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Abstract
Purpose of Review The focus of this review is on enterovirus (EV)-associated acute flaccid paralysis (AFP) due to spinal cord
anterior horn cell disease. Emphasis is placed on the epidemiology, pathogenesis, diagnosis, treatment, and outcome of AFP
caused by polioviruses, vaccine-derived polioviruses, EV-D68, and EV-A71.
Recent Findings Since the launch of The Global Polio Eradication Initiative in 1988, the worldwide incidence of polio
has been reduced by 99.9%, with small numbers of poliomyelitis cases being reported only in Afghanistan, Pakistan,
and Nigeria. With the planned phaseout of oral polio vaccine, vaccine-associated poliomyelitis is also expected to be
eliminated. In their place, other EVs, chiefly EV-D68 and EV-A71, have emerged as the principal causes of AFP.
There is evidence that the emergence of EV-D68 as a cause of severe respiratory disease and AFP was due to recent
genetic virus evolution. Antiviral medications targeting EV-D68, EV-A71, and other EVs will likely be available in
the near future. An effective EV-A71 vaccine has been developed, and preliminary investigations suggest an EV-D68
vaccine could be on the horizon.
Summary The eradication of poliomyelitis and vaccine-associated poliomyelitis is near, after which other EVs, presently EV-
D68 and EV-A71, will be the principle viral causes of AFP. Moving forward, it is essential that EVoutbreaks, in particular those
associated with neurologic complications, be investigated carefully and the causal strains identified, so that treatment and
prevention efforts can be rapidly developed and implemented.
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Introduction

Since the launch of The Global Polio Eradication Initiative in
1988, the worldwide incidence of poliomyelitis has been re-
duced by 99.9%, with small numbers of cases being reported
only in Afghanistan, Pakistan, and Nigeria [1]. Furthermore,

with the planned phaseout of oral polio vaccine (OPV),
vaccine-associated paralytic poliomyelitis is also expected to
be eliminated in the near future [2]. With the near-elimination
of polioviruses (PVs) and vaccine-derived polioviruses
(VDPVs) from the globe, other enteroviruses, chiefly
enterovirus-D68 (EV-D68) and EV-A71, have emerged as the
principle causes of EV-associated acute flaccid paralysis (AFP).

AFP is a clinical syndrome, of diverse etiology, character-
ized by the rapid onset of muscle weakness that progresses to
maximum severity over days to a fewweeks [3]. Acute flaccid
myelitis (AFM) is a subset of AFP in which injury to the
anterior horn cell of the spinal cord is presumed to be present.
The focus of this review is on AFP/AFM associated with EV
infection. The definition of AFP and AFM and the clinical
presentation of EV-associated AFP/AFM are described first.
The epidemiology, pathogenesis, microbiologic diagnosis,
treatment, and prevention for individual pathogens, chiefly
PV, EV-D68, and EV-A71, are then discussed, followed by
emerging trends in treatment and prevention.
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Acute Flaccid Paralysis/Myelitis

Definitions

The World Health Organization (WHO) defines AFP as the
sudden onset of paralysis/weakness in any part of the body in
a child younger than 15 years of age. This definition was
designed for poliomyelitis surveillance purposes and, as such,
is deliberately broad, capturing not only cases of flaccid my-
elitis (spinal cord disease) but also cases of polyradiculopathy
(Guillain-Barré syndrome), toxic neuropathy, and muscle
disorders.

In response to the outbreak of EV-D68-associated AFP in
the USA and Canada in 2014, the CDC developed a case
definition for the identification of AFP cases in whom the
etiologywas due to injury to the anterior horn cell of the spinal
cord (AFM) [4]. Confirmed AFMwas defined by the presence
of acute focal limb weakness and magnetic resonance imaging
(MRI) evidence of predominantly gray matter lesion(s) span-
ning one or more spinal cord segments. Those with acute focal
limb weakness and cerebrospinal fluid (CSF) pleocytosis (>
5 cells/mm3) were categorized as probable cases. In contrast to
the WHO definition for AFP, no age limitation was included
in recognition of observed cases of AFM throughout the
lifespan. Henceforth in this review, AFP/AFM will be used
to refer to EV-associated anterior horn cell disease, in part
because of the predominant use of AFP in the literature, and
in part in recognition that the primary site of injury for EV-
associated AFP is the anterior horn cell of the spinal cord.

Neurologic Manifestations

The abrupt onset of limb weakness that progresses over a
period of 2–4 days should raise the suspicion for EV-
associated AFP/AFM, although the differential diagnosis is
broad and includes abnormalities anywhere along the
neuraxis, including the brain, spinal cord, the anterior horn
cell, nerve, muscle, and neuromuscular junction (Table 1)
[3]. Clinical features that may help distinguish AFP/AFM
from disorders affecting other parts of the neuraxis include
the asymmetric nature of the paralysis, the presence of pain
in the affected limb, and the absence of sensory manifestations
or bladder and bowel dysfunction. Pain in the affected limb as
well as paresthesia or hyperesthesia are prominent in both
poliomyelitis and EV-D68-associated AFP/AFM [5, 6, 7••,
8, 9••, 10•, 11•]. During the 2014 EV-D68 outbreak in North
America, limb pain was observed in 40–69% of cases, while
numbness or paresthesia was seen in 20–45% (Table 2) [7, 8,
9••, 10, 11•]. In poliomyelitis, bladder paralysis is distinctly
uncommon in children but may be seen in about 25% of adults
[6]. Reported rates of bowel or bladder dysfunction in EV-
D68-associated AFP/AFM cases varied from none to a high
of 51% [7, 10, 11, 12••].

The distribution of weakness may vary by etiology. PVand
VDPV typically affect proximal muscle groups more than
distal ones and most commonly involve the lower limbs [5,
6]. Involvement of one leg is the most common followed by
one arm, less often multiple limbs [6, 13]. EV-D68-associated
AFP/AFM, on the other hand, is more commonly associated
with upper extremity weakness [7, 9, 10, 11•, 14•]. Physical
examination findings in EV-D68-associated AFP/AFM in-
clude variable weakness (mild (4/5 strength) to complete (0/
5 strength) paralysis) and decreased muscle tone and accom-
panying areflexia or hyporeflexia in the affected limb(s) in
81–88% (Table 2) [7••, 9••, 11•]. Similar to PV, EV-A71-
associated AFP/AFM affects the lower limbs more often than
the upper limbs, but unlike PV, the weakness is usually mild,
and in 60–80%, it is restricted to a single limb [15, 16•, 17,
18].

Brainstem and supratentorial involvement occurs in a sig-
nificant minority of individuals with PV-, EV-D68-, and EV-

Table 1 Differential diagnosis of acute flaccid paralysis with no cranial
nerve involvement or encephalopathy

Acute myelopathy

Transverse myelitis

Cord compression (paraspinal or epidural abscess, tumor, hematoma)

Anterior horn cell

Poliomyelitis

Vaccine-associated paralytic poliomyelitis

Non-polio enteroviruses

Other viruses (Japanese encephalitis virus, West Nile virus, European
tick-borne encephalitis virus, etc.)

Polyradiculoneuropathy

Guillain-Barré syndrome

Peripheral neuropathy

Infection-related: diphtheria, tick bite paralysis, Lyme disease, relapsing
fever

Chemical ingestion-related: poisonous plants (ripe fruit of Karwinskia
humboldtiana [wild cherry], Gloriosa superba [climbing lily];
chemicals [lead, arsenic, thallium]; medications [colchicine,
aminoglycosides])

Neuromuscular junction

Myasthenia gravis

Botulinum toxin

Tetanus toxin

Animal toxins (snake venom, dart poison frog, puffer fish tetrodotoxin)

Organophosphate poisoning

Muscle disorders

Polymyositis

Myositis (viral)

Hypokalemic periodic paralysis

Weakness associated with critical illness

Information derived in part from reference [3]. The presence of cranial
nerve involvement/bulbar signs or encephalopathy should prompt inves-
tigation for focal brain abnormalities
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A71-associated AFP/AFM. Bulbar poliomyelitis, most often
involving cranial nerves IX and X manifested as dysphagia,
dysarthria, dyspnea, or pooling of secretions, develops in 5–
35% of cases [6, 19]. Similarly, approximately 25% of those
with EV-D68-associated AFP/AFM experienced cranial nerve
involvement, most often presented as facial weakness,

dysphagia, and diplopia [9••, 11•]. Altered mental status is
uncommon, having been observed in 11% of cases
reviewed by the CDC and even fewer in the Canadian
cohort [9••, 11•]. EV-A71-associated AFP/AFM may oc-
cur in isolation or together with brainstem encephalitis
or encephalomyelitis [16•, 17, 20, 21].

Table 2 Clinical manifestations
and CSF and MRI findings for
three AFP/AFM cohorts during
2014 outbreak in the USA and
Canada

CDC (n = 120) California (n = 59) Canada (n = 25)

Demographics

Age (years) 7.1 (IQR 4.8, 12.1) 9.0 (IQR 4.0, 14.0) 7.8 (0.8–15.0)a

Sex (% male) 59 56 64

Prodrome

Any (%) 90 92 88

Fever (%) 64 80 60

Respiratory (%) 81 71 88

Gastrointestinal (%) – 64 –

Neurologic symptoms and signs

Limb weakness

Upper limb (%) 77 73 72

Lower limb (%) 65 – 68

1 limb affected (%) 30 9 36

2–3 limbs affected (%) – 42 44

4 limbs affected (%) – 49 20

Cranial nerve dysfunction (%) 28 27 25

Sensory involvement (%) 21 44 4

Areflexia or hyporeflexia (%) 81 – 88

Altered mental status (%) 11 22 4

CSF findingsb

Pleocytosis (> 5 cells/μL) (%) 81 74 91

Leukocyte count (cells/μL) 44 (IQR 12, 93) 41 (IQR 5, 99) 46 (0–156)

Percent lymphocytes 74% (46, 89)a 71%c 88% (0–96)a

Elevated CSF protein (> 45 mg/dL) (%) 48 48 28

Protein (mg/dL) 43 (IQR 34, 60) 44 (IQR 29, 70) 28.5 (19–527)a

MRI abnormalities

Spinal cord gray matter (%) – 95 –

Nerve root enhancement (%) 34 20 72

Anatomic involvement

Cervical (%) 87 – 84

Thoracic (%) 80 – 56

Conus medullaris/cauda equina (%) 47 – 52

Virus detection in respiratory tract

Enterovirus-D68 20% (11/56) 22% (9/41) 29% (9/24)

Non-D68 enterovirus/rhinovirusd 21% (12/56) 7% (7/41) 29% (9/24)

Information derived from references [7••, 9••,10•,11•]. The CDC study [9••] included 24 of the subjects from the
California study [10•]
a Range
b CSF was predominantly lymphocytic in most patients; CSF glucose is normal in all cases
c Range not provided
d CDC site: rhinovirus (n = 9), enterovirus 71 (n = 1), enterovirus C105 (n = 1), untypeable (n = 1); California site:
coxsackievirus B3 (n = 2), coxsackievirus A6 (n = 1), unknown (n = 3); Canada: rhinovirus (n = 5), enterovirus
A71 (n = 1), coxsackievirus B2 (n = 1)
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Systemic Features

Systemic clinical features for selected EV strains are depicted
in Table 3. Additional detail is also provided in individual
pathogen sections below.

Cerebrospinal Fluid, Electromyography,
and Neuroimaging Findings

CSF findings are non-specific, consisting of mild to moderate
lymphocytic pleocytosis, normal or elevated CSF protein, and
normal glucose [5–8, 9••, 11•, 14•, 17, 30, 31]. Virus detection
in the CSF is uncommon and is discussed in more detail in the
sections devoted expressly to individual pathogens.

Electromyographic features of PV-, EV-D68-, and EV-
A71-associated AFP/AFM are similar. Findings indicative of
acute motor axonal neuropathy, such as reduced compound

motor action potential amplitude, reduced recruitment of mo-
tor unit potentials, and denervation of affected muscles, are
characteristic [7••, 10•, 11•, 14•, 16•, 32, 33].

There is a relative paucity of data on MRI findings in po-
liomyelitis because of the near-eradication of polio prior to
widespread availability of MRI. In the limited reports that
are available, the main findings consisted of hyperintense le-
sions in the anterior horn cell region of the spinal cord on T2-
weighted images [34–36].MRI abnormalities of EV-D68- and
EV-A71-associated AFP/AFM are similar and include single,
or more often multiple, spinal cord gray matter T2 signal ab-
normality lesions of variable length, gadolinium enhancement
of cord lesions, and nerve root enhancement [7••, 9••, 10•, 11•,
15, 16•, 17, 21•, 37••, 38]. An important minority also have
cortical, subcortical, midbrain, pons, medulla, thalamus, basal
ganglia, or cerebellar lesions (Fig. 1) [7••, 9••, 10, 11•, 17, 21•,
37••].

Table 3 Salient epidemiologic and systemic clinical features of acute flaccid paralysis/acute flaccid myelitis (AFP/AFM) for selected EV serotypes

Virus Prodrome Second-phase illness General comments Selected
references

PV, VDPV ● Typically mild illness with 1 or
more of fever, listlessness,
headache, sore throat,
vomitinga

● Duration usually 1–3 days

● Interval between prodrome and second
phase usually 3–4 days

● Fever, headache, neck stiffness,
vomiting, myalgia, localized
hyperesthesia or paresthesia, muscle
spasm or fasciculation

● Biphasic course in children; in adults,
prodrome tends to be prolonged with
paralysis developing more gradually

● Any age, predominantly children

[5, 6]

EV-D68 ● Fever, nasal congestion,
cough, sore throat

●Median interval between prodrome onset
and second-phase illness is 5 days

● Fever, headache, stiff neck, myalgia

● Any age, predominantly children
(median age 7–9 years)

[7••,8, 9••, 10•,
12••, 14•]

EV-A71 ● HFMD, herpanginab ● Paralysis onset 2–6 days after the start of
prodromal illness

● Myoclonic jerks, tremor, ataxia, or other
symptoms of concurrent brainstem
encephalitis may be seen

● Predominantly infants (median age
1–2.5 years)

[15, 17, 18]

EV-D70c ● Hemorrhagic conjunctivitis,
fever, duration up to 5 days

● Latent period of 10–21 days between
prodrome and paralysis onset

● Fever, malaise, myalgia for 4–5 days
prior to paralysis onset

● Predominantly adults
● 2–2.5:1 male predominance

[22–25]

CV-B1–B6c ● Coryza, cough, pharyngitis,
vomiting, diarrhea, or
headache with or without
fever

● Interval of 1–30 days between prodromal
symptoms and paralysis

● No specific recrudescence of systemic
symptoms reported

● Predominantly children (90%,
≤ 5 years of age)

[26]

CV-A7d ● Not well described ● Fever, vomiting, meningeal irritation ● Almost exclusively children ≤ 3 years
of age

● 2:1 male predominance

[27, 28]

EV-C105 ● Cough, rhinorrhea within
2 weeks of paralysis onset

● Fever, fatigue, headache, myalgia
starting 4 days prior to paralysis

●Case report of a 6-year-old girl (during
2014 EV-D68 outbreak in the USA)

[29]

Only studies that provided clinical information on cases are included

CV-B coxsackievirus B; HFMD hand, foot, and mouth disease; PV poliovirus; VDPV vaccine-derived poliovirus
a The absence of cough, nasal congestion, or rhinorrhea is characteristic
b HFMD and herpangina can also be caused by other EV-A strains including CV-A (CV-A2–8, CV-A10, CV-A12, CV-A14, and CV-A16); neurologic
disease with these viruses is much less common, however
c The evidence specifically implicating anterior horn cell disease as the cause of AFP is limited in these cases; the relatively long interval between
conjunctivitis and paralysis in EV-D70-associated cases is potentially consistent with a post-infectious, perhaps immune-mediated, process; in three fatal
cases associated with CV-B infection, pathology did not demonstrate anterior horn cell abnormalities [26]
d Pathologic studies were deemed similar to those associated with poliomyelitis in one report [28]
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Enterovirus Taxonomy and Biology

Human EVs consist of at least 80 genetically distinct non-
enveloped, positive sense, single-stranded RNAviruses with-
in the Enterovirus genus (Picornaviridae family) [39•, 40].
The original classification of serologically distinct EVs as
PV (3 serotypes) [1–3], coxsackievirus A (CV-A; 23 sero-
types), coxsackievirus B (CV-B; 6 serotypes), and echoviruses
(28 serotypes) was based on antigenic characteristics, disease
pattern in experimentally infected animals, and differences in
tissue culture effects, with EVs identified later being designat-
ed as new EVs (4 serotypes) [39•, 40]. More recently, human
EVs have been categorized according to genetic diversity into

four species, designated A, B, C, and D (Table 4) [39, 40]. The
serotype designation within species has been retained.

Polio Viruses and Vaccine-Derived
Polioviruses

PVs are classified as wild-type polioviruses (WTPVs), oral
polio vaccine viruses (OPVVs), and VDPVs. AFP/AFM can
be caused by both WTPVs and VDPVs.

Vaccine-associated paralytic poliomyelitis is due to infec-
tion with VDPVs, strains characterized by enhanced
neurovirulence acquired through mutation, principally in the

Fig. 1 MRI images from a child
with EV-D68AFM. a Sagittal T2-
weighted image of the cervical
spine demonstrating
longitudinally extensive bright
signal in the spinal cord. b Axial
T2-weighted image of the
cervical spine in the same child,
demonstrating gray matter
predominance of abnormal signal.
c Axial T2 flair image showing
hyperintense signal of the dorsal
pons in a child with AFM.

Table 4 Human enteroviruses and association with acute flaccid paralysis

Species Serotypes Serotypes associated with AFPa

A CV-A2, CV-A2, CV-A3, CV-A4, CV-A5, CV-A6, CV-A6, CV-8, CV-A10,
CV-A12, CV-A14, CV-A16

EV-71, EV-76, EV-89, EV-90, EV-91, EV-92, EV-114, EV-119, EV-120, E-121

CV-A7 (CV-A2, CV-A4, CV-A6, CV-A14, CV-A16)
EV-A71 (EV-A76, EV-119)

B CV-A9, CV-B1, CV-B2, CV-B3, CV-B4, CV-B5, CV-B6
E-1 (includes E-8), E-2, E-3, E-4, E-5, E-6, E-7, E-9 (includes CV-A23), E-11,

E-12, E-13, E-14, E-15, E-16, E-17, E-18, E-19, E-20, E-21, E-24, E-25,
E-26, E-27, E-29, E-30, E-31, E-32, E-33

EV-69, EV-73–75, EV-77–88, EV-93, EV-97, EV-98, EV-100, EV-101,
EV-106, EV-107, EV-111

CV-A9, CV-B1, CV-B2, CV-B3, CV-B4, CV-B5, CV-B6
E-6, E-7, E-9 (E-1, E-2, E-3, E-11, E-12, E-13, E-14, E-18,

E-19, E-20, E-21, E-24, E-25, E-27, E-29, E-30, E-33)

C PV-1–3, VDPV
CV-A1, CV-A11 (includes CV-A15), CV-A13 (includes CV-A18), CV-A17,

CV-A19, CV-A20, CV-A22, CV-A24
EV-C95, EV-C96, EV-C99, EV-C102, EV-C104, EV-C105, EV-C109,

EV-C113, EV-C116, EV-C117, EV-C118

PV-1, PV-2, PV-3, VDPV (CV-A20, CV-A21)
(EV-C105)

D EV-D68, EV-D70, EV-D94, EV-D111 EV-D68, EV-D70 (EV-D94)

Information obtained in part from references [39, 40] and from http://www.picornaviridae.com/enterovirus/enterovirus.htm

AFP acute flaccid paralysis, CV-A coxsackievirus A, CV-B coxsackievirus B, E echovirus, EV enterovirus, PV poliovirus, VDPV vaccine-derived
poliovirus
a Information obtained in part from references [6, 22–26, 29, 41–49]. Strains with relatively strong association with AFP are shown without brackets, and
those with less consistent association or more recently described ones are shown in brackets
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5′ non-translated region of the original OPVV strain genome
[50••, 51, 52]. VDPVs are classified as circulating if there is
evidence of transmission in the community (cVDPV), as
immunodeficiency-associated if isolated from persons with
an immunodeficiency (iVDPV), or as ambiguous if the source
is unknown (aVDPV).

Epidemiology

WTPV circulation is currently restricted to a few areas in
Afghanistan, Pakistan, and Nigeria [1, 50••]. Of the three
WTPV strains, only WTPV1 continues to circulate—during
2016 and 2017 combined, 58 WTPV1 cases were detected in
Afghanistan (n = 26), Pakistan (n = 28), and Nigeria (n = 4)
[1]. WTPV2 was declared globally eradicated in September
2015, and the last isolate of WTPV3 was detected in Nigeria
in November 2012 [1, 50••].

The incidence of vaccine-associated paralytic poliomyelitis
(VAPP) is approximately 4.7 per million live births [51]. The
highest risk is seen after receipt of the first dose, in either the
recipient or their close contacts and in individuals who are
immunocompromised. Approximately 85% of VAPP is due
to cVDPV2 [50••]. In 2015 and 2016 combined, a total of 14
cases of AFP due to cVDPV2 were reported in Nigeria,
Guinea, Pakistan, and Myanmar [2]. In 2017, 96 cases were
detected (74 in Syria and 22 in the Democratic Republic of
Congo) [2]. The most recent cases of VAPP due to cVDPV1
and cVDPV3 were reported in 2015–2016 in Laos,
Madagascar, and Ukraine and in 2013 in Yemen, respectively
[2].

Pathogenesis

PV infection is transmitted predominantly by the fecal oral
route [6, 52]. Initial virus replication in the gastrointestinal
tract, upper respiratory tract, and lymph nodes is followed
by minor viremia and reticuloendothelial tissue infection [6,
52]. In about 95% of cases, the virus is contained at this stage,
type-specific immunity is established, and no symptoms de-
velop. In 4–8%, virus replication in the reticuloendothelial
tissues is followed by major viremia, most often manifested
as abortive poliomyelitis [6]. Non-paralytic aseptic meningitis
develops in 1–2% of cases and paralytic poliomyelitis in ap-
proximately 0.1% of cases [6, 52].

The mechanisms through which PVs enter the central ner-
vous system (CNS) have not been fully elucidated but likely
involve both retrograde axonal transport and hematogenous
spread [6, 52–54]. The classic pathology consists of neuronal
destruction and an inflammatory infiltrate composed of neu-
trophils, macrophages, and lymphocytes, predominantly af-
fecting the anterior horn cells of the spinal cord and motor
nuclei of the pons and medulla and, to a lesser extent, neurons
of the motor cortex [55].

Clinical Features

Clinical syndromes of PV infection, due to WTPVs or
VDPVs, include abortive poliomyelitis, aseptic meningitis,
spinal paralytic poliomyelitis, bulbar paralytic poliomyelitis,
and polio encephalitis [5, 6]. Abortive poliomyelitis is a mild
febrile illness sometimes accompanied by headache, sore
throat, anorexia, or vomiting that typically lasts 1–3 days.
The aseptic meningitis due to PV is also a benign self-
limited illness. Polio encephalitis is rare, occurs predominant-
ly in infants, and is typified by altered consciousness and
seizures.

Paralytic poliomyelitis classically follows a biphasic course
[5, 6]. Two to five days after resolution of the prodromal
illness (symptoms as for abortive poliomyelitis), fever accom-
panied by symptoms of meningeal irritation (headache, neck
stiffness, and vomiting) and severe myalgia (sometimes ac-
companied by localized hyperesthesia or paresthesia, muscle
spasms, or fasciculations) develop. The onset of muscle weak-
ness follows 1–2 days later.

The risk of paralytic poliomyelitis is increased by strenuous
exercise, skeletal muscle injury, receipt of an intramuscular
injection in the preceding 2–4 weeks, and in the case of bulbar
poliomyelitis, prior tonsillectomy [6]. Intramuscular injections
in the month prior to OPVadministration can also enhance the
risk of VAPP [56].

Microbiologic Diagnosis

PVs and VDPVs are rarely detected in the CSF. In immuno-
competent subjects, the virus can be isolated from the respi-
ratory tract for about a week into illness and from the stool for
up to 3–4 months after resolution of symptoms. As part of
global eradication efforts, it is essential that all clinical PV
isolates be characterized by genomic sequencing in a refer-
ence laboratory as WTPVs, OPVVs, or VDPVs [6, 50].

Treatment and Prevention

The treatment of paralytic poliomyelitis is primarily support-
ive. Bed rest during the acute phase may reduce the risk of
paralysis extension [6]. Mechanical ventilation for respiratory
compromise, nutritional support, and robust physiotherapy
and occupational therapy rehabilitation once progression of
paralysis has stopped are important.

The Polio Eradication and Endgame Strategic Plan consists
of four pillars: (1) PV detection and transmission interruption,
(2) strengthening immunization systems and OPV withdraw-
al, (3) finalizing long-term biocontainment requirements, and
(4) transition planning once PVeradication has been achieved
[57]. In 2016, subsequent to the elimination of WTPV2, 155
countries and territories switched from trivalent OPV to biva-
lent OPV, containing OPV1 and OPV3, and introduced
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inactivate polio vaccine (IPV). Stockpiling of OPV2 was im-
plemented in order to respond to cVDPV2 cases and out-
breaks. A key element of the “end game”moving forward will
be robust ongoing clinical and environmental surveillance and
maintenance of high levels of immunity in the population
[50••, 57].

Enterovirus D68

EV-D68 was first isolated in culture from the oropharynx of
children hospitalized with acute lower respiratory tract infec-
tions associated with wheezing and radiographic evidence of
pneumonia in 1962 [58]. At that time, it was labeled as the
“Fermon virus” after the first strain recovered, later receiving
the designation EV-68 and, finally, after its classification in
species D of the genus Enterovirus, as EV-D68. The large
outbreak of EV-D68-associated severe respiratory disease
and AFP/AFM in 2014 in the USA and Canada brought it to
the forefront [8, 9, 10•, 11•, 14, 30]. The evidence in support
of EV-D68 as a cause of AFP/AFM is relatively strong, with
six of the nine Bradford-Hill criteria for causality being fully
met and two others being partially met [59••].

Epidemiology

Prior to 2005, EV-D68 was rarely implicated as a cause of
disease in the USA, with only 26 confirmed cases between
1970 and 2005 [60]. However, beginning in 2007, small out-
breaks of EV-D68-associated respiratory tract infection were
increasingly being reported in the USA and around the world
[61]. Clusters of EV-D68-associated respiratory illness were
observed among hospitalized patient in Georgia and
Pennsylvania in 2009 and in Arizona in 2010 [61], and over
a 5-year period between 2009 and 2013, EV-D68 accounted
for 4.3% of respiratory tract isolates in the National
Enterovirus Surveillance System (NESS) [62]. Similar out-
breaks, totaling 699 patients, were also reported between
1970 and 2013 in Europe, Africa, and Southeast Asia [63•].

In the summer and fall of 2014, a large outbreak of EV-
D68-associated severe respiratory illness and increased inci-
dence of AFP/AFM, primarily affecting children, occurred in
the USA and Canada, with smaller clusters observed in mul-
tiple European countries, China, and Taiwan [63•]. Between
September and December 2014, there were 1153 cases of
severe respiratory illness and 120 cases of AFP/AFM attrib-
uted to EV-D68 in the USA [9••, 63•]. In three Canadian
provinces, Ontario, Alberta, and British Columbia, there were
268 documented pediatric hospitalizations due to EV-D68
during September 2014 [64]. Of 25 cases of childhood
AFP/AFM reported nationwide in Canada between July 1
and October 31, 2014, seven had EV-D68 detected in the
respiratory tract [11•].

Similar to other EVs, the peak incidence of EV-D68 disease
occurs in the late summer to early fall, between August and
October in the Northern Hemisphere. In the Southern
Hemisphere, the peak incidence is during fall and early winter
months. Transmission is primarily from person to person by
direct or indirect exposure to respiratory droplets.

Pathogenesis

EV-D68 shares many properties with rhinoviruses, including
enhanced replication at 33 °C rather than 37 °C and acid labil-
ity, which likely explain its propensity for the respiratory tract
rather than the gastrointestinal tract [65]. Binding to upper
respiratory tract epithelium is mediated by the interaction of
virus capsid components with α-2–6-linked sialic acids [66].
Neuron-specific intercellular adhesionmolecule 5 (ICAM-5) is
a cellular receptor for EV-D68, which may play a role in facil-
itating neuroinvasion [67]. There are currently six EV-D68
clades (A1, A2, B1, B2, B3, C, and D), of which clade B1
was implicated in the 2014 North American outbreak [12••].

The worldwide emergence of EV-D68 in the last decade is
likely related to virus genetic evolution over time [65, 68, 69].
Phylogenetic analysis of EV-D68 strains in the Netherlands
showed rapid expansion in diversity in 2010, suggesting that
antigenic drift combined with low-level community immunity
has contributed to epidemic spread [68].

Neurovirulence potential may also have evolved relatively,
recently. In phylogenetic analysis, 11 EV-D68 isolates associ-
ated with the 2014 AFP/AFM outbreak were shown to belong
to an evolutionary cluster, clade B1, estimated to have
emerged approximately 4.5 years earlier [12••]. Five of six
coding polymorphisms observed in the clade B1 polyprotein
were also present in neuropathogenic EV-D70 or PVs [12••].
Another report noted that most B1 subclade viruses associated
with AFP/AFM during the 2014 outbreak had 21 unique ami-
no acid substitutions, 12 of which contained the same residues
observed at equivalent positions in PV, EV-D70, and EV-A71
[70•].

Pathologic and experimental evidence of anterior horn cell
injury following EV-D68 infection is emerging. Diffuse T
lymphocyte infiltrates and neuronophagia involving the motor
nuclei of the anterior spinal cord was observed in a fatal case
of EV-D68 encephalitis involving a previously healthy 5-year-
old boy [71]. Flaccid paralysis with pathologic evidence of
motor neuron loss in the anterior horns has been demonstrated
in mice following experimental infection with EV-D68 strains
from the 2014 outbreak, but not with infection with earlier
strains, including the Fermon strain [72••].

Clinical Features

EV-D68 is predominant a respiratory pathogen. Disease spec-
trum varies from uncomplicated upper respiratory tract
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infection to severe bronchiolitis and pneumonia with respira-
tory failure and need for mechanical ventilation [30, 63, 68].
Children with underlying respiratory illnesses, particularly
asthma, are at increased risk of severe respiratory disease
[30, 63•, 68, 73]. There is a slight male predominance among
those hospitalized with EV-D68 infections.

A respiratory or febrile prodrome is observed in the ap-
proximately 90% of patients with ED-D68-associated AFP/
AFM (Table 2). The median interval between the prodromal
illness and the onset of limb weakness is 5 days (IQR 3, 9)
[9••]. Many patients experience an improvement in prodromal
symptoms prior to the onset of weakness [7••, 10•, 14]. As in
poliomyelitis, the onset of limb weakness is associated with
the recurrence of fever, headache, and pain in the affected
limb, neck, or back [7••, 10•, 14•].

Microbiologic Diagnosis

Detection of EV-D68 relies almost exclusively on PCR testing
of respiratory tract samples, stool, and CSF. Similar to PVand
EV-A71, EV-D68 is only rarely detected in the CSF [9••, 60,
71], likely due to very low viral load [21•, 31]. The pickup rate
from serum or stool samples is also low [9••, 10•, 12, 14•].
Respiratory sample testing offers the highest yield—during
the 2014 outbreak, EV-D68 was detected in respiratory spec-
imens of approximately 20–30% of patients with AFP/AFM
[9••, 10•, 11•]. Samples taken more than 7 days after respira-
tory symptom onset are rarely positive—in the CDC study, 8
of 11 EV-D68-positive results were from samples obtained
within a week of respiratory symptom onset [9••].

Treatment and Outcome

As with poliomyelitis, the mainstay of management is sup-
portive, consisting of mechanical ventilation when there is
impairment of respiratory muscles or inability to protect the
airway, nutritional support, and physiotherapy and occupa-
tional therapy rehabilitation support [7••].

There is no proven effective treatment for EV-D68-
associated AFP/AFM. Immune-modulating treatments, in-
cluding high-dose intravenous corticosteroids, intravenous
immune globulin (IVIG), and plasmapheresis, were used in
many patients during the 2014 outbreak without clear benefit
[7••, 9–11]. The antiviral agent pocapavir was used in a small
number of children, also with no evidence of benefit [12••,
14•]. Human IVIG containing high levels of broadly neutral-
izing anti-EV-D68 antibodies was beneficial in reducing the
severity of AFP/AFM in a mouse model of EV-D68 infection
[72••]. The authors hypothesized that the lack of benefit of
IVIG observed during the 2014 outbreak may have been due
to low titers of anti-EV-D68 antibody.

The short-term prognosis for full recovery is poor. Of the
56 of 120 cases with follow-up information in the CDC cohort

(median 4.2 months [range 0.8–7.5]), only three reported
complete recovery of strength; 14% were fully dependent on
caregivers, 68% had functional impairment requiring support
for some activities, and 18% reported being fully functional
[9••]. Of the 21 of 25 children with follow-up information in
the Canadian cohort, 2 fully recovered, the remainder showing
persistent deficits (median Expanded Disability Status Scale
(EDSS) of 3). No deaths were reported in these two cohorts. It
should be emphasized that the long-term outcome of these
patients has not been reported and will require ongoing study.

Enterovirus A71

Epidemiology

EV-A71 was first isolated from patients with CNS disease in
the late 1960s in California [74]. During the subsequent two
decades, small clusters of EV-A71-associated hand, foot, and
mouth disease (HFMD); aseptic meningitis; encephalitis; and
AFP/AFM were reported in the USA, Europe, Australia, and
Japan [31]. Outbreaks in Bulgaria in 1975 with 705 reported
cases and in Hungary in 1978 with 323 laboratory-confirmed
cases were noteworthy for the high rates of neurologic disease,
including AFP/AFM, and deaths [75].

The largest reported outbreaks have occurred in Asia. The
first of these, which involved 2628 cases of HFMD and 34
deaths, occurred over a 3-month period in Malaysia in 1997
[31, 76]. In 1998, an epidemic involving 129,106 cases of
HFMD or herpangina, 405 cases of severe disease, and 71
deaths (91% of whom were children aged ≤ 5 years of age)
occurred in Taiwan [20]. Between 2008 and 2012, over seven
million cases of HFMD were reported in China, of which
267,942 (3.7%) were laboratory-confirmed and 2457
(0.03%) were fatal [77••]. Among microbiologically proven
cases, EV-71 was implicated in 45% of mild, 80% of severe,
and 93% or fatal cases [77••].

Studies fromMalaysia, Japan, and Taiwan suggest cyclical
epidemics occur every 2–3 years [78–81]. Sentinel surveil-
lance from Sarawak, Malaysia, demonstrates EV-A71 epi-
demics occurring every 3 years, concurrent with HFMD dis-
ease activity, with peak incidence occurring between April
and July [79]. In Taiwan, epidemic peaks occurred annually
during the summer months, but severe disease peaked every
2–3 years [82]. In China, disease peaks occur annually in June
in northern regions and biannually in May and October in
southern regions [77••].

Pathogenesis

EV-A71 can be transmitted by the fecal-oral or through direct
or indirect contact with respiratory droplets or fomites.
Shedding of virus in the respiratory tract can persist for about
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2 weeks and in stool for up to 3 months after infection [31,
83].

In contrast to PVs, virulence determinants for EV-A71 are
poorly understood [78, 84••, 85•]. No significance differences
in nucleotide sequence have been demonstrated between EV-
A71 isolates from fatal and non-fatal cases [86, 87]. Higher
rates of CNS disease observed with different EV-A71 strains,
such as those seen with B5 strains compared to B4 strains in
Sarawak, Malaysia, could be due to differences in virulence
but could also be related to other factors such a pre-existing
immunity, host susceptibility, and co-infections [88].
Scavenger receptor class B, membrane 2 (SCRAB2), present
on many cell types including neurons, appears to be the main
cellular receptor for EV-A71 [89].

There is evidence that host susceptibility contributes to EV-
A71 infection and disease severity [78, 84••, 90, 91]. HLA-
A33 is associated with an increased risk of EV-A71 infection,
and its higher prevalence in certain Asian compared to
Caucasian populations (17–33% compared to ≤ 1%) has been
proposed as a factor contributing to the higher frequency of
EV-A71 outbreaks in Asia compared to western countries
[90]. HLA-A2 has been linked with an increased risk of EV-
A71-associated cardiopulmonary failure [90], and genetic
polymorphism in the chemokine ligand 2 (CCL2) has been
linked to an increased risk of EV-A71 encephalitis in a
Chinese population [91].

The mechanism of EV-A71 CNS invasion and pathogene-
sis of neurologic disease is incompletely understood [84••].
Autopsy studies of fatal EV-A71 cases have demonstrated
intense inflammation consisting of perivascular cuffing, ede-
ma, necrosis, microglial nodules, and neuronophagia primar-
ily in the spinal cord, brainstem, hypothalamus, medulla,
pons, and midbrain [78, 84••, 92]. EV-A71 antigen staining
is evident in the same regions, but most prominently in the
anterior horn cells [92, 93]. EV-A71 has also been isolated or
detected by immunohistochemistry or RT-PCR from brain
tissue, particularly the brainstem and spinal cord, of fatal cases
[94–96]. Taken together, these observations have led to the
hypothesis that CNS invasion may occur by retrograde axonal
transport [92]. Hematogenous spread and invasion of the CNS
via a disrupted blood-brain barrier is also possible, though
unproven [78, 84••].

Clinical Manifestations

EV-A71 and CV-A16 are the primary causes of HFMD and
herpangina [31]. HFMD is characterized by fever; oral ulcers,
mainly of the buccal mucosa and tongue; and a
papulovesicular rash involving the palms and soles.
Herpangina is a closely related exanthem, the hallmark of
which is multiple painful oral ulcers on the soft palate, uvula,
tonsils, and posterior oropharynx. In the vast majority of
cases, both conditions are self-limited with symptom

resolution occurring within a week of onset. The peak inci-
dence is in children less than 5 years of age.

The incidence of severe disease, defined by high fever,
vomiting, tachypnea, pulmonary edema or hemorrhage, myo-
carditis, or neurologic complications leading to hospitaliza-
tion, is approximately 8.3 per 100,000 cases [20].
Neurologic complications have been observed in 10–30% of
children hospitalized during HFMD epidemics in several
Asian countries [20, 88, 97, 98]. Brainstem encephalitis with
cardiorespiratory failure and pulmonary edema or hemor-
rhage, due to autonomic dysregulation, can be rapidly fatal
and is the most feared complication [17]. Other neurologic
complications, in addition to AFP/AFM, include aseptic men-
ingitis, encephalomyelitis, transverse myelitis, and Guillain-
Barré syndrome [16•, 17, 21, 31, 99]. Most children with CNS
disease have features of HFMD or herpangina, but isolated
CNS disease does occur in a small proportion of cases [17].

Microbiologic Diagnosis

Microbiologic diagnosis relies primarily on isolation of the
virus in culture or its detection using molecular techniques
[31, 100]. Detection of EV-A71 in the CSF, blood, urine, or
vesicular fluid is superior to detection from non-sterile sites
such as the oropharynx or stool in establishing causality, be-
cause the latter may represent resolved infection unrelated to
current symptoms or incidental co-infection [31]. The overall
yield from the CSF is low—in most studies, the virus was
detected in < 30% of neurologic disease cases [21•, 31, 88,
98, 101, 102]. However, pickup rates may vary according to
clinical syndrome; in one recent Australian study, EV-A71
was detected in the CSF of all encephalitis samples tested,
but only 14% of those with other neurologic syndromes [21•].

Treatment and Outcome

General supportive management is similar to that for PVs and
EV-D68.

Several retrospective comparative studies suggest that
IVIG may be of benefit in reducing the risk of autonomic
nervous system dysregulation and death in severe EV-A71
infections, if administered early [98, 103]. The WHO Guide
to Clinical Management recommends IVIG for patients with
HFMD associated with symptoms or signs of autonomic ner-
vous system dysregulation or CNS disease other than aseptic
meningitis [104]. For those with established cardiopulmonary
failure, IVIG may be considered, if not previously given
[104]. Significant reductions in levels of the pro-
inflammatory cytokines IFN-γ, IL-6, IL-8, IL-10, and IL-13
have been observed after IVIG administration in children with
brainstem encephalitis and pulmonary edema, suggesting that
the beneficial effect of IVIG is immunomodulatory [105].
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The long-term prognosis of EV-A71-associated AFP/AFM
has not been extensively studied. In one prospective study of
142 children with EV-71-associated CNS disease and median
follow-up of 2.9 years, 56% of those with AFP/AFM had
residual unilateral limb weakness and atrophy [103]. Other
studies have emphasized the relatively mild nature of the
AFP/AFM and better outcome when compared to poliomyeli-
tis [16•, 21•, 106]. In another retrospective study of 134 chil-
dren with EV-A71-associated CNS disease, 80% (16/20) of
those with isolated AFP/AFM had single limb involvement,
and only 12.5% (3/24) of those with muscle weakness at ad-
mission had residual weakness at 6-month follow-up [16•].

Other enteroviruses

Sporadic clusters of AFP/AFM, usually of lesser severity than
that due to PVs, have been reported with many other EVs,
including CV-A7; CV-A9; CV-B1 to B6; echoviruses 6, 7,
and 9; and EV-D70 (Table 2) [22–29, 41–49]. AFP/AFM as-
sociated with EV-D70 and CV-A24 is often accompanied by
acute hemorrhagic conjunctivitis [22–25, 44]. Those associat-
ed with CVs and echoviruses are typically associated with a
non-specific respiratory or gastrointestinal symptoms or less
often with HFMD or herpangina [26, 41–43]. EV-C105 is a
newly described serotype that was implicated as the cause of
right arm AFP/AFM and extensive gray matter hyperintensity
on MRI in a previously healthy 6-year-old girl following a
mild respiratory prodrome during the 2014 EV-D68 outbreak
in the USA [29, 107, 108].

The significance of detecting non-polio EVs in the stool of
children with AFP/AFM in the context of polio surveillance
needs to be viewed with caution because EVs are ubiquitous
and can be shed in stool for months after acquisition. In a large
study in India, non-polio EVs, predominantly CV-B and echo-
viruses 7, 11, 12, 13, and 20, were detected not only in the
stool of 27% of children with AFP/AFM but also in 34% of
asymptomatic controls [48]. CV-A16 has often co-circulated
with EV-A71 during HFMD outbreaks but has generally been
associated with milder disease and has only rarely been asso-
ciated with neurologic disease [20, 77, 97, 109].

Arboviruses

Several arboviruses, including Japanese encephalitis virus,
West Nile virus (WNV), and European tick-borne encephalitis
virus, have been linked with AFP/AFM that can be clinically
indistinguishable from that due to PV and other EVs
[110–115]. In the largest case series of childhood AFP/AFM
due to Japanese encephalitis virus, a short febrile prodromal
illness was followed by the rapid onset of severe asymmetric
flaccid paralysis, more often of lower limbs [110]. A

potentially distinguishing feature of AFP/AFM due to WNV
is that it predominantly affects adults and is often associated
with encephalitis or meningitis [112]. In a study of 32 cases of
AFP/AFM due to WNV in the USA, the median age was
56 years, only two were children (15–19 years range), and
81% had concomitant encephalitis or meningitis [112].
Among 443 children with neuroinvasive disease from 1999
to 2007 in the USA, only 5 (1%) had isolated AFP/AFM
[116]. Tick-borne encephalitis virus has occasionally been as-
sociated with a poliomyelitis-like syndrome characterized by
proximal muscle weakness often with concurrent cranial
nerve and diaphragm involvement [114].

Future directions

Antiviral Medications

There are a number of antiviral agents with potential activity
against EVs at different stages of development [117•].

The capsid inhibitors, pleconaril, pirodavir, pocapavir, and
vapendavir, are active against most rhinoviruses and EVs but
do not appear to have good activity against EV-D68 [118,
119•]. Pleconaril showed promising results in treating neona-
tal EV infections [120], but unfortunately, it is not currently
commercially available. Pirodavir exhibits some activity
against EV-A71 [118]. Pocapavir reduced shedding of OPV
in a randomized placebo-controlled trial and may play an im-
portant role in polio eradication efforts in the coming years
[121•]. It has also been used in the treatment of neonatal EV
infections [122].

In vitro susceptibility data indicate that rupintrivir, a C3
protease inhibitor, has potent activity against rhinoviruses
and EVs [123], including EV-D68 and EV-A71 [119•], and
is effective in treating EV-A71 infections in suckling mice
[124]. After initial promising phase 1 and 2 clinical trials in
humans in the mid-2000s [125, 126], the development of this
drug was, however, discontinued but given current need and
could potentially be revived.

Fluoxetine, a selective serotonin reuptake inhibitor, dem-
onstrates good in vitro activity against EVs, including EV-
D68 [118, 127–129], which appeared beneficial in the treat-
ment of a 5-year-old boy with X-linked agammaglobulinemia
and chronic EV encephalitis [130]. The concentration of flu-
oxetine in the brain is 20-fold higher than that in the serum,
suggesting that this may be a good treatment option for CNS
disease due to susceptible EVs [129]. However, fluoxetine
treatment was of no benefit in improving motor outcomes in
mice with EV-D68-induced AFP/AFM [72].

Ribavirin exhibits moderate in vitro activity against EVs,
including EV-A71, and in an EV-A71-infected mouse model,
it reduced mortality, morbidity, and subsequent paralysis
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[131]. In vitro synergistic activity of ribavirin with the nucle-
oside analogue gemcitabine has been observed [132].

Vaccines

The success of polio vaccines should serve as a model for the
prevention of serious disease due to other highly pathogenic
EVs.

The response to EV-A71 has included the development
of vaccines. Three large randomized, double-blind,
placebo-controlled trials of inactivated whole virus C4 ge-
notype EV-A71, alum-adjuvanted, vaccines administered
to infants in China have demonstrated 90–97% reductions
in HFMD [133••, 134••, 135••, 136•]. One of the trials
demonstrated 100% efficacy in preventing EV-A71-
associated hospitalizations (0 case in vaccine arm vs. 24
cases in placebo arm) and neurologic complications (0 case
in vaccine arm vs. 8 cases in placebo arm) [133••]. Two of
these vaccines have been licensed for use in China and are
in commercial production [137]. A cost-effectiveness anal-
ysis of routine EV-A71 vaccination of infants in China,
assuming a birth cohort of 15 million per year, suggests
that over 600,000 cases of HFMD/herpangina and 435
deaths would be averted and that the vaccine would be
cost-effective at current pricing [138]. The long-term effi-
cacy and impact on virus evolution of these vaccines will
need to be monitored carefully.

The need for an EV-D68 vaccine is uncertain at this stage.
Nevertheless, it is noteworthy that a recombinant EV-D68
virus-like particle vaccine elicited potent serotype-specific
neutralizing antibodies against EV-D68 in a mouse model
[139, 140].

Conclusion

With the near-eradication of PV-related flaccid paralysis, EV-
D68, EV-A71, and to a lesser extent, other EVs have emerged
as the predominant causes of AFP/AFM.We have highlighted
the growing knowledge related to these viruses, the poor prog-
nosis of EV-associated AFP/AFM, and the lack of knowledge
regarding treatment. Future research should focus on the fol-
lowing: (1) understanding the pathogenesis of AFP/AFM and
defining virus strain-specific virulence determinants; (2) de-
lineating host factors that predispose to neurological compli-
cations; (3) evaluating potential treatments, including antiviral
agents; (4) vaccine development; and (5) determining the
long-term outcome of EV-associated AFP/AFM.
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