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Abstract
In this note we consider the nonlinear heat equation associated to the fractional
Hermite operator Hβ = (−� + |x |2)β , 0 < β ≤ 1. We show the local solvability
of the related Cauchy problem in the framework of modulation spaces. The result
is obtained by combining tools from microlocal and time-frequency analysis. As a
byproduct, we compute theGabormatrix of pseudodifferential operators with symbols
in the Hörmander class Sm0,0, m ∈ R.
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1 Introduction and results

In this note we study the Cauchy problem for the nonlinear heat equation associated
to the fractional Hermite operator

{
∂t u + Hβu = F(u)

u(0, x) = u0(x)
(1)

with t ∈ [0, T ], T > 0, x ∈ R
d , Hβ = (−� + |x |2)β , 0 < β ≤ 1, � = ∂2x1 + . . . ∂2xd ,

d ≥ 1. F is a scalar function on C, with F(0) = 0. The solution u(t, x) is a complex
valued function of (t, x) ∈ R × R

d . We will consider the case in which F is a real
analytic function with an entire extension.
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Well-posedness of the heat equation has been studied by many authors, see e.g.
[10,21] and the many contributions by Wong, for instance [31,32], see also [6]. In
particular, heat equations associated to fractional Hermite operators were recently
studied in [3], for related results see also [5]. Hermite multipliers are considered in
[4], see also the textbook [25]. Recently the study of Cauchy problems in modulation
spaces have been pursued bymany authors, see the pioneering works [1,2]. Many deep
results in this framework for nonlinear evolution equations have been obtained by B.
Wang et al. in [27,28] and are also available in the textbook [30].

Following the spirit of [8,12], we shall prove the local existence and uniqueness
of the solutions in modulation spaces to the Cauchy problem (1). The key arguments
come from both microlocal and time-frequency analysis. In fact, we shall rely on the
results related to spectral theory of globally elliptic operators developed by Helffer
[20] to understand the properties of the fractional Hermite operators Hβ . Namely, they
are pseudodifferential operators with Weyl symbols aβ positive globally elliptic and

in the Shubin classes �
2β
1 (see Definition 2.2 and the estimate (13) below).

The spectral decomposition of the Hermite operator H = −� + |x |2 is given by
H = ∑∞

k=0(2k + d)Pk , where Pk is the orthogonal projection of L2(Rd) onto the
eigenspace corresponding to the eigenvalue (2k+d). Namely, the range of the operator
Pk is the space spanned by the Hermite functions �α in R

d , with α multi-index in N
d ,

such that |α| = k. The solution to the homogeneous Cauchy problem (1) (i.e., F = 0)
can be formally written in terms of the heat semigroup related to Hβ

e−t Hβ =
+∞∑
k=0

e−t(2k+d)β Pk

as u(t, x) = Kβ(t)u0 = e−t Hβ
u0(x), t ≥ 0, x ∈ R

d .

We shall prove that the propagator Kβ(t) = e−t Hβ
can be represented as a pseudo-

differential operatorwithWeyl symbol in the Shubin class�0
1 , with related semi-norms

uniformly bounded with respect to the time variable t ∈ [0, T ], for any fixed T > 0.
After that we shall leave the microlocal techniques to come to time-frequency

analysis. We perform a general study concerning the boundedness of Shubin τ -
pseudodifferential operators with symbols in the Hörmander classes Sm0,0 (for τ = 1/2
we recapture the Weyl case). The outcomes are contained in Theorem 2.4 below (see
also the subsequent corollary and remark).

The main tool here is to study the decay of their related Gabor matrix representa-
tions, which we shall also control by the semi-norms in Sm0,0. We think that such result
is valuable in and of itself.

We then use the special case of Weyl operators to study (1). The integral version of
the problem (1) has the form

u(t, ·) = Kβ(t)u0 + BF(u), (2)

where

B =
∫ t

0
Kβ(t − τ) · dτ. (3)
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To show that the Cauchy Problem (1) has a unique solution, we use a variant of the
contraction mapping theorem (see Proposition 3.3 below).

As already mentioned, the function spaces used for our results are weighted mod-
ulation spaces Mp,q

w , 1 ≤ p, q ≤ ∞, introduced by H. Feichtinger in 1983 [14] (then
extended to 0 < p, q ≤ ∞ in [15]). We refer the reader to Sect. 2 for their definitions
and main properties.

The local well-posedness results for modulation spaces read as follows:

Theorem 1.1 Assume s ≥ 0, 1 ≤ p < ∞, u0 ∈ Mp,1
s (Rd) and

F(z) =
∞∑

j,k=0

c j,k z
j z̄k,

an entire real-analytic function on C with F(0) = 0. For every R > 0, there exists
T > 0 such that for every u0 in the ball BR of center 0 and radius R in M p,1

s (Rd)

there exists a unique solution u ∈ C0([0, T ]; Mp,1
s (Rd)) to (1). Furthermore, the map

u0 �→ u from BR to C0([0, T ]; Mp,1
s (Rd)) is Lipschitz continuous.

For p = ∞ the result still holds if we replace M∞,1
s (Rd)with the spaceM∞,1

s (Rd),
the closure of the Schwartz class in the M∞,1

s -norm.

We actually do not know whether it is possible to obtain better results concerning
the nonlinearity F(u) = λ|u|2ku, k ∈ N, we refer to the work [5] for a discussion on
the topic.

The tools employed follow the pattern of similar Cauchy problems studied for other
equations such as the Schrödinger, wave and Klein-Gordon equations [1,2,8,12].

To compare with other results in the literature, we observe that also in [31,32],
and in [6] the authors use Wigner distributions and pseudodifferential operators as
tools for their main results. In the latter paper the author gives a formula for the one-
parameter strongly continuous semigroup e−t Hβ

in terms of the Weyl transforms of a
L2-orthonormal basis made of generalized Hermite eigenfunctions. This is then used
to obtain L2-estimates for the solution of the related initial value problem with data
in L p spaces, 1 ≤ p ≤ ∞. Here the approach uses similar ideas of joining microlocal
and time-frequency analysis tools, but the spaces employed are different: we use
modulation spaces, which are the most common ones in time-frequency analysis.

2 Function spaces and preliminaries

We denote by v a continuous, positive, submultiplicative weight function on R
d , i.e.,

v(z1 + z2) ≤ v(z1)v(z2), for all z1, z2 ∈ R
d . We say that w ∈ Mv(R

d) if w is a
positive, continuous weight function on R

d v-moderate: w(z1 + z2) ≤ Cv(z1)w(z2)
for all z1, z2 ∈ R

d (or for all z1, z2 ∈ Z
d ). We will mainly work with polynomial

weights of the type

vs(z) = 〈z〉s = (1 + |z|2)s/2, s ∈ R, z ∈ R
d (orZ

d). (4)
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Observe that, for s < 0, vs is v|s|-moderate. Moreover, we limit to weights w with at
most polynomial growth, that is there exists C > 0, s > 0 such that

w(z) ≤ C〈z〉s, z ∈ R
2d . (5)

We define (w1 ⊗ w2)(x, ξ) := w1(x)w2(ξ), for w1, w2 weights on R
d .

The main features of time-frequency analysis are Tx and Mξ , the so-called trans-
lation and modulation operators, defined by Txg(y) = g(y − x) and Mξ g(y) =
e2π iξ yg(y). Let g ∈ S(Rd) be a non-zero window function in the Schwartz class
and consider the short-time Fourier transform (STFT) Vg f of a function/tempered
distribution f in S ′(Rd) with respect to the the window g:

Vg f (x, ξ) = 〈 f , MξTxg〉 =
∫

e−2π iξ y f (y)g(y − x) dy,

i.e., the Fourier transform F applied to f Tx g.
For z = (z1, z2) ∈ R

2d , we call time-frequency shifts the composition

π(z) = Mz2Tz1 .

Modulation Spaces. For 1 ≤ p, q ≤ ∞ such spaces were introduced by H.
Feichtinger in [14] (see also their characterization in [13]), then extended to 0 <

p, q ≤ ∞ by Y.V. Galperin and S. Samarah in [15].

Definition 2.1 Fix a non-zero window g ∈ S(Rd), a weight w ∈ Mv and 0 < p, q ≤
∞. Themodulation spaceMp,q

w (Rd) consists of all tempered distributions f ∈ S ′(Rd)

such that the (quasi-)norm

‖ f ‖Mp,q
w

= ‖Vg f ‖L p,q
w

=
(∫

Rd

(∫
Rd

|Vg f (x, ξ)|pw(x, ξ)pdx

) q
p

dξ

) 1
q

(6)

(with obvious changes with p = ∞ or q = ∞) is finite.

For 1 ≤ p, q ≤ ∞ they are Banach spaces, whose norm does not depend on the
window g, in the sense that different window functions in S(Rd) yield equivalent
norms. Moreover, the window class S(Rd) can be extended to the modulation space
M1,1

v (Rd) (so-called Feichtinger algebra).
For shortness, we write Mp

w(Rd) in place of Mp,p
w (Rd), Mp,q(Rd) if w ≡ 1.

Moreover, for w(x, ξ) = (1 ⊗ vs)(x, ξ), we shall simply write, using the standard
notation [14],

Mp,q
1⊗vs

(Rd) = Mp,q
s (Rd).

In our study, we will apply Minkowski’s integral inequality to study the operator B
in (3). Such inequalities do not hold whenever the indices p < 1 or q < 1, hence we
shall limit ourselves to the cases 1 ≤ p, q ≤ ∞.
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We do not know whether the local well-posedness is still valid in the quasi-Banach
setting.

Recall that for 1 ≤ p, q ≤ ∞, w ∈ Mv and g ∈ M1
v (Rd), the norm ‖Vg f ‖L p,q

w

is an equivalent norm for Mp,q
w (Rd) [16, Thm. 11.3.7]). In other words, given any

g ∈ M1
v (Rd) and f ∈ Mp,q

w we have the norm equivalence

‖ f ‖Mp,q
w

� ‖Vg f ‖L p,q
w

. (7)

For this work we will use the inversion formula for the STFT (see [16, Proposition
11.3.2]): assume g ∈ M1

v (Rd)\{0}, f ∈ Mp,q
w (Rd), with w ∈ Mv , then

f = 1

‖g‖22

∫
R2d

Vg f (z)π(z)g dz , (8)

and the equality holds in Mp,q
w (Rd).

We also recall their inclusion relations:

Mp1,q1
w ↪→ Mp2,q2

w , if p1 ≤ p2, q1 ≤ q2. (9)

Other properties and more general definitions of modulation spaces can now be
found in textbooks [9,16].

2.1 Shubin classes and symbols of the operators Hˇ and e−tHˇ

Let us first recall the definition of Shubin classes (Shubin [24, Definition 23.1]):

Definition 2.2 Let m ∈ R. The symbol class �m
1 (R2d) consists of all complex func-

tions a ∈ C∞(R2d) such that for every α ∈ N
2d there exists a constant Cα ≥ 0

with

|∂α
z a(z)| ≤ Cα 〈z〉m−|α| , z ∈ R

2d . (10)

It immediately follows from this definition that if a ∈ �m
1 (R2n) and α ∈ N

2n then

∂α
z a ∈ �

m−|α|
1 (R2n).

Obviously �m
1 (R2n) is a complex vector space for the usual operations of addition

and multiplication by complex numbers, and we have

�−∞
1 (R2d) =

⋂
m∈R �m

1 (R2d) = S(R2d). (11)

The notion of asymptotic expansion of a symbol a ∈ �m
1 (R2d) (cf. [24], Definition

23.2) reads as follows.
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Definition 2.3 Let (a j ) j be a sequence of symbols a j ∈ �
m j
1 (R2d) such that

lim j→+∞ m j → −∞. Let a ∈ C∞(R2d). If for every integer r ≥ 2 we have

a −
r−1∑
j=0

a j ∈ �
mr
1 (R2d) (12)

where mr = max j≥r m j we will write a ∼
∑∞

j=0 a j and call this relation an asymp-
totic expansion of the symbol a.

The interest of the asymptotic expansion comes from the fact that every sequence of
symbols (a j ) j with a j ∈ �

m j
1 (R2d), the degreesm j being strictly decreasing and such

that m j → −∞ determines a symbol in some �m
1 (R2d), that symbol being unique up

to an element of S(R2d).
The symbol of the Hermite operator (or harmonic oscillator) H(z) = (|x |2 +

4π2|ξ |2) obviously belongs to �2
1(R

2d).
From [20, Theorem 1.11.1] we infer that the fractional power Hβ , 0 < β < 1, can

be written as a Weyl pseudodifferential operator having real symbol aβ in the Shubin

class �
2β
1 and positive globally elliptic. Recall that a symbol aβ is positive globally

elliptic if there exist C > 0 and R > 0 such that

aβ(z) ≥ C〈z〉, |z| ≥ R. (13)

Thanks to the properties of Hβ above, we can exploit a result by Nicola and Rodino
in [22, Theorem 4.5.1] to prove that the operator e−t Hβ

is a pseudodifferential operator
with Weyl symbol in the Shubin class �0

1, with uniform estimates with respect to
t ∈ [0, T ], for any fixed T > 0.

For this purpose, we use the above theorem in the following setting:

�(z) = 
(z) = 〈z〉, h(z) = �(z)−1
(z)−1 = 〈z〉−2;

moreover we choose the parameters l = N = 0 and J = 1. If we consider the
asymptotic expansion aβ ∼ ∑∞

0 aβ, j as in Definition 2.3, together with the ellipticity
condition aβ,0(z) � 〈z〉2β , |z| ≥ R, then Theorem 4.5.1. guarantees that the operator

e−t Hβ
is a pseudodifferential operator with Weyl symbol b(t, z) satisfying, for every

k ∈ N, T > 0, the estimate

|b(t, ·) − b0(t, ·)|k � 〈z〉−2, t ∈ [0, T ], (14)

where b0(t, z) = e−taβ,0(z), and the semi-norms | · |k , k ∈ N, are defined by

|a|k := sup
|α|+|β|≤k

|∂α
ξ ∂β

x a(x, ξ)|〈(x, ξ)〉|α|+|β|. (15)

Defining the remainder R1(t, z) := b(t, z)−b0(t, z), we infer from (14) that R1(t, ·) ∈
�−2
1 (R2d) ⊂ �0

1(R
2d) uniformly w.r.t. t on [0, T ].
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Moreover, using the ellipticity condition aβ,0(z) � 〈z〉, for |z| ≥ R, and the

property aβ,0 ∈ �
2β
1 (R2d), one easily shows by induction that there exists a constant

C > 0:

|∂α
z b0(t, z)| ≤ C〈z〉−|α|, ∀t ∈ [0, T ]

that is to say, the symbol b0(t, z) is in the Shubin class�0
1(R

2d)with uniform estimates
w.r.t. the time variable t ∈ [0, T ]. Hence, b(t, ·) = b0(t, ·)+ R1(t, ·) ∈ �0

1(R
2d), with

uniform estimate w.r.t. t ∈ [0, T ].
For applications of Shubin classes in the framework of Born-Jordan quantization

we refer to the work [7].

2.2 Gabor analysis of �-pseudodifferential operators

For τ ∈ [0, 1], f , g ∈ L2(Rd), the (cross-)τ -Wigner distribution is defined by

Wτ ( f , g)(x, ω) =
∫
Rd

e−2π iyω f (x + τ y)g(x − (1 − τ)y) dy, x, ω ∈ R
d . (16)

It can beused to define the τ -pseudodifferential operatorwith symbolσ via the formula

〈Opτ (σ ) f , g〉 = 〈σ,Wτ (g, f )〉, f , g ∈ S(Rd). (17)

For τ = 1/2we recapture theWeyl operator.Wewant to consider τ -pseudodifferential
operators with symbols σ in the Hörmander class Sm0,0,m ∈ R, consisting of functions

σ ∈ C∞(R2d) such that, for every α ∈ N
2d ,

|∂ασ (z)| ≤ Cα〈z〉m, z ∈ R
2d . (18)

The related semi-norms are denote by

|σ |N ,m := sup
|α|≤N

|∂ασ (z)|〈z〉−m . (19)

Fix g ∈ S(Rd)\{0}. We define the Gabor matrix of a linear continuous operator T
from S(Rd) to S ′(Rd), the mapping from R

2d × R
2d into C,

(z, y) �→ 〈Tπ(z)g, π(y)g〉, z, y ∈ R
2d . (20)

This is a slightly abuse of notation, since originally Gabor matrices we defined for
time-frequency shifts π(λ), with λ varying in a lattice � ⊂ R

2d . We observe that
the almost diagonalization of Gabor matrices of pseudodifferential operators with
symbols in the modulation space M∞,1(R2d) treated in [17] (and in many subsequent
papers on the topic) are valid in both the continuous and discrete case. So we adopt
this terminology in the continuous framework.
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For m = 0 we are reduced to the Hörmander class S00,0, whose Gabor matrix
characterization for Weyl operators was shown in [18, Theorem 6.1], see also [23].
Even thoughm = 0 is our case of interest, for our goal we need to control such matrix
by the semi-norms of S00,0. Moreover, for further references, we shall formulate our
result in the case of τ -pseudodifferential operators having symbols in the more general
class Sm0,0, m ∈ R.

We are going to use the following result for τ -pseudodifferential operators [11,
Lemma 4.1].

Lemma 2.1 Fix a non-zero window g ∈ S(Rd) and set �τ = Wτ (g, g) for τ ∈ [0, 1].
Then, for σ ∈ S ′ (

R
2d

)
,

∣∣〈Opτ (σ ) π (z) g, π (y) g
〉∣∣ = ∣∣V�τ σ (Tτ (z, y) , J (y − z))

∣∣ . (21)

where z = (z1, z2), y = (y1, y2) and Tτ and J are defined as follows:

Tτ (z, y) = ((1 − τ)z1 + τ y1, τ z2 + (1 − τ)y2), J (z) = (z2,−z1).

TheGabormatrix for a τ -pseudodifferential operator Opτ (σ )with symbolσ ∈ Sm0,0
enjoys the following decay.

Theorem 2.4 Fix g ∈ S(Rd)\{0}, m ∈ R, τ ∈ [0, 1]. Consider a τ -pseudodifferential
operator Opτ (σ ) with symbol σ ∈ Sm0,0. Then for every N ∈ N there exists C =
C(N ) > 0 such that

∣∣〈Opτ (σ ) π (z) g, π (y) g
〉∣∣ ≤ C |σ |2N ,m

〈Tτ (z, y)〉m
〈y − z〉2N , z, y ∈ R

2d , (22)

where the semi-norms | · |N ,m are defined in (19).

Proof Using the representation in (21) and

(1 − �λ)
Ne−2π iλJ (y−z) = 〈2π(y − z)〉2Ne−2π iλJ (y−z)

we can write

∣∣〈Opτ (σ ) π (z) g, π (y) g
〉∣∣ ≤ C

1

〈2π(y − z)〉2N

×
∣∣∣∣
∫
R2d

e−2π iλJ (y−z)(1 − �λ)
N [

σ̄ (λ)TTτ (z,y)�τ

]
dλ

∣∣∣∣
(observe that the above integral is absolutely convergent since �τ ∈ S(R2d)). Now
we estimate

(1 − �λ)
N [

σ̄ (λ)TTτ (z,y)�τ

] ≤
∑

|α|+|β|≤2N

|Cα,β ||∂ασ (λ)| |∂β�τ (λ − Tτ (z, y)))|

≤ CN |σ |2N ,m〈λ〉m〈λ − Tτ (z, y)〉−s
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for every s ≥ 0 since �τ ∈ S(R2d). Choose s = |m| + 2d + 1. Then the submul-
tiplicativity of 〈·〉|m| allows us to control from above the right-hand side of the last
inequality by

CN |σ |2N ,m〈Tτ (z, y)〉m〈λ − Tτ (z, y)〉−(2d+1).

Hence, for every N ∈ N we can find C(N ) > 0 such that (22) is satisfied. This
concludes the proof. ��

For fixed τ ∈ (0, 1) we observe that 〈Tτ (z, y)〉 � 〈z + y〉, hence the matrix decay
can be controlled by a function which does not depend on the τ -quantization. Namely,

Corollary 2.5 Fix g ∈ S(Rd)\{0}, m ∈ R, τ ∈ (0, 1). Consider a τ -pseudodifferential
operator Opτ (σ ) with symbol σ ∈ Sm0,0. Then, for every N ∈ N, there exists C =
C(τ, N ) > 0 such that

∣∣〈Opτ (σ ) π (z) g, π (y) g
〉∣∣ ≤ C |σ |2N ,m

〈z + y〉m
〈y − z〉2N , z, y ∈ R

2d . (23)

Remark 2.2 We conjecture that pseudodifferential operators in the Hörmander class
Sm0,0, m ∈ R, can be characterized via the Gabor matrix in (22), extending the case
m = 0 already shown in [18]. To be precise, we allow to write

Sm0,0 =
⋂
s≥0

M∞〈·〉m⊗〈·〉s =
⋂
s≥0

M∞,1
〈·〉m⊗〈·〉s .

Studying the Gabor matrix decay for M∞〈·〉m⊗〈·〉s and following the pattern of the proofs
as in the paper [18] one should get the result easily. Since this subject is outside the
scope of the paper, we will write the details in a separate work.

3 Local well-posedness in modulation spaces

For m = 0 the semi-norms on �0
1 are exactly the ones in (15). Observe that

�m
1 ↪→ Sm0,0 (24)

(the inclusion is continuous).
The results in the previous yields the boundedness of the Weyl operator e−t Hβ

on
modulation spaces.

Theorem 3.1 Consider 1 ≤ p, q ≤ ∞, 0 < β ≤ 1, w ∈ Mv . Then for every T > 0
there exists C = C(T ) > 0 such that

‖e−t Hβ

u0‖Mp,q
w

≤ C‖u0‖Mp,q
w

, ∀t ∈ [0, T ], u0 ∈ Mp,q
w (Rd). (25)
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Proof Consider u0 ∈ Mp,q
w (Rd). Fix g ∈ S(Rd)\{0} such that ‖g‖2 = 1. Then using

the inversion formula for u0 in (8) we can write

|Vg(e−t Hβ

u0)(y)w(y)| =
∣∣∣∣
∫
R2d

〈e−t Hβ

π(z)g, π(y)g〉Vgu0(z) dz
∣∣∣∣

≤
∫
R2d

w(y)|〈e−t Hβ

π(z)g, π(y)g〉||Vgu0(z)| dz

In the previous section we showed that e−t Hβ
is aWeyl operator with symbol b(t, ·) in

�0
1 with semi-norms uniformly bounded w.r.t. t ∈ [0, T ]. The continuous embedding

in (24) and Theorem 2.4 let us write

|〈e−t Hβ

π(z)g, π(y)g〉| ≤ C
1

〈y − z〉2N .

Since w(y) � v(y − z)w(z), and v(z) � 〈z〉s for some s > 0, we can write

|Vg(e−t Hβ

u0)(y)w(y)| ≤ C
∫
R2d

〈y − z〉sw(z)|Vgu0(z) 1

〈y − z〉2N dz

≤ C

[
1

〈·〉2N−s
∗ (|Vgu0|w)

]
(y).

Choosing N such that 2N−s > 2d+1 andusing the convolution relations L1∗L p,q ↪→
L p,q we obtain the claim. ��

Choosing p = q = 2 and recalling that, for w(x, ξ) = 〈ξ 〉s , M2
w(Rd) = Hs(Rd)

(Sobolev spaces), whereas forw(z) = 〈z〉s , z ∈ R
2d ,M2

w(Rd) = Qs (Shubin-Sobolev
spaces), cf., e.g., [9, Chapter 2], we obtain boundedness results also for these classical
spaces.

Corollary 3.2 Consider 0 < β ≤ 1, s ∈ R. For any fixed T > 0 there exists C =
C(T ) > 0 such that

‖e−t Hβ

u0‖Hs ≤ C‖u0‖Hs , ∀t ∈ [0, T ], u0 ∈ Hs(Rd). (26)

The same result holds by replacing the Sobolev space Hs with the Shubin-Sobolev
space Qs .

As already done in [12], in order to show the local existence of the solution we will
make use of the following variant of the contraction mapping theorem (cf., e.g., [26,
Proposition 1.38]).

Proposition 3.3 Let N and T be two Banach spaces. Consider a linear operator
B : N → T such that

‖B f ‖T ≤ C0‖ f ‖N , ∀ f ∈ N , (27)
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for some C0 > 0, and suppose to have a nonlinear operator F : T → N with
F(0) = 0 and Lipschitz bounds

‖F(u) − F(v)‖N ≤ 1

2C0
‖u − v‖T , (28)

for all u, v in the ball Bμ := {u ∈ T : ‖u‖T ≤ μ}, for some μ > 0. Then, for all
ulin ∈ Bμ/2 there exists a unique solution u ∈ Bμ to the equation u = ulin + BF(u),

with the map ulin �→ u Lipschitz continuous with constant at most 2.

Proof of Theorem 1.1 We apply Theorem 3.1 with T = 1, q = 1 and w(x, ξ) = 〈ξ 〉s .
For every 1 ≤ p < ∞, the operator Kβ(t) in (3) is a bounded operator on Mp,1

s (Rd),
and there exists a C > 0 such that

‖Kβ(t)u0‖Mp,1
s

≤ C‖u0‖Mp,1
s

, t ∈ [0, 1]. (29)

Notice that such result provides the uniformity of the constant C,when t varies in [0, 1].
Now the result followsbyProposition 3.3,withT = N = C0([0, T ]; Mp,1

s ), the linear
operator B in (3), where 0 < T ≤ 1 will be chosen later on. Here ulin := Kβ(t)u0
is in the ball Bμ/2 ⊂ T by (29), if μ is sufficiently large, depending on the radius R

in Mp,1
s (Rd) in the assumptions. Using Minkowski’s integral inequality and (29), we

obtain (27). Namely,

‖Bu‖
Mp,1

s
≤ TC‖u‖

M
p,1
s

.

The proof of Condition (28) can be found in [8, proof of Theorem 4.1]. Hence, by
choosing T small enough we prove the existence, and also the uniqueness among the
solution in T with norm O(R) (with R being the radius of the ball BR , centred in 0, in
Mp,1

s (Rd)). Standard continuity arguments allow to eliminate the last constraint (see,
e.g., [26, Proposition 3.8]). For p = ∞, by repeating the argument above, one can
obtain well-posedness when the initial datum is in

M∞,1
s (Rd) := SM∞,1

s
(Rd).

��
Observe that similar results were obtained in [21, Theorem 1.1].
We conclude this note by addressing the reader to open problems in this field.
First, it is still not clear whether better results can be obtained when considering

the nonlinearity

F(u) = Fk(u) = λ|u|2ku = λuk+1ūk, λ ∈ C, k ∈ N. (30)

In fact, this was the case for the wave and vibrating place equation, cf. [8,12], where
more general modulation spaces were considered.
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Moreover, another open question is the well-posedness of the Cauchy problem (1)
with initial datum u0 ∈ Mp,q

s (Rd), 0 < p ≤ ∞, 0 < q ≤ 1. We conjecture that the
result holds true as well, but the techniques employed so far do not apply in this case.
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