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Abstract
Purpose of Review Poor treatment response is a hallmark of major depressive disorder. To tackle this problem, recent neuroim-
aging studies have sought to characterize antidepressant response in terms of pretreatment differences in intrinsic functional brain
networks. Our aim is to review recent studies that predict antidepressant response using intrinsic network connectivity. We
discuss current methodological limitations and directions for future antidepressant biomarker studies.
Recent Findings Functional connectivity stemming from the subgenual and rostral anterior cingulate has shown particular
consistency in predicting antidepressant response. Differences in this connectivity may prove fruitful in differentiating treatment
responders to many antidepressant interventions. Future biomarker studies should integrate biological MDD subtypes to address
the disorder’s inherent clinical heterogeneity.
Summary These clinical and scientific advancements have the potential to address this population marked by limited treatment
response. Methodological considerations, including patient selection, response criteria, and model overfitting, will require future
investigation to ensure that biomarkers generalize for prospective prediction of treatment response.
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Introduction

A hallmark feature of major depressive disorder (MDD) is
patients’ limited treatment responsivity to conventional phar-
macotherapy and psychotherapy. As demonstrated by the
seminal STAR*D trial, approximately one third of patients
remit to their first antidepressant, and a given patient’s likeli-
hood of remission diminishes with each successive monother-
apy [1]. Those who do not respond to two or more antidepres-
sant trials are considered to have treatment-resistant depres-
sion (TRD); TRD is estimated to affect 35% of MDD patients
[2]. These limited response rates may be related to the fact that

MDD is a highly heterogeneous disorder [3••], and individual
patients may subsequently require tailored treatments.

Motivated by these poor response rates, efforts have
been made to identify pretreatment clinical characteristics
that predict response to antidepressant interventions [4].
For example, comorbid psychiatric or somatic disorders
are associated with poorer outcomes to pharmacotherapies.
In the STAR*D trial, the remission rate of patients with
severe somatic symptoms dropped to only 29.3% across
three successive monotherapies [5]. It is important to note
that although clinical factors such as somatic symptoms
show significance at the group level, none have yet
achieved the much higher bar of clinically meaningful pre-
dictive value at the individual level.

In light of these studies showing limited individual predictive
value for clinicalmeasures, recent studies have sought to advance
our understanding of antidepressant response in terms of pretreat-
ment differences in biologicalmeasures. Abnormal structural and
functional connectivity within or between functional brain net-
works are present across a wide variety of psychiatric illnesses
[6]. Promising results have been reported in a growing oeuvre of
neuroimaging studies that have assessed the accuracy of MRI
connectivity measures in predicting antidepressant response [7].
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In this article, our aim is to review recent studies identify-
ing intrinsic brain network differences that predict antidepres-
sant response. First, we provide a brief background on func-
tional brain networks and the specific networks pertinent to
MDD. Next, we review recent studies reporting pretreatment
differences in brain network activity or connectivity that char-
acterize treatment response. Finally, we discuss current clini-
cal challenges and methodological drawbacks, and comment
on areas of improvement for the next generation of antidepres-
sant biomarker studies.

Intrinsic Brain Networks and Their
Relationship to MDD

What Are Intrinsic Brain Networks?

Over the past two decades, functional neuroimaging studies
have consistently found that the brain exhibits spontaneous,
low-frequency fluctuations in the fMRI BOLD signal and that
interregional correlations in these fluctuations can be used to
define large-scale networks that are anatomically and func-
tionally distinct [8]. These networks are discernible from both
ongoing spontaneous fluctuations in brain activity [9] and
from neuroimaging harnessing cognitive or behavioral para-
digms [10]. Consequently, we term these networks intrinsic
brain networks (IBNs): distinct networks of functionally
coupled brain regions whose spontaneous or task-evoked fluc-
tuations in activity are correlated over time [9]. The spatial
motifs of IBNs are highly replicable, with strong
intraindividual [11] and interindividual consistency [12].

Large-scale IBNs are also hypothesized to reflect the un-
derlying structural topology of the brain [13, 14], and connec-
tivity within or between IBNs has been associated with human
cognition and behavior through a variety of paradigms, in-
cluding cognitive control tasks [15], motor and language per-
formance [16], impulsivity [17], and states of consciousness
[18]. While not yet fully understood, current studies suggest
that IBNs operate in concert to facilitate complex cognitive
and behavioral processes [19].

Functional Networks Pertinent to MDD
Symptomatology

While the exact number of IBNs is not yet fully known, most
human neuroimaging studies report the existence of 7–17
IBNs [19, 20]. Furthermore, studies of structural and function-
al MRI, electroencephalography, and positron emission to-
mography have identified at least four candidate IBNs in-
volved in MDD pathophysiology: the default mode network
(DMN), salience network (SN), central executive network
(CEN), ventromedial affect network (VMN), and IBNs related
to autonomic and limbic function (reviewed extensively in

[21, 22]) (Fig. 1a, b). To summarize, negative self-referential
rumination is associated with disrupted connectivity of the SN
and CENwith the DMN and VMN, as well as hyperactivation
stemming from the subgenual cingulate cortex [25, 26].
Similarly, MDD patients exhibit DMN and VMN hyperactiv-
ity to aversive or nonrewarding stimuli [27–29]. Conversely,
hypoactivity of attentional and ventromedial reward networks
(SN and VMN) has been linked to poor incentive salience and
anhedonia, another hallmark MDD symptom [30–32]. MDD
patients also display deficits in cognitive control compared to
nondepressed controls, and this deficiency has been attributed
to abnormal functioning of the SN and CEN [33–36].

Brain Network Biomarkers of Antidepressant
Response

Default Mode Network

The DMN is comprised of the posterior cingulate cortex
(PCC), precuneus, medial prefrontal cortex (mPFC), rostral
anterior cingulate cortex (rACC), bilateral inferior parietal cor-
tex (IPL), and medial/lateral temporal cortices [37] (Fig. 1a).
Recent studies have reported that DMN activation is related to
a number of behaviors related to internally generated cogni-
tion and self-referential processing [38], including mind wan-
dering [39], autobiographical memory retrieval [40], spatial
navigation, and theory of mind [41]. Furthermore, the DMN
appears to consist of at least three subnetworks: a midline
“core” network comprised of the mPFC and PCC that is con-
sistently activated for all DMN-relevant functions; a dorsal
mPFC subnetwork that co-activates with the angular gyrus
and temporal pole for self-referential or affective processes;
and a temporoparietal network comprised of the IPL, temporal
cortices for memory retrieval and scene reconstruction [20,
42].

Recent studies frequently report that volumetric decreases
and functional activity of the midline “core” subnetwork pre-
dict antidepressant response. Anteriorly, larger baseline
rACC/mPFC volume is significantly associated with response
to fluoxetine [43], chronotherapeutics [44], and internet-based
cognitive therapy [45]. In older adults, rACC volume [46] and
white mater integrity is positively correlatedwith escitalopram
response and improvements in negative self-referential rumi-
nation [47]. However, pretreatment rACC volume is not sig-
nificantly associated with response to all pharmacotherapy.
For sertraline response, rACC volume increases within the
first week of treatment and is significantly correlated with
improvement at 8 weeks; however, these structural indices
individually predicted escitalopram response with an accuracy
of only 65% [48•]. Functionally, resting-state rACC theta has
been correlated with antidepressant response in two large
pharmacotherapy trials with conflicting results: one study
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reported that high frontal theta was associated with nonre-
sponse [49], while the other showed the converse [50••].

Posterior nodes of the midline subnetwork have also been
shown to correlate with antidepressant response. For example,
larger baseline PCC volume is correlated with pharmacother-
apy response [51], and higher pretreatment glucose metabo-
lism in the precuneus is linked to psychotherapy completion
[52]. Additionally, deactivation of both the precuneus and
PCC during an emotion discrimination task correlated with
improvements after 2 weeks of pharmacotherapy, but not after
4 weeks [53].

Connectivity between the anterior and posterior regions of
the DMN also correlates with antidepressant response. Five
recent studies have reported that stronger baseline posterior
DMN (PCC) connectivity to the anterior DMN (mPFC) cor-
relates with antidepressant response to electroconvulsive ther-
apy (ECT) [54] and pharmacotherapy [55–58]. Furthermore,
four of these studies were able to correctly classify participants
as responders with > 80% accuracy [54, 55, 57, 58].

Ventromedial Affect and Reward Networks

Affective and reward networks have long been implicated in
the pathophysiology of depression: the subgenual anterior cin-
gulate cortex (sgACC), a central node involved in affect, was
one of the earliest neuroimaging biomarkers of depression and
antidepressant response [28, 59–63]. Since then, an affect-
associated network with strong connectivity to the sgACC
has been repeatedly implicated in depressive affect and treat-
ment response [30, 64]. In this review, we broadly define the
VMN as encompassing the sgACC, nucleus accumbens
(NAcc), medial OFC (mOFC), and ventromedial prefrontal
cortex (VMPFC) [65] (Fig. 1a).

Within the past decade, neuroimaging has provided several
lines of evidence supporting a role of the sgACC in predicting
antidepressant response. Importantly, variations in sgACC
structure, function, and connectivity have been associated
with response to many different interventions. These varia-
tions suggest that sgACC function may be used to guide
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Fig. 1 Intrinsic brain networks may be used to differentiate depressed
treatment responders from nonresponders. a The four intrinsic brain
networks implicated in MDD (default mode = yellow, salience = blue,
central executive = red, and ventromedial reward = green). Networks
were generated using [23]. b Connectivity changes commonly
reproduced in depressed patients compared to healthy controls (adapted

from [24]). Red boxes and lines indicate increased within-network and
between-network connectivity, respectively. Blue boxes and lines indicate
decreased within-network and between-network connectivity,
respectively. c Nodes and connectivity implicated in predicting
antidepressant treatment response, colored by intrinsic brain network
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treatment selection. For example, early PET studies reported
that treatment response can be associated with both increased
and decreased sgACCmetabolism for noninvasive brain stim-
ulation [66] and CBT combined with SSRI treatment, respec-
tively [67, 68]. In addition to baseline metabolic activity,
structural MRI studies have shown that greater baseline
sgACC volume correlated with clinical response to CBT
[69] and ECT [70]. Some [71, 72] but not all [73] task-based
fMRI studies have supported the notion that lower sgACC
activity in response to emotional stimuli predicts response to
CBT.

Similar to studies assessing structural, metabolic, and task-
evoked biomarkers, resting-state fMRI studies have shown
sgACC functional connectivity to predict treatment response
to pharmacotherapy, psychotherapy, and TMS. Crucially, the
spatial topography of sgACC functional connectivity may
help to guide treatment selection. Studies investigating con-
nectivity between sgACC and prefrontal regions, including
the dorsomedial prefrontal cortex (DMPFC), dorsolateral pre-
frontal cortex (DLPFC), VMPFC, ventrolateral prefrontal cor-
tex (VLPFC), and medial orbitofrontal cortex, have shown
more positive baseline functional connectivity to be associated
with improved treatment outcome for pharmacotherapy and
psychotherapy [74, 75••, 76–78]. On the other hand, more
negative baseline functional connectivity between sgACC
and the ACC, DMN, and parts of the left superior mPFC has
also been associated with improved treatment outcome for
noninvasive brain stimulation targeting the DLPFC [58, 78].

Salience and Attentional Networks

The SN is predominantly comprised of the dACC and anterior
insula (AI) [79] (Fig. 1a), and its activity is related to the
detection of and autonomic reactions to salient stimuli [80].
SN activity is related to goal-directed behavior, meaning that
the SN identifies relevant external information [81, 82] and
projects to motor and premotor regions via the dACC to initi-
ate a behavior [83, 84]. AI and dACC activity is also positive-
ly correlated with affective face discrimination [85].

Four studies have reported that antidepressant response is
associated with pretreatment dACC activity during emotion
processing and affect regulation. Escitalopram response was
associated with high baseline dACC activity to faces
displaying negative versus positive affect [86], with a greater
reduction in this contrast after the first week of treatment [87].
However, baseline dACC hyperactivity correctly classified
escitalopram response at roughly 70% accuracy [86].
Baseline dACC hyperactivity during emotion processing has
also significantly correlated to antidepressant response to
chronotherapeutics [44] and venlafaxine [88] with comparable
classification accuracy.

Insula activity during emotion processing has also been
linked with antidepressant response, with hyperactivity during

negative emotional images being predictive of response to
mirtazapine, venlafaxine [89], and combination pharmaco-
therapy [90]. Similarly, a greater reduction in insular activity
to negative facial expressions within the first week of
escitalopram is predictive of later antidepressant response
[87]. Also of note, insula hyper- or hypometabolism may dis-
criminate between response to pharmacotherapy versus psy-
chotherapy, with hyperactivity corresponding to escitalopram
response and the opposite to cognitive behavioral therapy
[91].

Notably, SN activity has been shown to predict antidepres-
sant response in TRD to repetitive transcranial magnetic stim-
ulation (rTMS) targeting both the DLPFC and DMPFC.
DLPFC-rTMS responders display increased SN functional
connectivity on resting-state fMRI [92] and theta power and
connectivity using electroencephalography (EEG) [93]. Both
of these studies report sensitivities and specificities > 80%
using these measures. DMPFC-rTMS responders display
higher baseline SN activity to the sgACC in one early open-
label study [74], highlighting the potential of noninvasive
neurostimulatory targets to access networks that are modulat-
ed by invasive therapeutics like DBS [94].

Frontoparietal Central Executive Network

The DLPFC, frontal eye fields, and superior parietal cortex are
the core nodes of the CEN. The CEN supports the identifica-
tion of changes in the environment that necessitate the inhibi-
tion or adaptation of behaviors [95], and CEN activity is im-
plicated in a diverse array of behaviors that includes action
planning, sustaining attention, working memory, behavioral
inhibition, and cognitive flexibility [96].

DLPFC activity during working memory and cognitive
control tasks appears to be a candidate biomarker of pharma-
cotherapy response. Baseline DLPFC activation during re-
sponse inhibition that resembled activation in healthy controls
differentiated remitters from nonremitters to sertraline,
escitalopram, and venlafaxine [97•]. Furthermore, greater
DLPFC activity during working memory task was correlated
with antidepressant response, but only in patients without
childhood maltreatment [98]. Also from the same trial,
frontoparietal CEN volume predicted nonremission in a subset
of patients [99].

No t ab l y, t h e DLPFC i s a l s o an e s t ab l i s h ed
neurostimulation target using rTMS, and consequently, its
functional correlates have been associated with response to
rTMS. High frontostriatal connectivity from the DLPFC
[100] has been associated with favorable response to left
DLPFC-rTMS. Similar to studies highlighting the relationship
between DBS and rTMS targets [74, 94], low baseline con-
nectivity between the DLPFC and sgACC [101••] has also
been shown to correlate with antidepressant response to
DLPFC-rTMS. Furthermore, electrophysiological DLPFC
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dynamics, including alpha power [102] and entropy [103],
have also been linked to antidepressant response to rTMS.

Limbic and Autonomic Circuitry

Early neuroimaging studies of the limbic system found asso-
ciations between depression and changes in limbic structures,
including decreased hippocampal volume [104], decreased
amygdala volume [105], and increased amygdala glucose me-
tabolism [106]. These same changes have also been associated
with treatment response; increased hippocampal volume was
shown to correlate with improved response to antidepressants
[104], increased amygdala volume predicts response to ECT
[107] and ketamine [108], and decreased amygdala glucose
metabolism correlates with improved response to paroxetine
[109]. Overall, limbic structural markers may be seen as an
indicator of depression severity, with less severe structural
abnormality associated with improved treatment response.

Connectivity between limbic and prefrontal structures has
also been shown to be abnormal in MDD in the context of
emotional regulation, leading to the hypothesis that decreased
top-down control of limbic brain regions by prefrontal input
serves as a neural substrate of depressive affect [110].
Recently, fMRI studies have revealed that abnormalities in
corticolimbic connectivity in depressed patients are predictive
of antidepressant response. Specifically, improved antidepres-
sant response has been correlated with more positive
amygdala–vmPFC connectivity [58], more positive amygdala
to VLPFC and to ACC connectivity [111], higher amygdala
connectivity with right central operculum [112], and lower
connectivity with the supplementary motor area and
precentral gyrus [112]. These studies support the hypothesis
that stronger top-down control of amygdala activity by pre-
frontal cortices can predict improved treatment outcome.

Internetwork Connectivity as Antidepressant
Biomarkers

It is important to note that the biomarkers reported by many
studies do not perfectly align with one IBN, but rather report
that connectivity of nodes between many networks is predic-
tive of antidepressant response. For example, tractography
studies have reported that sgACC-DBS response correlates
with electrode locations that stimulate a distributed network
consisting of the amygdala, VMPFC, rACC, dACC, and NAc
[113•, 114]. More recently, baseline network characteristics or
MDD subtypes based on patterns of whole-brain connectivity
have shown promise in predicting antidepressant response to
rTMS.We recently showed that functional connectivity-based
subtypes of MDD related to anhedonia and anxiety could be
used to predict response rates to DMPFC-rTMS [3••].
Furthermore, whole-brain clustering and network efficiency

has been shown to correlate with antidepressant response to
accelerated DLPFC-rTMS [115].

Summary

Baseline differences localized to structural and functional con-
nectivity of the sgACC, DMN, SN, DLPFC, hippocampus,
and amygdala predict treatment response (Fig. 1c).
However, there does not seem to be a “one-size-fits-all” bio-
marker for MDD interventions. More specifically, no single
biomarker predicts response for all antidepressant interven-
tions or patient populations. Rather, the combined use of com-
plementary biomarkers may allow the comparison of predict-
ed response to different treatments, thereby guiding treatment
selection.

At least in adult MDD populations, the most consistently
replicated biological marker of antidepressant response is con-
nectivity stemming from the subgenual and rostral ACC. In
particular, divergent sgACC connectivity appears to be pre-
dictive of antidepressant response to a variety of interventions.
sgACC connectivity to nodes of the VMN, SN, and CEN—
the ventrolateral PFC, insula midbrain, and striatum—
differentially predicts response to CBT and pharmacotherapy
[75••]. In contrast, connectivity to the ACC and DLPFC—
nodes of the SN and CEN, respectively—is predictive of re-
sponse to rTMS [74, 92, 101••]. Furthermore, structural con-
nectivity from the sgACC to the striatum, ventral PFC, and
dorsal PFC is implicated in response to sgACC-DBS [113•].

The mPFC/rACC node of the DMN is also implicated in
many biomarker studies, including those involving pharma-
cotherapy [50••], placebo [116], and rTMS [92]. Two large
studies from the same consortium report that intact activity
of the rostral ACC relative to healthy controls—lower theta
power and higher resting-state functional connectivity to the
DMN—predicted nonspecific response to three different phar-
macotherapies [49, 57]. However, many other studies, albeit
without a healthy comparator group, report that higher rACC
theta and connectivity to the SN is predictive of nonspecific
antidepressant response, including response to placebo [48•,
50••, 116]. Further work is needed to elucidate the relationship
between IBN biomarkers of response in comparison to a
healthy comparator group.

MDD is also a clinically heterogeneous disorder, and so it
is likely that biomarkers attributed to specific MDD subtypes
may be required to tailor treatment selection and improve
prediction accuracy. To date, one study has identified biolog-
ical subtypes of MDD that differentially respond to dmPFC-
rTMS [3••]. In this study, individuals who possessed resting-
state functional connectivity abnormalities related to anxiety
and insomnia symptom severity responded to rTMS, integrat-
ing biologically based MDD subtypes, clinical dimensions,
and functional MRI [3••]. Future studies should be mindful

Curr Psychiatry Rep (2019) 21: 87 Page 5 of 11 87



of the clinical heterogeneity of MDD when identifying bio-
logical predictors of response.

Methodological Challenges to Identifying
MDD Biomarkers

Patient Selection

One area of methodological variability is enrollment criteria.
While most studies enrolled adults in a current major depres-
sive episode using DSM-IVor DSM-5 criteria, many identify
IBN biomarkers in patients diagnosedwith late-life depression
[46], adolescent MDD [112], bipolar disorder in a current
depressive episode [44], TRD [74], or MDD presenting with
other comorbidities [58]. The neurobiological correlates of
demographic, diagnostic, and symptom heterogeneity in
MDD are not yet fully understood. Consequently, it is possible
that the biomarkers generated with modest sample sizes of
clinically heterogeneous populations will be challenging to
independently replicate, unless investigators take care to rep-
licate the recruitment conditions and diagnostic sample, in
addition to the other methods. Identifying biological subtypes
based on common abnormal brain function and symptomatol-
ogy in large trials has been a next logical next step, with our
group recently demonstrating that stratifying a heterogeneous
group of patients into biologically based subtypes significant-
ly improves prediction accuracy of response to rTMS [3••].
Other examples of using fMRI measures of functional con-
nectivity to parse diagnostic heterogeneity in depression and
related affective disorders have also yielded promising results
[117–119].

How Do We Define Treatment Response?

Another critical area of heterogeneity is in each study’s defi-
nition of treatment response. For example, some studies report
linear correlations of neuroimaging measures with the degree
of clinical improvement or improvement of a particular symp-
tom. Other biomarkers were generated using categorical pre-
dictors of “response,” typically > 50% of a primary outcome
measure from baseline to a certain time point into treatment.
More challenging, however, is that the therapeutic window
that defines “response” for the same intervention varies con-
siderably. For example, escitalopram studies have reported
qualitatively different biomarkers based on response at 6
[87], 8 [49], 10 [120], or 12 weeks [68] from intervention
onset. Similarly, IBN biomarkers have been identified for
CBT response at 12 weeks [68], 14 sessions [73], and 22
sessions [69]. This heterogeneity limits how biomarkers may
generalize to independent datasets, and this timeframe need to
be clarified in future studies if they are to be translated for
wider clinical use. Further longitudinal studies aimed at

understanding whether and how the predictors of treatment
response at one time point (e.g., 6 weeks) differ from those
predicting response at another time point (e.g., 12 weeks).

Considerations for Individual-Level Prediction

Overfitting is an important consideration in publications that
employ machine learning and cross-validation techniques to
assess individual-level prediction. Classification accuracy
and, therefore, model overfitting is dependent on a number
of factors, including the sample size, feature selection, classi-
fication methods, and cross-validation [121•]. In one example
discussed by Gao and colleagues in their recent review on the
machine learning in MDD [121•], leave-one-out cross-
validation improves the classification accuracy of a model
because more data is provided during training, but can result
in poor model performance in new datasets because the per-
formance of the model is highly dependent on the training
dataset. It will be important for future studies to account for
the possibility of overfitting by employing methods of feature
selection, regression, and classification that limit bias and
overfitting [122], as well as machine learning and cross-
validation methods that are less sensitive to the sample size
of the training dataset [121•].

Moving the Field Forward

Given that less than one third of MDD patients remit on first
treatment course [1], prognostic biomarkers of treatment re-
sponse for specific therapies are in high demand. As outlined
in this review, many prognostic biomarkers have been devel-
oped for a variety of MDD therapies. However, these neuro-
imaging biomarkers have yet to be employed in a clinical
setting.

A number of practical barriers may prevent neuroimaging
biomarkers from being easily measured in the clinical setting,
including cost, accessibility, and time to interpretation. For
one, many psychiatric clinical settings lack MRI access and
on-site expertise [123]. Furthermore, it may not be feasible to
schedule, acquire, process, and interpret neuroimaging results,
unless these steps can be implemented rapidly. One future
possibility might be to collectively concentrate the biomarker
search within just one or two MDD subpopulations to mini-
mize the demand on resources while maximizing the potential
benefit. TRD biomarkers, for example, might be the most
fruitful start, with the aim of identifying the optimal treatment
between combination/augmentation pharmacotherapy and
more invasive interventions, such as rTMS and ECT, or be-
tween different cortical rTMS targets, including the DLPFC
and DMPFC.

Moving forward, biomarkers of antidepressant response
may be bolstered by the integration of multiple modalities.
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Recent studies integrating structural and functional neuroim-
aging have shown that the prediction accuracies of integrated
models are superior to those trained using single modalities
[88]. Furthermore, a new generation of trials is currently un-
derway with the aim of marrying neuroimaging, genetics, and
behavioral markers of response [124]. Beyond the brain, trials
investigating the pharmacogenetics of drug metabolism are
showing promise in furthering our understanding of antide-
pressant response [125•]. Consequently, it is becoming clear
that neuroimaging is certainly a promising “tool in the toolkit”
and that its integration with other modalities for response pre-
diction is worthy of future investigation.

Opportunities for Reverse Translation

The discovery of neuroimaging biomarkers of treatment re-
sponse in humans offers exciting opportunities for reverse
translation to animal models, which allow us to uncover de-
tailed mechanisms of antidepressant action and neural sub-
strates of depression. One potential strategy would use fMRI
to identify candidate circuits for optogenetic interrogation in
rodent models. Opsins could then be used to recapitulate the
abnormal functional connectivity features observed in specific
circuits in patients and test whether they are sufficient to drive
specific depression-related behaviors. One recent example
used optogenetic fMRI in rats to show that reward signals
arising from the VTA-to-striatum projection are suppressed
by top-down mPFC input and that abnormally elevated func-
tional connectivity between the mPFC and striatum is suffi-
cient to produce anhedonia [126]. These findings are consis-
tent with a trend seen in a recent fMRI study showing that
greater anhedonia-like symptoms in depressed patients may
be predicted by a set of functional connectivity changes in-
volving the mPFC, ventral striatum, and other frontostriatal
circuits implicated in reward processing, effort valuation, and
motivation [3••].

Future animal studies may employ similar methods to re-
capitulate the early connectivity changes highlighted in this
review. Such efforts could separate connectivity changes
which cause recovery from those which merely correlate with
recovery, yielding an avenue for future treatment develop-
ment. Recent work from our lab has highlighted a large num-
ber of connectivity features which are correlated with combi-
nations of symptoms in depressed patients [3••]. Combining
optogenetics with fMRI may provide a means to determine
which of these connectivity changes are sufficient to drive
specific depression-related behaviors. Other methods that
can be applied directly to humans, including concurrent
TMS/fMRI and network-based analyses of lesion studies,
are also promising approaches for understanding how dys-
function in specific circuits contributes to specific behaviors
[127, 128].

Conclusions

There is longstanding evidence that brain structure and func-
tion is organized into distinct networks of brain connectivity
that work in concert to generate complex cognitive patterns
and behavior. Research over the past two decades has revealed
that abnormal communication within and between these net-
works underscores the complex psychopathology observed in
MDD. Of particular importance to MDD, connectivity of lim-
bic structures, as well as the DMN, SN, CEN, and VMN, give
rise to diverse domains of abnormal behavior, including rumi-
nation, cognitive control deficits, and anhedonia.

More recent literature provides striking evidence that func-
tional connectivity stemming from networks such as the DMN,
SN, CEN, and VMN can classify treatment responders and non-
responders (Fig. 1c).Most encouragingly, divergent sgACC con-
nectivity appears to be predictive of antidepressant response to a
variety of interventions, including pharmacotherapy, psychother-
apy, rTMS, and DBS. Studies that employ individual-level pre-
diction have identified neuroimaging biomarkers with the ability
to retroactively predict treatment response with over 80% accu-
racy, a clinical benchmark of predictive models. However, meth-
odological variables including patient selection, treatment re-
sponse criteria, and considerations regarding prediction model
overfitting will need to need to be addressed in future studies to
ensure that these biomarkers are adequate for prospective predic-
tion of treatment response. Prediction accuracy may also be im-
proved by employing models trained on multimodal data.

Nevertheless, identifying generalizable neuroimaging-
based biomarkers of treatment response can diminish the suf-
fering of MDD patients by individualizing treatment and ac-
celerating response rates. Biomarkers related to IBN dysfunc-
tion may further our understanding of MDD etiology and
improve animal models of MDD, thus driving the develop-
ment of future interventions for this population marked by
limited treatment response.
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