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Abstract
Purpose of Review New treatment strategies are needed for patients with type 1 diabetes (T1D). Closed loop insulin delivery and
beta-cell replacement therapy are promising new strategies. This review aims to give an insight in the most relevant literature on
this topic and to compare the two radically different treatment modalities.
Recent Findings Multiple clinical studies have been performed with closed loop insulin delivery devices and have shown an
improvement in overall glycemic control and time spent in hypoglycemia. Beta-cell transplantation has been shown to normalize
or greatly improve glycemic control in T1D, but the donor organ shortage and the necessity to use immunosuppressive agents are
major drawbacks. Donor organ shortage may be solved by the utilization of stem cell-derived beta cells, which has shown great
promise in animal models and are now tested in clinical studies. Immunosuppression may be avoided by encapsulation.
Summary Closed loop insulin delivery devices are promising treatment strategies and are likely to be used in clinical practice in
the short term. But this approach will always suffer from delays in glucose measurement and insulin action preventing it from
normalizing glycemic control. In the long term, stem cell-derived beta cell transplantation may be able to achieve this, but wide
implementation in clinical practice is still far away.
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Introduction

Over 400 million people worldwide suffer from diabetes
mellitus and more than half a million are children below the
age of 15 years. The majority of children suffer from type 1
diabetes (T1D), while in adults, the prevalence is up to 10% of
the total population (depending on age and geographic distri-
bution) [1, 2]. The current treatment for T1D is exogenous
insulin, either through multiple daily injections or continuous

subcutaneous insulin infusion (CSII). Neither therapy can pre-
vent marked glycemic variability that is associated with an
increased risk of hypoglycemia, necessitating higher glucose
targets to prevent severe hypoglycemic events. However,
higher average glucose concentrations are directly linked to
diabetes-related complications and cardiovascular disease [3•,
4•, 5].

Several treatment options to improve glycemic variability
and control have been explored in the past decades. The ad-
vancement of continuous glucose sensors and new insulin
pump devices has sparked the development of currently used
hybrid closed loop devices. These devices utilize continuous
glucose measurement (CGM) to regulate insulin administra-
tion through a control algorithm, but still require preprandial
active insulin dosing. Closed loop devices that do not require
active adjustment of insulin dosing are considered artificial
pancreases, and several of these systems are currently being
tested [6].

A cell-based approach to achieve optimal glycemic control
is beta-cell transplantation, either through whole organ or islet
transplantation. It normalizes or at least greatly improves gly-
cemic control, often without the need for exogenous insulin

This article is part of the Topical Collection on Immunology,
Transplantation, and Regenerative Medicine

* Eelco J. P. de Koning
e.dekoning@lumc.nl

Michiel F. Nijhoff
m.f.nijhoff@lumc.nl

1 Department of Medicine, Division of Nephrology and
Transplantation, Division of Endocrinology and Metabolism, Leiden
University Medical Centre, PO Box 9600, 2300, RC Leiden, the
Netherlands

Current Diabetes Reports (2018) 18: 110
https://doi.org/10.1007/s11892-018-1073-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s11892-018-1073-6&domain=pdf
mailto:e.dekoning@lumc.nl


[7]. Novel cell replacement therapies using human pluripotent
stem cell (hPSC)-derived insulin-producing cells have recent-
ly been tested in early clinical studies [8••].

In this review, we will assess the potential and current sta-
tus of the artificial pancreas and novel beta cell replacement
strategies. Is there a race for optimal glycemic control between
these two different treatment strategies?

Artificial Pancreas

Technology is playing an increasingly important role in the
management of T1D. Not until the 1960s, capillary blood
glucose meters were introduced, providing progressively
more accurate point-of-care glucose measurements [9]. In
the late 1990s, CGM devices entered clinical practice,
allowing for real-time interstitial glucose measurements,
thereby improving glycemic stability [10]. Continuous subcu-
taneous insulin infusion (CSII) using small pumps had already
been introduced in the 1970s [11, 12]. The CSII devices are
continuously being improved with regard to size and function.
Current devices offer several insulin administration options,
such as variable basal rates and bolus infusions. There are
pumps with separate infusion sets and also patch pumps that
can be placed directly onto the skin [13]. Communication
between the CGM and CSII devices was the logical next step.

The Artificial Pancreas

Systems that automatically turn off insulin administration
based upon continuous interstitial glucose measurements
(low glucose suspend and predictive low glucose suspend
systems) were the first to be used in clinical practice. While
automatic stopping and resuming insulin administration has
been shown to be safe in patients with T1D [13], it took some
time for systems that automatically administer a bolus dose of
insulin. Recently, a hybrid closed loop system has entered the
market (Minimed™ 670G, Medtronic©). With this system,
continuous, sensor-augmented, and automated subcutaneous
insulin delivery is combined with user actions around meal
times (carbohydrate announcement, acceptance of bolus rec-
ommendation) to mitigate postprandial glycemic variation [9].

The next step was a true closed loop system that also ac-
counts for post-prandial glucose excursions and variability in
glucose concentrations caused by other factors such as exercise
and hormonal changes. This system could be considered an
artificial pancreas. Recent studies demonstrate the feasibility
and efficacy of a closed loop system in a free-living, unsuper-
vised setting (Table 1). The earliest studies focused on automat-
ed nighttime control only. In these studies, a beneficial effect
was demonstrated on time spent in a hypoglycemic range and
time spent in a normoglycemic range during the treatment

period [14, 15•]. Tabit et al. showed the feasibility of an artifi-
cial pancreas in 33 patients with T1D that were not supervised
[16••]. A modest reduction in glycated hemoglobin (HbA1c)
was achieved (4 mmol/mol Hb (0.3%)) after 12 weeks. The
time spent in hypoglycemia was reduced by almost 40%, and
the only severe hypoglycemic event occurred during the inter-
vention phase (due to connectivity problems of the device).
Garg et al. tested the same system in 124 adult and adolescent
patients with T1D [17••]. Patients were treated with the
bihormonal closed loop system for 3 months after a 2-week
run-in period. Their results were similar to the previous study,
and adverse events were not reported.

When subcutaneous glucagon infusion is added to the
closed loop system with its own control algorithm, a bi-
hormonal closed loop system is created. Russell et al. treated
52 patients with T1D with 5 days of insulin pump and 5 days
of bi-hormonal artificial pancreas treatment [18••]. In these
patients, time spent in hypoglycemia was reduced by over
40%, and time spent in normoglycemia was increased by
13%. Mean glucose fell from 8.9 to 7.4 mmol/L. No severe
hypoglycemic events occurred. El-Khatib et al. [19••] further
investigated this bi-hormonal device. They included 43 pa-
tients with T1D comparing the bi-hormonal device with usual
care (conventional or sensor-augmented pump therapy). The
intervention phase lasted 11 days and yielded similar results.
These studies have confirmed that with both the insulin-only
and the bi-hormonal closed loop devices, a significant reduc-
tion of time spent in hypoglycemia could be achieved without
an increase in HbA1c. Importantly, all studies demonstrated a
greater beneficial effect of the intervention during nighttime
than during the day [16••, 17••, 18••, 19•].

Limitations of the Artificial Pancreas

Several important limitations apply to these studies. First, pa-
tients who had a history of severe hypoglycemic events were
excluded in the studies with the insulin-only closed loop sys-
tems [16••, 17••]. In some studies, patients with reduced hy-
poglycemia awareness and insulin resistance were also ex-
cluded [17••, 18••]. Although patients with a history of severe
hypoglycemic events were not explicitly excluded in the bi-
hormonal closed loop device studies, participation of these
patients was not reported.

Treatment and follow-up time were generally short, espe-
cially in the bi-hormonal closed loop device studies (5 to
11 days). This makes it difficult to assess potential severe
adverse effects during longer use, such as severe hypoglyce-
mia or ketosis in case of device malfunction or loss of con-
nectivity. Indeed, loss of connectivity has been shown to occur
up to 4% of the time [19•] and can lead to severe hypoglyce-
mic events [16••].

Another important current limitation of closed loop devices
is lag time. CGM systems that are currently used in clinical
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practice measure the glucose concentration in the interstitial
fluid using enzymatic oxidation of glucose [20]. There is a
variable latency that can go up to 15min between blood glucose
and interstitial fluid glucose in patients with T1D [21•] (Fig. 1).
The CGM itself may have a latency period, caused by the fact
that most CGMs provide a glucose measurement every 5 min
that is an average of the glucose in those previous 5 min [22].
Altogether, the glucose concentration reported by CGM may
reflect a variable delay of up to 20 min. There is also a variable
measurement error and reduced measurement accuracy during
the first few days of using the CGM. Accuracy is influenced by
factors such as skin temperature, pressure, and movement [23,
24]. Although the mean average relative difference of current
CGMs continues to improve and approaches only 10%, this
error margin increases during rapid changes in glucose concen-
trations and in the hypoglycemic range [14].

It should also be noted that subcutaneously administered
insulin, either by a CSII device (as part of a closed loop sys-
tem) or injection, will always have a lag time until its pharma-
cological action (Fig. 1). Even the fastest acting subcutaneous

insulin (faster-acting insulin aspart) takes up to 45 min to
achieve the maximum concentration after a bolus and in-
creases serum insulin levels up to 3 h after injection [25•].
This latency can vary depending onmany factors, such as skin
temperature, physical activity (which also affects insulin sen-
sitivity) [26], location of inserted cannula, and local fibrous
tissue formation [14]. Modern control algorithms try to ac-
count for the delay of insulin action and glucose reporting in
the insulin delivery model [9, 15]. Despite improvements, the
variable delay as mentioned above still hampers complete
glycemic control, as is evidenced by the persistence of day-
time glycemic variability [15].

Practical Issues

Some important practical issues regarding the artificial pan-
creas are also not yet solved. For example, multiple calibra-
tions per day are still required for some of the more common
CGM devices, necessitating daily finger pricks. Recent devel-
opments in flash glucose monitoring devices have shown that

Fig. 1 Challenges in obtaining optimal “real-time” glycemic control in
artificial pancreas and encapsulated beta-cell replacement strategies. Left
panel: in native pancreatic islets or transplanted islets in the liver that have
been vascularized, the insulin-producing beta cells are in close proximity
to the islet capillary network. Nutrients, in particular carbohydrates (blue
dots), are rapidly sensed by the insulin-producing cells. Based on nutrient
levels, the cells are able to immediately secrete the appropriate amount of
insulin (black dots) into the islet capillaries. Middle panel: cell clusters
containing insulin-producing cells (islets, beta-like cells derived from
pluripotent stem cells) that are loaded into (macro)encapsulation
devices before implantation in a recipient. There is no direct contact
between the insulin-producing cells and capillaries. This “dead space”

and limitations in transport of molecules across the macrocapsule
membrane cause delayed (blood) glucose sensing and delayed insulin
action. Right panel: in current artificial pancreases, there is a glucose
sensor in the skin which is coupled to a transmitter that sends
information about glucose concentrations to a receiver. This receiver
feeds the information in a control algorithm that controls insulin
delivery through an infusion set. There is a variable delay in blood
glucose reporting, using interstitial glucose monitoring by a
subcutaneous glucose sensor. This can also be termed “delayed (blood)
glucose sensing.” There is also a delay between subcutaneous insulin
administration and resorption of insulin into the blood stream causing
delayed insulin action
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this problemmay be solved [27•]. Also, meals remain difficult
to adjust for. Many of the closed-loop devices require meal
announcements but still struggle to improve postprandial
glucose control [16••, 17••, 18••, 19•, 28]. Besides the
CGM and CSII lag time, this is probably an important
reason that 17–29% of the time is still spent in a hyper-
glycemic range (> 10 mmol/L).

A further practical issue is that of acetaminophen. This
common pain killer can lead to falsely elevated glucose con-
centrations (up to 3.3 mmol/L) due to increased oxidation at
the sensing electrode [29]. This may be especially dangerous
in the low-normal to hypoglycemic range. However, exclud-
ing patients from using acetaminophen will limit options for
pain management.

Subcutaneous glucagon infusion provides specific issues for
the artificial pancreas. Importantly, glucagon has a relatively
short conservation time; in the trials with a bihormonal system,
users had to replace the glucagon ampule at least every day
[18••, 19•]. This problem may be solved by the recent devel-
opment of glucagon formulations with a longer conservation
time [30–32]. In addition, a side effect of glucagon is nausea, as
was shown in the study by El-Khatib, in which nausea in-
creased tenfold in the intervention phase [19•].

Beta-Cell Transplantation

T1D is characterized by a rapid loss of endogenous beta-cell
mass, leading to insulin dependence. Restoration of endoge-
nous insulin secretion is therefore a logical approach in the
ultimate goal to achieve normal glycemic control in T1D. It is
known that persistence of even a low degree of endogenous
insulin secretion in patients with long-standing T1D leads to
fewer (severe) hypoglycemic episodes, fewer diabetes-related
complications, and a lower HbA1c [33].

Serious efforts to restore beta-cell mass have been ongoing
since the early 1960s, with reports of the first successful pan-
creas transplantation in 1967 [34] and the first human islet
transplantation performed in 1977 [35]. Pancreas transplanta-
tion proved effective in reversing T1D but requires major
surgery and is associated with a high risk of adverse events,
such as infection, bleeding, and thrombosis [36]. These factors
limit the feasibility of whole pancreas transplantation as a
standard treatment option for patients with T1D. Islet trans-
plantation focuses on replacing only the endocrine cells of the
pancreas and is associated with fewer complications, but also
less favorable long-term outcome with regard to glycemic
control [37]. Still, major advances in the islet transplantation
field have been made, such as improved islet isolation tech-
niques [38] and improved immunosuppressive regimens [39].
These advances have led to a higher percentage of islet trans-
plant recipients with insulin independence [37].

Currently, research in beta-cell replacement strategies fo-
cuses on improvement of immunosuppressive regimens, alter-
native cell sources for beta cells, alternative transplantation
sites including immunoprotective scaffolds, and improvement
of long-term islet survival [40].

Clinical Islet Transplantation

The landmark trial for clinical islet transplantation was pub-
lished by Shapiro et al. in 2000 [39]. In this trial, seven par-
ticipants with T1D and impaired hypoglycemia awareness
and/or glycemic lability were included. All participants
achieved insulin independence, with normalized HbA1c and
abrogation of hypoglycemic events, thereby demonstrating
the feasibility and efficacy of restoring endogenous beta-cell
mass. However, long-term follow-up of a larger number of
patients in this center showed that only 28% remained insu-
lin-independent, although persistent graft function still
protected against hypoglycemia and improved glycemic con-
trol [41••]. More recently, a phase 3 multi-center trial of islet
transplantation in 48 participants with T1D complicated by
severe hypoglycemia showed that half of the participants
attained insulin independence at 1 year, while almost 90% of
participants had abrogation of severe hypoglycemic events
with excellent glycemic control (i.e., an HbA1c < 53 mmol/
mol Hb (< 7%)) [42••]. These data indicate that while insulin
independence can be achieved, most patients need to resume
low-dose insulin in the presence of long-term partial graft
function.

Some degree of endogenous insulin production in islet
transplant recipients without insulin independence still has
considerable advantageous effects on improvement of im-
paired hypoglycemia awareness and reduction of recurrent
(severe) hypoglycemic episodes, which are important treat-
ment goals. C-peptide concentrations as low as 200 pmol/L
after islet transplantation improved glycemic variability and
abrogated severe hypoglycemia [43•].

Limitations of Islet Transplantation

The clinical studies in islet transplantation show the feasibility
and efficacy of restoring endogenous insulin production
through a procedure with relatively few complications, al-
though long-term outcomes still require improvement. Two
other major problems are readily apparent. First of all, potent
immunosuppression is required. Immunosuppressive agents
have many side effects, including infection, malignancy, de-
terioration of kidney function, and inhibition of islet function
[44]. Furthermore, current allogeneic islet transplantation re-
quires donor pancreata. This is a scarce source of tissue. Organ
donation rates (between 1.0 and 34.8 per million people per
year) are much lower than the incidence of T1D (200 per
million people in Europe) [45, 46]. And as the pancreas
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utilization rate is also low compared to most other organs,
only a small fraction of patients could be treated even if less
riskful immunoevasive strategies would be developed. A po-
tential alternative source of islets is those from animal species
such as pigs. Xenotransplantation using porcine islets still has
important ethical and scientific challenges, especially related
to immune rejection and porcine endogenous retroviruses
[47].

Human Pluripotent Stem-Cell-Derived Beta-Like Cells

Therefore, the search for alternative scalable sources for beta
cells is ongoing. Human pluripotent stem cells (hPSC), such
as embryonic stem cells (ESC) and induced pluripotent stem
cells (iPSC), draw most interest. Several differentiation proto-
cols have been published that allow the differentiation of plu-
ripotent stem cells via different stages to beta-like cells that
have the capacity to cure diabetes in immunodeficient mice
[48–50]. Viacyte, Inc. has been leading the way using proto-
cols to differentiate embryonic stem cells up to a pancreatic
progenitor stage before transplantation. After transplantation
further maturation occurs and functional glucose-lowering ef-
fects of the cell transplant occur several weeks after transplan-
tation in mice. Interestingly, the first-in-human trials started in
2014, in which these partially differentiated cells were encap-
sulated in immunoprotective macroencapsulation devices be-
fore implantation under the skin in patients with T1D [51,
52•]. Results of these trials will provide relevant information
for further clinical development.

Since 2007, the induction of pluripotent stem cells from
patients’ own tissue has been possible, obviating the need
for human embryos [53]. This has sparked an increased inter-
est in research into iPSC-derived beta-like cells, culminating
in publications with improved protocols for differentiation of
iPSC into beta-like in vitro [8••, 48••]. It was also demonstrat-
ed that skin fibroblasts taken from patients with T1D could be
used in such protocols [8••]. These iPSC-derived beta-like
cells have yet to be tested in human trials.

Limitations of hPSC-Derived Beta-Like Cells

Several limitations exist with hPSC-derived beta-like cells.
First, although differentiation protocols lead to hPSC-
derived beta-like cells that have the capacity to cure diabetes
in immunodeficient mice, these cells do not have the same
“mature” insulin secretory capacity as primary human beta
cells. Hence, the use of the term “beta-like cells” to describe
the hPSC-derived insulin-producing cells with an “immature”
phenotype. In addition, a major concern is that of tumor for-
mation. Cell transplants derived from hPSCs have been shown
to produce several types of tumors, mostly teratomas [49, 50].
In addition, while beta-like cells derived from hESC are prone
to allo-rejection as these cells are “non-self”, hiPSC may be

prone to auto-rejection if there still is active autoimmunity
against one’s own beta cells.

These limitations have led to the development of
immunoprotective macro-encapsulation devices to contain
the cells within the device and to protect them from the im-
mune system after transplantation [54]. Major issues regard-
ing mass transport of nutrients and oxygen, insulin secretory
dynamics and foreign body reactions to biomaterials remain to
be solved (Fig. 1). One option is to use an “open” device that
allows ingrowth of vessels into the cells in the device. While
vascularization will improve oxygen availability and insulin
secretory dynamics, immunosuppression is necessary and
there is the potential drawback of hPSC-derived cells leaving
the device. This strategy using an “open” device is currently
being tested in patients with T1D with labile glycemic control
[51].

Several other immunoprotective encapsulation strategies
have been developed [55]. The BETA-O2 macroencapsulation
device is immunoprotective and contains a special oxygen
chamber. Liquid oxygen is administered daily through a sub-
cutaneous port which allows for oxygenation of transplanted
cells. In a proof-of-concept case study, it was shown that human
islets within the device, which was implanted at a preperitoneal
site, remained viable for approximately 10 months and retained
some insulin secretory capacity without the use of immunosup-
pressive agents [56••]. In a subsequent study using the BETA-
O2 device that was implanted in a subcutaneous site in four
patients with T1D, human islets survived but little insulin se-
cretory capacity was present and there was a profound foreign
body reaction [57]. All together, these data indicate that in the
fields of hPSC-derived beta-like cell and immunoprotective
encapsulation strategies, many exploratory clinical studies still
need to be done.

Medical Therapy Versus Beta Cell
Replacement Strategies

Both beta-cell replacement strategies and a combination of
glucose sensor and insulin pump technologies offer important
advances in the treatment of T1D. But there is a paucity of
comparative studies between optimal medical therapy and
beta-cell replacement strategies. Thompson et al. [58••] com-
pared islet transplantation with intensive medical therapy in
patients with complicated T1D. In this prospective cohort
study, the patients on the waiting list for islet transplantation
functioned as the control group. These patients received inten-
sive medical care to manage their diabetes. HbA1c was
51 mmol/mol Hb (6.7%) in the transplanted patients versus
62 mmol/mol Hb (7.8%) in the control patients. It was dem-
onstrated that the patients in the control group had a greater
decline in kidney function, and more progressive retinopathy.
Although this study shows that beta-cell transplantation
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allows for better glycemic control than optimal medical ther-
apy, closed-loop devices were not used at the time of the study.
No other direct comparative studies exist, not even between
different strategies within the allogeneic transplantation field
(i.e., pancreas versus islet transplantation). It should also be
noted that the patients included in beta-cell replacement stud-
ies and in studies using novel glucose sensor and pump strat-
egies have very different characteristics. In islet transplanta-
tion studies, mostly patients with impaired hypoglycemia
awareness and recurrent (severe) hypoglycemic episodes are
included, while these patients are often excluded in studies
testing novel glucose sensors and insulin pumps.

Conclusion

T1D is currently treated with exogenous insulin guided by
glucose measurements. This strategy is lifesaving but does
not prevent hypoglycemia, long-term complications, and pre-
mature mortality [3, 4]. Currently, beta-cell replacement ther-
apies and sensor-augmented insulin pump therapy are already
used in clinical practice. Each strategy has its advantages and
disadvantages. And while to some it may appear there is a race
for optimal glycemic control between these two strategies,
thus far, there are two races, each on a different track.
Studies with beta cell transplantation have focused on patients
with complicated T1D and severe hypoglycemic events, while
studies with sensor-augmented pump therapy have largely fo-
cused on younger patients with fewer complications.

In the second stage of the race for optimal glycemic con-
trol, novel treatment strategies will be explored, such as the
artificial pancreas and hPSC-derived insulin-producing cells.
It is very likely that the artificial pancreas will reach a larger
patient population sooner than hPSC-derived cell transplanta-
tion. A major obstacle for achieving perfect glycemic control
using the artificial pancreas is the delay in action of subcuta-
neously administered insulin and the lag time between blood
glucose concentration and display to the patient using CGM
devices that measure glucose in the interstitial fluid (Fig. 1).
This will prevent the artificial pancreas from completely reg-
ulating glucose levels during unexpected glucose variation,
for example after a meal. Real-time glycemic control can only
be achieved by direct sensing of blood glucose concentration
that is immediately coupled to insulin secretion (and perhaps
glucagon) into the blood stream (Fig. 1). This can now only be
achieved by fully functional beta cells that are vascularized.
Therefore, current immunoprotective micro- and macro-
encapsulation strategies preclude optimal insulin dynamics,
but may still have relevant beneficial effects for glycemic
control in patients. Looking further ahead in the future, gene
editing strategies creating donor cells that are tolerated by the
immune system, and other immuno-evasive strategies that

allow vascularization, would provide an optimal solution
[59, 60].

Thus, in the interest of patients with diabetes mellitus, the
two races to reach optimal glycemic control at a minimal risk
and burden for patients should continue at full speed. While
developments on the artificial pancreas are likely to lessen the
burden of diabetes and improve quality of life in the short
term, novel beta-cell replacement strategies should be devel-
oped with the ultimate aim of completely normalizing glyce-
mic control in the future.
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