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Abstract
Purpose of Review To highlight pathways important for the development of autoimmune diabetes by investigating shared
mechanisms of disease in polygenic and monogenic diabetes.
Recent Findings Genome-wide association studies have identified 57 genetic risk loci for type 1 diabetes. Progress has been
made in unravelling the mechanistic effects of some of these variants, providing key insights into the pathogenesis of type 1
diabetes. Seven monogenic disorders have also been described where diabetes features as part of an autoimmune syndrome.
Studying these genes in relation to polygenic risk loci provides a unique opportunity to dissect pathways important for the
development of immune-mediated diabetes.
Summary Monogenic autoimmune diabetes can result from the dysregulation of multiple pathways suggesting that small effects
on many immune processes are required to drive the autoimmune attack on pancreatic beta cells in polygenic type 1 diabetes. A
breakdown in central and peripheral immune tolerance is a common theme in the genetic mechanisms of both monogenic and
polygenic disease which highlights the importance of these checkpoints in the development and treatment of islet autoimmunity.
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Introduction

Type 1 diabetes (T1D) is a complex disease that arises
in the context of genetic risk and environmental trig-
gers. Together, these alter immune pathways, resulting
in the destruction of insulin-producing pancreatic beta

cells. Despite the recognition of an autoimmune aetiology
in T1D over 40 years ago [1], knowledge of the triggers
and underlying mechanisms of T1D remain incomplete.
Efforts to elucidate the cellular pathology of T1D in
humans have been hampered by a limited ability to
access human pancreatic tissue for direct examination
and the immunologic and clinical heterogeneity of the
disease.

Genetic variation at the HLA region on chromosome
6p21 confers the greatest polygenic risk for the develop-
ment of T1D. A further 56 non-HLA loci have also been
identified but these confer a lower risk for development of
the disease [2••, 3]. Many of these genetic loci are asso-
ciated with additional autoimmune diseases (Table 1), in-
cluding specific HLA alleles (Table 2). Seven monogenic
conditions are also known to cause autoimmune diabetes
that is clinically indistinguishable from T1D. In these pa-
tients, diabetes usually presents as part of a syndrome of
multiple autoimmunity [9].

In this review, we will discuss how studying monogenic
autoimmune disease has informed our understanding ofmech-
anisms that contribute to polygenic disease. We will highlight
pathways which are shared in the pathogenesis of T1D and
other organ specific autoimmunity, focussing on those that
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Table 1 Non-HLA loci
associated with both type 1
diabetes (T1D) and additional
autoimmune diseases

Gene(s) dbSNP ID Diseases associated

PHTF1, PTPN22 rs6679677, rs2476601 ATD, CD, JIA, RA, SLE,
T1D, AA, VIT

IL10 rs3024493, rs3024505 CD, SLE, T1D, UC, IBD

IFIH1 rs1990760, rs35667974, rs2111485 PSO, SLE, T1D, UC, IBD, VIT

CTLA4 rs3087243, rs11571316 ATD, CD, RA, T1D

AFF3 rs9653442 RA, T1D

CCR5 rs113010081 CEL, T1D, UC

IL21, ADAD1, IL2 rs17388568, rs4505848, rs75793288,
rs6827756

CEL, CD, T1D, UC

IL7R rs11954020, rs6897932 T1D, MS

BACH2 rs11755527, rs597325, rs72928038 ATD, MS, RA, T1D

TNFAIP3 rs6920220 RA, SLE, T1D, UC, IBD

NA rs6916742, rs9272346, rs9268645 CEL, T1D

TAGAP rs1738074 CEL, MS, T1D

RBM17, IL2RA rs2104286, rs61839660, rs7090530,
rs10795791, rs12251307, rs41295121

MS, RA, T1D

BAD rs694739 CD, MS, T1D, AA

IKZF4, DGKA, ERBB3 rs11171739, rs705704, rs2292239,
rs11171710, rs705705

T1D, AA

NAA25, SH2B3 rs3184504, rs653178, rs17696736 CEL, CD, JIA, PBC, RA,
T1D, AA, PSC, VIT

NA rs911263 PBC, T1D

CTSH rs3825932, rs12148472, rs34593439 CEL, T1D, NAR

RASGRP1 rs12908309, rs72727394 CD, T1D

IL27 rs4788084, rs9924471, rs151234 ANS, CD, T1D, IBD

DEXI, CLEC16A rs12927355, rs193778, rs12708716 MS, PBS, T1D

NA rs7221109 T1D, UC

ORMDL3, GSDMB rs2290400, rs12453507 CD, T1D, UC, IBD

CD226 rs1615504, rs763361 MS, T1D

PTPN2 rs2542151, rs1893217 CEL, CD, T1D, UC, IBD

FUT2 rs516246, rs602662 CD, T1D, IBD

TYK2 rs12720356, rs34536443 CD, JIA, MS, PBC, PSO,
RA, T1D, IBD

UBASH3A rs11203202, rs11203203 RA, T1D, VIT

Data from Immunobase.org (https://www.immunobase.org/) [4]

AA alopecia areata, ANS ankylosing spondylitis, ATD autoimmune thyroid disease, CD Crohn’s disease, CEL
Coeliac disease, IBD inflammatory bowel disease, JIA juvenile idiopathic arthritis, MS multiple sclerosis, NAR
narcolepsy, PBC primary biliary cirrhosis, PSC primary sclerosing cholangitis, PSO psoriasis, RA rheumatoid
arthritis, SC scleroderma, SJ Sjogren’s syndrome, SLE systemic lupus erythematosus, UC ulcerative colitis, VIT
Vitiligo, NA not applicable

Table 2 Shared risk of
autoimmune diseases conferred
by the HLA DR3 (DRB1*0301-
DQA1*0501-DQB1*0201) and
DR4 (DRB1*0401-DQA1*0301)

HLA allele Disorder Odd’s ratio Reference

DR3 Type 1 diabetes 3.64 [5] Erlich et al. 2008 Diabetes

Coeliac disease 2.09 [6] Liu et al. 2014 NEJM

Hypothyroidism 2.53 [7] Zamani et al. 2000 AJMG

DR4 Type 1 diabetes 7.03 [5] - Erlich et al. 2008 Diabetes

Multiple sclerosis 1.63 [4] Andlauer et al. 2016 Sci Adv

Rheumatoid arthritis 2.88 [8] Stahl et al. 2010 Nat Genet

Odds ratios are provided for individuals carrying a single copy of each allele
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have a role in both monogenic forms of autoimmune diabetes
and polygenic T1D.

A Breach in Immune Tolerance Is Key
to the Development of Autoimmunity

Loss of Central Tolerance

Central tolerance is the process of removing self-reactive Tor B
cells during their development thus preventing them from
targeting normal tissues in the periphery [10]. This process
occurs in the thymus for T cells and requires that the T cell
receptor (TCR) of a developing T cell is able to bind human
leukocyte antigen (HLA) molecules (those reacting to class I
HLA go on to form CD8+ T cells, while class II form CD4+ T
cells), while limiting the development of T cells with receptors
that bind self-peptides in the context of HLAwith high affinity.
When central tolerance fails, autoimmunity can arise through
the release and subsequent action of self-reactive T cells.

Loss of Central Tolerance in Monogenic Disease

The Autoimmune Regulator gene, AIRE, regulates the ectop-
ic expression of self-peptides within the thymus in order to
expose naïve T cells to these peptides during development
[11]. Loss of function mutations in AIRE (either recessive or
dominantly inherited) cause autoimmune polyendocrine syn-
drome type 1 (APS1, also known as autoimmune
polyendocrinopathy-candidiasis-ectodermal dystrophy,
APECED) by reducing or removing this function of AIRE
in the thymus [12]. This allows high affinity autoreactive T
cells to escape the thymus. Clinically, APS1 is highly variable
but is usually characterised by chronic mucocutaneous candi-
diasis, adrenal insufficiency and autoimmune hypoparathy-
roidism. Approximately 13% of individuals develop autoim-
mune diabetes by 30 years of age [13].

T1D Genetic Risk Loci Involved in Central Tolerance

Variation in the insulin gene (INS) is linked to the develop-
ment of T1D and is thought to result in a failure of central
tolerance. The T1D-associated polymorphic variant is consid-
ered to be a variable number of tandem repeats (VNTR), lo-
cated in the promoter of the INS gene to which AIRE binds,
regulating INS RNA expression in the thymus [14–19].
VNTR variants of smaller size (class I VNTRs) are associated
with increased T1D risk and lower INS mRNA expression in
the thymus, allowing escape of insulin autoreactive CD4 T
cells into the periphery during Tcell development due to fewer
insulin peptide-HLA class II interactions. Conversely, insulin
autoreactive T cells are predicted to be deleted in individuals
carrying the protective INS variants (Class III VNTRs) which

drives higher levels of INS expression in the thymus [16]. In
keeping with a failure in central tolerance, insulin autoreactive
CD4 Tcells are present at a higher frequency in the peripheral
blood of T1D subjects carrying the INS susceptibility variants,
whereas individuals with protective alleles have barely detect-
able levels of insulin autoreactive CD4 T cells [20].

A failure in central tolerance may also contribute to the
association of HLA class II genes to T1D. Although the
mechanism is not completely understood, evidence points to
low affinity interactions between class II DQ8 molecules and
islet peptides, which may result in failed deletion of islet
autoreactive CD4 T cells [21, 22]. Another T1D-associated
gene, PTPN22, has been linked with failures in both central
and peripheral tolerance of T and B cells [23, 24]. A failure of
B cell tolerance may be due in part to altered B cell receptor
signalling in the presence of the risk variant p.R620W in
PTPN22, allowing autoreactive B cells to escape central and
peripheral tolerance checkpoints [25]. Although T1D is con-
sidered a Tcell–mediated disease, B cell pancreatic infiltrate is
present in many childhood onset T1D cases [26, 27] and anti-
CD20 B cell depleting therapy temporarily slowed disease
progression in established T1D [28], indicating a role for B
cells in T1D pathogenesis.

Reduced Peripheral Tolerance

Central tolerance is an imperfect process, and as such peripheral
tolerance exists to regulate self-reactive cells that escape thymic
negative selection. Regulatory T cells (Tregs), a specialised
subset of CD4+ T cells, are critical for peripheral tolerance
[29, 30]. Tregs suppress conventional T cell (CD8+ and
CD4+) activation, proliferation and cytokine production after
an immune response to prevent collateral damage to tissues
once a pathogen has been removed. There is also growing
evidence supporting suppression of B and dendritic cells by
Tregs [31, 32].

Reduced Peripheral Tolerance in Monogenic Disease

Reduced function or number of Tregs has been implicated in
the disease mechanism of several monogenic autoimmune
disorders. Immunodysregulation, polyendocrinopathy, enter-
opathy, X-linked (IPEX) syndrome highlights the requirement
of Tregs to restrain autoimmunity. IPEX syndrome, which
often proves fatal in early life, results from hemizygous mu-
tations in the FOXP3 gene, a key regulator of Treg develop-
ment [33]. The syndrome typically presents in the neonatal
period, with > 90% of affected boys having severe protein
losing enteropathy and ~ 80% developing autoimmune diabe-
tes. Additional autoimmune diseases can develop including
severe atopic dermatitis (70%) and autoimmune hypothyroid-
ism (35%) [34].
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Individuals with recessively inherited IL2RA mutations
develop immunodeficiency 31C syndrome [35], which is sim-
ilar to IPEX syndrome (enteropathy, hypothyroidism and se-
vere eczema) and can include neonatal-onset autoimmune di-
abetes [36]. IL2RA encodes CD25, a subunit of the IL-2 re-
ceptor which is constitutively and highly expressed on regu-
latory T cells facilitating their recruitment and suppressive
ability. IL-2 is a key signalling molecule involved in regulat-
ing the immune system and induces FOXP3 expression; there-
fore, loss of the IL-2 receptor on T cells reduces FOXP3 ex-
pression and Treg development [37]. As in IPEX, mutations
that lead to a loss of CD25 expression result in a reduced Treg
compartment, promoting autoimmunity through the failure of
peripheral tolerance [38].

Heterozygous mutations in CTLA4 cause autoimmune
lymphoproliferative syndrome which can include autoim-
mune diabetes [39–41]. CTLA4 is constitutively expressed
by Tregs and can also be expressed by CD4+ and CD8+ ef-
fector T cells where it functions as a potent suppressive recep-
tor molecule, by preventing co-activation of T effector cells
via CD28 [42]. It mediates inhibition in effector T cells by
competing with CD28 for binding to CD80/CD86 on antigen
presenting cells (APC) but may also inhibit T cell receptor
signalling [31, 43, 44]. Tregs from individuals with dominant-
ly inherited CTLA4 mutations show reduced expression of
CTLA4, FOXP3 and IL2RA [39].

Recessively inheritedmutations inLRBA cause common var-
iable immunodeficiency-8 (CVID8) with autoimmunity [45].
This includes extremely young onset of haematological autoim-
mune disorders (80%), enteropathy (70%) and autoimmune dia-
betes (30%) [46]. LRBA plays an essential role in the post-
translational regulation and trafficking of CTLA4 (see above),
whereby it prevents lysosomal degradation of CTLA4 containing
vesicles [47•]. Interestingly, studies have identified six individ-
uals with LRBA mutations who had a reduced number of Tregs
[48] and an individual with normal cell-surface CTLA4 expres-
sion [49]. In the latter patient, there was increased Th17 cell
activity (measured by IL-17 production) suggesting that the dis-
ease could also be mediated through effector cells.

Gain of function (GOF) mutations in STAT3, which links
extracellular cytokine signals to gene expression, cause
infancy-onset multiple autoimmune disease [50]. These muta-
tions cause haematological autoimmune disorders (70%), enter-
opathies (50%) and autoimmune diabetes in ~ 30% of individ-
uals which often presents in the neonatal period. Some patients
present with similar features to autoimmune lymphoproliferative
syndrome (ALPS) [51, 52]. STAT3 is involved in multiple sig-
nalling pathways that influence the fate of CD4 T cells, enhanc-
ing development of Th17 and T follicular helper cells, while
blocking the development and survival of regulatory T cells.
Tregs are numerically and functionally reduced in most individ-
uals with GOF STAT3 mutations, while Th17 cells may be nor-
mal, reduced or increased [53].

T1D Genetic Risk Loci Involved in Peripheral
Tolerance

Genetic variants in genes that function in the IL-2 pathway are
associated with T1D, including IL2RA (described above) and
PTPN2 which encodes a non-receptor tyrosine phosphatase
that regulates IL-2 signalling [2••, 54, 55]. The most highly
associated IL2RA single nucleotide polymorphism (SNP),
rs61839660, is non-coding and located in an enhancer region
in intron 1 of the gene. The enhancer binds multiple transcrip-
tion factors and interacts with other regulatory elements in the
locus in primary CD4 T cells, but only in response to T cell
stimulation [56••]. The presence of the T1D risk allele at the
enhancer resulted in enhanced CD25 (IL2RA) upregulation in
CD4 conventional T cells but not Tregs in a knock-in mouse
model [56••], indicating that this SNP primarily impacts CD4
conventional T cells.

Alternatively, several other IL2RA SNPs have been associated
with decreased CD25 expression on CD4 conventional T cells
and Tregs, and increased levels of soluble CD25 with the risk
alleles, revealing the complexity of the IL2RA locus [57–59].
Functionally, this correlates with reduced IL-2 signalling and
diminished Treg fitness and suppressive function [58, 59]. The
T1D-associated SNPs in the PTPN2 gene are also non-coding
and have been correlatedwith decreasedPTPN2RNA levels and
reduced IL-2 signalling in genotyped healthy control subjects
and longstanding T1D patients [60, 61]. The PTPN2 T1D risk
allele was also associated with decreased FOXP3 expression in
activated CD4 T cells [60]. The effects of these IL2RA and
PTPN2 T1D risk alleles on IL-2 signalling are independent but
additive, both potentially contributing to reduced peripheral tol-
erance through effects on Tregs [58]. An additional T1D-
associated SNP is located in the IL2-IL21 intergenic region,
although the impact of this SNP has not been evaluated yet [2••].

A non-coding SNP rs3087243 located 3′ of the CTLA4
gene has been associated with T1D, as well as other autoim-
mune diseases [2••] (Table 1). How the CTLA4 rs3087243
SNP affects CTLA4 function is not completely understood.
Initial studies indicated that the rs3087243 variant affected
CTLA4 alternative splicing, resulting in lower levels of a sol-
uble CTLA4 isoform in CD4 Tcells carrying the T1D suscep-
tibility allele [62]. However, this finding was not replicated in
a subsequent study [63]. More recently the rs3087243 SNP
was shown to be in high linkage disequilibrium with an (AT)n
dinucleotide repeat in the 3′ untranslated region of CTLA4,
with the T1D susceptibility allele associated with longer
(AT)n repeat length compared with the non-risk allele [64].
Human islet autoreactive Tcell lines with longer (AT)n repeats
expressed lower levels of CTLA4 RNA and protein relative to
T cell lines with shorter repeats, and longer (AT)n repeats
destabilised a GFP reporter expressed in Jurkat T cells [64].
Confirmation of these findings in rs3087243 genotyped pe-
ripheral blood CD4 T cells and elucidation of corresponding
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functional phenotypes will clarify the mechanism of the T1D
association with CTLA4.

Defects in Interferon Signalling Pathways

Interferons (IFNs) are cytokines released bymononuclear cells in
response to the presence of pathogens and tumours that modulate
the immune system. They have a role in the regulation of im-
mune responses, activating natural killer cells and macrophages
and upregulating antigen presentation by HLA molecules [65].
Type 1 IFNs (IFN-1) are central to the anti-viral response, yet the
presence of an IFN signature is well described in multiple auto-
immune diseases including T1D [66, 67]. Perturbed IFN signal-
ling is associated with systemic lupus erythematosus, a systemic
autoimmune condition directed against ubiquitous proteins such
as those within the cell nucleus [68]. Indeed, an IFN signature
consisting of expression levels of type 1 IFN-responsive genes
correlates with the severity of disease in SLE [69]. The mecha-
nistic role of IFN signalling in the induction of organ specific
autoimmunity such as T1D remains unclear although evidence is
mounting that they may induce increased autoantigen presenta-
tion by islet cells and thus increase recognition and activation of
effector Tcells [70]. Studies on deceased T1D patients’ pancreata
have shown increased expression of IFN alpha [71, 72]; howev-
er, whether this was secondary to, for example, viral infection of
the islets, remains unknown. The role of IFNs in organ specific
autoimmunity is further supported by the triggering of autoim-
mune disease, including diabetes, in patients undergoing interfer-
on treatment for malignancies [73, 74].

Defects in IFN Signalling in Monogenic Disease

Patients with dominant GOFmutations in STAT1 present with
chronic mucocutaneous candidiasis and lower respiratory tract
infections with a subset of patients developing severe organ-
specific autoimmunity including T1D (4% of patients) [75].
STAT1 responds to multiple cytokines to translate extracellu-
lar signals to gene transcription. IFN alpha induces the tran-
scription of numerous targets via the JAK-STAT pathway in-
creasing the proliferation of immune cells, as well as augment-
ing other immune processes such as antibody production.
Increased activity of STAT1, as a result of impaired nuclear
de-phosphorylation, is proposed to lead to autoimmunity by
increasing IFN alpha signalling.

T1D Genetic Risk Loci Involved in IFN Signalling

Two coding variants in genes within the interferons pathway,
IFIH1 A946T and TYK2 P1104A, support a role of IFN-1 in
the development of T1D [2••, 76].

IFIH1 (interferon-inducedhelicaseC-domain-containingprotein
1, also known asMDA5) is a component of the innate response to

RNA viruses. Upon recognition of double-stranded RNA, IFIH1
undergoes a conformational change that result in a series of signal-
ling events leading to transcription of genes encoding IFN-1 and
interferon-stimulated genes (ISGs). Rare GOF missense mutations
in IFIH1 are described which result in interferonopathies [77]. A
rare loss of function mutation in the IFIH1 gene is associated with
protection from T1D [78]. The common variant rs1990760, a non-
synonymous coding variant in IFIH1(A946T), is associated with
risk for T1D [76] as well as other autoimmune diseases including
SLE [79]. This variant results in enhanced basal expression of IFN-
1 and improved response to viral challenge indicating that the
IFIH1 risk variant 946T is a gain-of-function variant that is trig-
gered by RNA self-ligands as well as viral infection [80]. This
variant has likely been selected in the population as it provides an
advantage in the setting of viral infection, despite the fact that it also
promotes the risk of autoimmunity.

TYK2 encodes a JAK family kinase that functions to mediate
proximal IFN-1-, IL-12- and IL-23-dependent signals [81, 82].
TYK2 deficient patients exhibit susceptibility to viral infections
and impairment in cellular responses to IFN-1, as well as myco-
bacterial infections consistent with an impaired response to IL-12
and IL-23. A missense change within the kinase domain of
TYK2, with substitution of alanine for a conserved proline
(TYK2-P1104A) is associated with a lack of catalytic activity
and protection for T1D [2••, 83]. The protective TYK2 1104A
allele results in impaired cellular responses to IFN-1, IL-12 and
IL-23 and notably leads to a decrease in the induction of experi-
mental autoimmune encephalomyelitis in murine models and a
striking decrease in IL-17/IFN-γ positive CD4 Tcells [83, 84]. In
humans carrying the TYK2-1104A allele, IFN-1 receptor signal-
ling is decreased, and alterations in memory B cell populations
and a decrease in Tfh cells are seen in the peripheral blood [84,
85]. Similar to TYK2 deficient patients, individuals homozygous
for the TYK2 1104A variant have an increased frequency of tu-
berculosis [83]. The incidence of the TYK2 1104A allele has
decreased over the past 4000 years in Europeans, consistent with
negative selection of this allele by tuberculosis infection [83].
Thus, the T1D risk allele TYK2 P1104 is increasing in frequency
in European populations. Taken together, these studies suggest
that alterations in IFN signalling in T1D may play a role in dis-
ease, but in the case of the TYK2 variant, this is in the broader
context of other cytokine responses.

Conclusions

The finding that monogenic autoimmune disease can result from
the dysregulation of multiple immune pathways suggests that
small effects on multiple processes may be required to drive the
autoimmune attack on pancreatic beta cells in polygenic T1D. A
common theme in the genetic pathways identified in diabetes and
other autoimmunity is the breakdown of immune tolerance; how-
ever, the part of the pathway perturbed can be different.
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Monogenic disorders include those which disrupt central toler-
ance (AIRE), or impact the development (FOXP3, STAT3) or
function (IL2RA, LRBA, CTLA4) of regulatory T cells required
for the maintenance of peripheral tolerance. The risk alleles iden-
tified by genome-wide association studies mirror this, with effects
on the ectopic expression of insulin, reducing central tolerance
(e.g. INS VNTR), and reduced expression of genes essential for
the maintenance of peripheral tolerance also identified (e.g.
IL2RA, PTPN2, CTLA4).

Defects in interferon signalling are increasingly recognised as
being involved in multiple autoimmune diseases. While diabetes
is a rare feature of monogenic interferonopathies, two loci within
the IFN pathway (IFIH-1 and TYK2) have been robustly associ-
ated with polygenic T1D. Furthermore, the presence of an IFN
signature in some patients with T1D, increased expression of IFN
in pancreata from deceased T1D patients and mounting evidence
of viral involvement in some T1D cases highlight that defects in
IFN signalling may be an important contributor to the pathophys-
iology of T1D. Further molecular characterisation of the mecha-
nisms by which common risk loci that impart risk for T1D and of
genes causingmonogenic autoimmunity will be the key to detect-
ing the pathways that underlie this shared aetiology.
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