tissue regen-
eration, in vitro studies are important. Valvular tissue regeneration can be
defined as the mechanism of maintaining valvular structural integrity by val-
vular cells. The process of activating and de-activating VICs, responsible for
remodeling the valve ECM, is key to maintaining tissue homeostasis, and thus,
also a vital challenge to understand when engineering a heart valve.

In vitro models allow for more accurate isolation and manipulation of
independent variables controlling tissue formation, however, not in its tradi-
tional form. In vitro systems have typically used Petri dishes to study the role of
the valvular cell populations and its role in tissue formation. However, the
intrinsic unnatural environment of stiff substrates, and the two-dimensional
environment that cultured cells reside in limits this approach. As described
earlier, VICs harbor a great degree of mechanosensitivity, leading to uncontrol-
lable phenotypic changes in two-dimensional culture systems [53]. As such, the
field has looked at developing three-dimensional in vitro systems able to not
only independently modulate the VIC and VEC phenotype, but also simulate
the entire cellular driven process of valve homeostasis. Such a three-
dimensional in vitro approach will allow to study the native valve tissue
formation outside of the human body, ultimately providing us with a much
needed map of guiding human tissue formation.

To overcome this challenge, hydrogel micro-engineering has emerged.
Hydrogels can be designed using natural proteins, such as collagen, hyaluronic
acid, and elastin, to recapitulate vital environmental cues in native tissues [54–
56]. Hydrogels have yielded a great deal of interest due to their ability to be
chemically and mechanically tailored to specific needs, and in this case, under-
standing valvular tissue formation.

Mounting evidence has shown that mechanical properties of the hydrogel
can activate and modify intracellular pathways and alter VIC function. To this
end, hydrogel studies have shown to maintain a quiescent VIC culture in three-
dimensional cultures, similar to a healthy native valve [55, 56]. Controlling the
mechanics and substrate stiffness in these three-dimensional models identified
the PI3/AKT pathway as an elasticity sensitive pathway important for preserva-
tion of native VIC phenotype [57]. Conversely, changing hydrogel substrate and
mechanics, mechanisms of myofibroblast activation of VICs have been eluci-
dated. Shear stress [58, 59], changes in substrate stiffness [60], cellular proxim-
ity, paracrine regulation of VICs by VECs [61••, 62], and ECM disruption [63],
all contribute to the activation of VICs.

Not only understanding what leads to ECM deposition by VICs in native
tissue, is key to understand neo-tissue formation in a TEHV, but also what is
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needed to maintain a healthy tissue homeostasis, and thus preventing activated
cells to keep depositing ECM, reminiscent of fibrosis. Furthermore, most three-
dimensional culture systems utilize a single natural protein, such as collagen or
hyaluronic acid, and work remains to be done to combine all native natural
valve proteins into one three-dimensional culture system reminiscent of the
heart valve ECM. In addition, challenges remain to simulate the valvular
hemodynamic environment in a three-dimensional culture system. To this
end, organ-on-a-chip technology and different pulsatile bioreactors are being
developed.

Conclusion

TEHV differs vastly from the current standard of mechanical implants or allo-
grafts, bringing new perspectives and challenges to overcome (Table 1). Chal-
lenges arise from the complexity of the regeneration process. Patient variation
and comorbidity affecting regeneration, the multiple phases in tissue forma-
tion, and the limited control that can be exerted on the regeneration process by
incorporating guiding cues in the scaffold are the main challenges to be over-
come. Considering the current treatments are lifesaving, the strongest challenge
perhaps is that the TEHV will have to perform at least as good as the current
treatments, with less complications such as the use of anticoagulation or
reoperation. Translation of TEHV of all types to the clinic will remain a process
with uncertainties, due to the large differences between the large animal models
and the patient. Using models where variables of interest can be controlled
tightly, and wherein complex mixtures of cell populations similar to those
encountered in the regenerating valve can be cultured, we expect that all

Table 1. Identified challenges in the translation of (in situ) tissue-engineered heart valves

Origin of challenge Nature of challenge
Patient Variations in regenerative capacity make outcomes of valve engineering unpredictable

Patient Finding ways to mobilize the proper cell population to kickstart tissue regeneration

Early tissue formation Valve must stay intact throughout scaffold degradation/tissue formation

Late tissue formation Reaching a steady state of tissue growth, apoptosis, remodeling, and quiescence

Transition of early to late
tissue formation

Guiding the process of early formation to such an extent that healthy late tissue
formation builds upon the early tissue in all patients

Material Identifying and controlling the biomechanical cues that can guide cell fate based on
material mechanical or topological properties

Material Choosing the bioactive compounds that benefit the maximum amount of patients by
standardizing the tissue generating process by attracting cells and guiding cell fate

Material Finding the material that has all the required properties: optimal robustness in handling
and implantation, correct degradation rate, while allowing incorporation of
topological, biomechanical and biochemical cues

In vitro models Controlling the relevant variables for understanding and ultimately predicting the impact
of TEHV designs and therapies on outcomes
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challenges can be overcome and the TEHV will become a novel lifesaving
therapy.
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