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Abstract We present a construction of algebras of generalized functions of Colomb-
eau-type which, instead of asymptotic estimates with respect to a regularization
parameter, employs only topological estimates on certain spaces of kernels for its
definition.
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1 Introduction

Colombeau algebras, as introduced by Colombeau [1,2], today represent the most
widely studied approach to embedding the space of Schwartz distributions into an
algebra of generalized functions such that the product of smooth functions as well as
partial derivatives of distributions are preserved. These algebras have found numer-
ous applications in situations involving singular objects, differentiation and nonlinear
operations (see, e.g., [9,12,15]).

All constructions of Colombeau algebras so far incorporate certain asymptotic esti-
mates for the definition of the spaces ofmoderate and negligible functions, the quotient
of which constitutes the algebra. There is a certain degree of freedom in the asymp-
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totic scale employed for these estimates; while commonly a polynomial scale is used,
generalizations in several directions are possible. For an overview we refer to works
on asymptotic scales [3,7], (C, E,P)-algebras [5], sequence spaces with exponent
weights [6] and asymptotic gauges [8].

In this article we will present an algebra of generalized functions which instead of
asymptotic estimates employs only topological estimates on certain spaces of kernels
for its definition. This is a direct generalization of the usual seminorm estimates valid
for distributions.

We will first develop the most general setting in the local scalar case, namely that of
diffeomorphism invariant full Colombeau algebras.Wewill then derive a simpler vari-
ant, similar to Colombeau’s elementary algebra. Finally, we give canonical mappings
into the most important Colombeau algebras, which points to a certain universality of
the construction offered here.

2 Preliminaries

N andN0 denote the sets of positive and non-negative integers, respectively, andR
+ the

set of nonnegative real numbers. Concerning distribution theory we use the notation
and terminology of L. Schwartz [18].

Given any subsets K , L ⊆ R
n (with n ∈ N) the relation K � L means that K is

compact and contained in the interior L◦ of L .
Let � ⊆ R

n be open. C∞(�) is the space of complex-valued smooth functions on
�. For any K , L � �, m, l ∈ N0 and any bounded subset B ⊆ C∞(�) we set

‖ f ‖K ,m := sup
x∈K ,|α|≤m

∣
∣∂α f (x)

∣
∣ ( f ∈ C∞(�)),

‖�ϕ‖K ,m;L ,l := sup
x∈K ,|α|≤m
y∈L ,|β|≤l

∣
∣
∣∂

α
x ∂β

y �ϕ(x)(y)
∣
∣
∣ ( �ϕ ∈ C∞(�,D(�))),

‖�ϕ‖K ,m;B := sup
x∈K ,|α|≤m

f ∈B

∣
∣〈 f (y), ∂α

x �ϕ(x)(y)〉∣∣ ( �ϕ ∈ C∞(�, E ′(�))).

Note that ‖·‖K ,m , ‖·‖K ,m;L ,l and ‖·‖K ,m;B are continuous seminorms on the respective
spaces.

We define �δ ∈ C∞(�, E ′(�)) by �δ(x) := δx for x ∈ �, where δx is the delta
distribution at x .

DL(�) is the space of test functions on�with support in L . For two locally convex
spaces E and F , L(E, F) denotes the space of linear continuous mappings from E
to F , endowed with the topology of bounded convergence. By Ux (�) we denote the
filter base of open neighborhoods of a point x in �, and by UK (�) the filter base of
open neighborhoods of K . By csn(E) we denote the set of continuous seminorms of a
locally convex space E . Br (x) := {y ∈ R

n : ‖y−x‖ < r} is the openEuclidean ball of
radius r > 0 at x ∈ R

n , and for any subset K ⊆ R
n we define Br (K ) := ⋃

x∈K Br (x).
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Our notion of smooth functions between arbitrary locally convex spaces is that of
convenient calculus [11]. In particular, dk f denotes the k-th differential of a smooth
mapping f .

3 Construction of the algebra

Throughout this section let � ⊆ R
n be a fixed open set. Let C be the category of

locally convex spaces with smooth mappings in the sense of convenient calculus as
morphisms.

Definition 1 Consider C∞(−,D(�)) and C∞(−) as sheaves with values in C. We
define the basic space of nonlinear generalized functions on � to be the set of sheaf
homomorphisms

B(�) := Hom(C∞(−,D(�)),C∞(−)).

Hence, an element of B(�) is given by a family (RU )U of mappings

RU ∈ C∞(C∞(U,D(�)),C∞(U )) (U ⊆ � open)

satisfying RU ( �ϕ)|V = RV ( �ϕ|V ) for all open subsets V ⊆ U and �ϕ ∈ C∞(U,D(�)).
We will casually write R in place of RU .

Remark 2 The basic space B(�) can be identified with the set of all mappings R ∈
C∞(C∞(�,D(�)),C∞(�)) such that for any open subset U ⊆ � and �ϕ, �ψ ∈
C∞(�,D(�)) the equality �ϕ|U = �ψ |U implies R( �ϕ)|U = R( �ψ)|U (cf. [10]).

B(�) is a C∞(�)-module with multiplication

( f · R)U ( �ϕ) = f |U · RU ( �ϕ)

for R ∈ B(�), f ∈ C∞(�), U ⊆ � open and �ϕ ∈ C∞(U,D(�)). Moreover, it is an
associative commutative algebra with product (R · S)U ( �ϕ) := RU ( �ϕ) · SU ( �ϕ).

A distribution u ∈ D′(�) defines a sheafmorphism fromC∞(−,D(�)) toC∞(−).
In fact, for U ⊆ � open and �ϕ ∈ C∞(U,D(�)) the function x �→ 〈u, ϕ(x)〉 is an
element of C∞(U ) (see [18, Chap. IV, §1, Th. II, p. 105] or [20, Theorem 40.2,
p. 416]). More abstractly, this can be seen using the theory of topological tensor
products [16,17,20] as follows:

C∞(U,D(�)) ∼= C∞(U ) ⊗̂ D(�) ∼= L(D′(�),C∞(U )),

whereC∞(U )⊗̂D(�) denotes the completed projective tensor product ofC∞(U ) and
D(�). The assignment �ϕ �→ 〈u, �ϕ〉 is smooth, being linear and continuous [11, 1.3,
p. 9]. Hence, we have the following embeddings of distributions and smooth functions
into B(�):
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Definition 3 We define ι : D′(�) → B(�) and σ : C∞(�) → B(�) by

(ιu)( �ϕ)(x) := 〈u, �ϕ(x)〉 (u ∈ D′(�))

(σ f )( �ϕ)(x) := f (x) ( f ∈ C∞(�))

for �ϕ ∈ C∞(U,D(�)) with U ⊆ � open and x ∈ U .

Clearly ι is linear and σ is an algebra homomorphism. Directional derivatives onB(�)

then are defined as follows:

Definition 4 Let X ∈ C∞(�, R
n) be a smooth vector field and R ∈ B(�). We define

derivatives D̃X : B(�) → B(�) and D̂X : B(�) → B(�) by

(D̃X R)( �ϕ) := DX (RU ( �ϕ))

(D̂X R)( �ϕ) := − dRU ( �ϕ)(DSK
X �ϕ) + DX (RU ( �ϕ))

for �ϕ ∈ C∞(U,D(�)) with U ⊆ � open, where we set

DSK
X �ϕ := DX �ϕ + Dw

X ◦ �ϕ.

Here, (DX �ϕ)(x) is the directional derivative of �ϕ at x in direction X (x) and (Dω
X ◦ �ϕ)(x)

is the Lie derivative of �ϕ(x) considered as a differential form, given by Dω
X ( �ϕ(x)) =

DX ( �ϕ(x)) + (Div X)(x) · �ϕ(x).
Note that both D̃X and D̂X satisfy the Leibniz rule. We have

D̃x ◦ σ = σ ◦ D̃X , D̂X ◦ σ = σ ◦ D̂X , D̂X ◦ ι = ι ◦ D̂X .

While D̃X is C∞(�)-linear in X , D̂X is only C-linear in X . We refer to [13,14] for a
discussion of the role of these derivatives in differential geometry.

Definition 5 For k ∈ N0 we set

Pk := R
+[y0, . . . , yk],

Ik := {λ ∈ R
+[y0, . . . , yk, z0, . . . , zk] | λ(y0, . . . , yk, 0, . . . , 0) = 0}.

More explicitly, Pk is the commutative semiring of polynomials in the k + 1 com-
muting variables y0, . . . , yk with coefficients in R

+. Similarly, Ik is the commutative
semiring in the 2(k + 1) commuting variables y0, . . . , yk, z0, . . . , zk with coefficients
in R

+ and such that, if λ ∈ Ik is given by the finite sum

λ =
∑

α,β∈Nk+1
0

λαβ y
αzβ,

then λα0 = 0 for all α. Note that Pk is a subsemiring of Pk+1 and Ik a subsemiring
of Ik+1. Furthermore, Ik is an ideal in Pk if Pk is considered as a subsemiring of
R

+[y0, . . . , yk, z0, . . . , zk]. Given λ ∈ Pk and yi ≤ y′
i for i = 0 . . . k we have
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λ(y) ≤ λ(y′). For λ,μ ∈ Pk we write λ ≤ μ if λ(y) ≤ μ(y) for all y ∈ (R+)k+1,
and similarly for λ,μ ∈ Ik .

We can now formulate the following definitions of moderateness and negligibility,
not involving any asymptotic estimates:

Definition 6 An element R ∈ B(�) is called moderate if

(∀x ∈ �) (∃U ∈ Ux (�)) (∀K , L � U ) (∀m, k ∈ N0)

(∃c, l ∈ N0) (∃λ ∈ Pk) (∀�ϕ0, . . . , �ϕk ∈ C∞(U,DL(U ))) :
‖dk R( �ϕ0)( �ϕ1, . . . , �ϕk)‖K ,m ≤ λ(‖�ϕ0‖K ,c;L ,l , . . . , ‖�ϕk‖K ,c;L ,l).

The subset of all moderate elements of B(�) is denoted by M(�).

Definition 7 An element R ∈ B(�) is called negligible if

(∀x ∈ �) (∃U ∈ Ux (�)) (∀K , L � U ) (∀m, k ∈ N0) (∃c, l ∈ N0)

(∃λ ∈ Ik) (∃B ⊆ C∞(�) bounded) (∀�ϕ0, . . . , �ϕk ∈ C∞(U,DL(U ))) :
‖dk R( �ϕ0)( �ϕ1, . . . , �ϕk)‖K ,m

≤ λ(‖�ϕ0‖K ,c;L ,l , . . . , ‖�ϕk‖K ,c;L ,l , ‖�ϕ0 − �δ‖K ,c;B, ‖�ϕ1‖K ,c;B, . . . , ‖�ϕk‖K ,c;B).

The subset of all negligible elements of B(�) is denoted by N (�).

It is worthwile to discuss possible simplifications of these definitions, which at this
stage should be considered more as a proof of concept than as the definite form they
should have. First, we note that we cannot replace (∀x ∈ �) (∃U ∈ Ux (�)) (∀K , L �
U ) by (∀K , L � �). In fact, in the second case K and L can be distant from each
other, while in the first case it suffices to control the situation where K and L are close
to each other. However, the following result shows that we can always assume K � L
and that the �ϕ0, . . . , �ϕk are given merely on an arbitrary open neighborhood of K , i.e.,
as elements of the direct limit C∞(K ,DL(�)) := lim−→V∈UK (�)

C∞(V,DL(�)):

Proposition 8 Let R ∈ B(�). Then R is moderate if and only if

(∀x ∈ �) (∃U ∈ Ux (�)) (∀K , L � U : K � L) (∀m, k ∈ N0)

(∃c, l ∈ N0) (∃λ ∈ Pk) (∀�ϕ0, . . . , �ϕk ∈ C∞(K ,DL(U ))) :
‖dk R( �ϕ0)( �ϕ1, . . . , �ϕk)‖K ,m ≤ λ(‖�ϕ0‖K ,c;L ,l , . . . , ‖�ϕk‖K ,c;L ,l).

Similarly, R is negligible if and only if

(∀x ∈ �) (∃U ∈ Ux (�)) (∀K , L � U : K � L) (∀m, k ∈ N0) (∃c, l ∈ N0)

(∃λ ∈ Ik) (∃B ⊆ C∞(U ) bounded) (∀�ϕ0, . . . , �ϕk ∈ C∞(K ,DL(U ))) :
‖dk R( �ϕ0)( �ϕ1, . . . , �ϕk)‖K ,m

≤ λ(‖�ϕ0‖K ,c;L ,l , . . . , ‖�ϕk‖K ,c;L ,l , ‖�ϕ0 − �δ‖K ,c;B, ‖�ϕ1‖K ,c;B, . . . , ‖�ϕk‖K ,c;B).
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Proof Obviously each of these conditions is weaker than the corresponding one of
Definition 6 or Definition 7.

Suppose we are given R ∈ B(�) such that the condition stated for moderate-
ness holds. Given x ∈ � there hence exists some U ∈ Ux (�). Now given arbitrary
K , L � U we choose a set L ′ � U such that K ∪ L � L ′. Fixing m, k ∈ N0
for the moderateness test, for (K , L ′) we hence obtain c, l ∈ N0 and λ ∈ Pk .
Now fix some �ϕ0, . . . , �ϕk ∈ C∞(U,DL(U )); each of those represents an element
of C∞(K ,DL ′(U )), whence we have the estimate

‖dk R( �ϕ0)( �ϕ1, . . . , �ϕk)‖K ,m ≤ λ(‖�ϕ0‖K ,c;L ′,l , . . . , ‖�ϕk‖K ,c;L ′,l)

= λ(‖�ϕ0‖K ,c;L ,l , . . . , ‖�ϕk‖K ,c;L ,l)

where the last equality follows because the �ϕ0, . . . , �ϕk take values in DL(U ). This
shows that R is moderate.

For the case of negligibility we proceed similarly until we obtain c, l ∈ N0, λ ∈ Ik
and B ⊆ C∞(U ). Let χ ∈ D(U ) be such that χ ≡ 1 on a neighborhood of L ′ and
set B ′ := {χ f | f ∈ B} ⊆ C∞(�), which is bounded. For any �ϕ0, . . . , �ϕk we then
obtain

‖dk R( �ϕ0)( �ϕ1, . . . , �ϕk)‖K ,m

≤ λ(‖�ϕ0‖K ,c;L ′,l , . . . , ‖�ϕk‖K ,c;L ′,l , ‖�ϕ0 − �δ‖K ,c;B, ‖�ϕ1‖K ,c;B, . . . , ‖�ϕk‖K ,c;B)

= λ(‖�ϕ0‖K ,c;L ,l , . . . , ‖�ϕk‖K ,c;L ,l , ‖�ϕ0 − �δ‖K ,c;B′ , ‖�ϕ1‖K ,c;B′ , . . . , ‖�ϕk‖K ,c;B′)

which proves negligibility of R. ��
If the test of Definition 6, Definition 7 or Definition 8 holds on someU then clearly

it also holds on any open subset ofU . The following characterization of moderateness
and negligiblity is obtained by applying polarization identities to the differentials of
R:

Lemma 9 Let R ∈ B(�).

(i) R is moderate if and only if

(∀x ∈ �) (∃U ∈ Ux (�)) (∀K , L � U ) (∀m, k ∈ N0)

(∃c, l ∈ N0) (∃λ ∈ Pmin(1,k)) (∀�ϕ, �ψ ∈ C∞(U,DL(U ))) :

‖dk R( �ϕ)( �ψ, . . . , �ψ)‖K ,m ≤
{

λ(‖�ϕ‖K ,c;L ,l) if k = 0,

λ(‖�ϕ‖K ,c;L ,l , ‖ �ψ‖K ,c;L ,l) if k ≥ 1.

(ii) R is negligible if and only if

(∀x ∈ �) (∃U ∈ Ux (�)) (∀K , L � U ) (∀m, k ∈ N0) (∃c, l ∈ N0)

(∃λ ∈ Imin(1,k)) (∃B ⊆ C∞(�) bounded) (∀�ϕ, �ψ ∈ C∞(U,DL(U ))) :
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‖dk R( �ϕ)( �ψ, . . . , �ψ)‖K ,m

≤
{

λ(‖�ϕ‖K ,c;L ,l , ‖�ϕ − �δ‖K ,c;B) if k = 0,

λ(‖�ϕ‖K ,c;L ,l , ‖ �ψ‖K ,c;L ,l , ‖�ϕ − �δ‖K ,c;B, ‖ �ψ‖K ,c;B) if k ≥ 1.

Proof We assume k ≥ 1, as for k = 0 the statements are identical. (i) “⇒”: One
obtains λ ∈ Pk such that

‖dk R( �ϕ)( �ψ, . . . , �ψ)‖K ,m ≤ λ(‖�ϕ‖K ,c;L ,l , ‖ �ψ‖K ,c;L ,l , . . . , ‖ �ψ‖K ,c;L ,l)

= λ′(‖�ϕ‖K ,c;L ,l , ‖ �ψ‖K ,c;L ,l)

with λ′ ∈ P1 given by λ′(y0, y1) = λ(y0, y1, . . . , y1).
“⇐”: One obtains λ ∈ P1.We then use the polarization identity [19, eq. (7), p. 471]

dk R( �ϕ0)( �ϕ1, . . . , �ϕk) = 1

n!
k

∑

a=1

(−1)k−a
∑

J⊆{1...k}
|J |=a

�∗(dk R( �ϕ0))(SJ )

where SJ := ∑

i∈J �ϕi and we have set �∗(dk R( �ϕ0))( �ψ) = dk R( �ϕ0)( �ψ, . . . , �ψ).
Hence,

‖dk R( �ϕ0)( �ϕ1, . . . , �ϕk)‖K ,m ≤ 1

n!
k

∑

a=1

∑

|J |=a

‖�∗(dk R( �ϕ0))(SJ )‖K ,m

≤ 1

n!
k

∑

a=1

∑

|J |=a

λ(‖�ϕ0‖K ,c;L ,l , ‖SJ‖K ,c;L ,l)

≤ 1

n!
k

∑

a=1

∑

|J |=a

λ(‖�ϕ0‖K ,c;L ,l ,
∑

i∈J

‖�ϕi‖K ,c;L ,l)

= λ′(‖�ϕ0‖K ,c;L ,l , . . . , ‖�ϕk‖K ,c;L ,l)

with λ′ ∈ Pk given by

λ′(y0, . . . , yk) = 1

n!
k

∑

a=1

∑

|J |=a

λ(y0,
∑

i∈J

yi ).

(ii) “⇒”: We have λ ∈ Ik such that

‖dk R( �ϕ)( �ψ, . . . , �ψ)‖K ,m ≤ λ(‖�ϕ‖K ,c;L ,l , ‖ �ψ‖K ,c;L ,l , . . . , ‖ �ψ‖K ,c;L ,l ,

‖�ϕ − �δ‖K ,c;B, ‖ �ψ‖K ,c;B , . . . , ‖ �ψ‖K ,c;B)

= λ′(‖�ϕ‖K ,c;L;l , ‖ �ψ‖K ,c;L ,l , ‖�ϕ − �δ‖K ,c;B, ‖ �ψ‖K ,c;B)

with λ′ ∈ Ik given by
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λ′(y0, y1, z0, z1) = λ(y0, y1, . . . , y1, z0, z1, . . . , z1).

“⇐”: We obtain λ ∈ I1 such that, as above,

‖dk R( �ϕ0)( �ϕ1, . . . , �ϕk)‖K ,m

≤ 1

n!
k

∑

a=1

∑

|J |=a

λ(‖�ϕ0‖K ,c;L ,l , ‖SJ‖K ,c;L ,l , ‖�ϕ0 − �δ‖K ,c;B, ‖SJ‖K ,c;B)

≤ 1

n!
k

∑

a=1

∑

|J |=a

λ(‖�ϕ0‖K ,c;L ,l ,
∑

i∈J

‖�ϕi‖K ,c;L ,l , ‖�ϕ0 − �δ‖K ,c;B,
∑

i∈J

‖�ϕi‖K ,c;B)

= λ′(‖�ϕ0‖K ,c;L ,l , . . . , ‖�ϕk‖K ,c;L ,l , ‖�ϕ0 − �δ‖K ,c;B, ‖�ϕ1‖K ,c;B, . . . , ‖�ϕk‖K ,c;B)

with λ′ ∈ Ik given by

λ′(y0, . . . , yk, z0, . . . , zk) = 1

n!
k

∑

a=1

∑

|J |=a

λ

(

y0,
∑

i∈J

yi , z0,
∑

i∈J

zi

)

.

��
Note that the polarization identities could be applied also in the formulation of Propo-
sition 8.

Proposition 10 N (�) ⊆ M(�).

Proof Let R ∈ N (�) and fix x ∈ � for the moderateness test. By negligibility of R
there exists U ∈ Ux (�) as in Definition 7. Let K , L � U and m, k ∈ N0 be arbitrary.
Then there exist c, l, λ and B such that the estimate of Definition 7 holds. We know
that λ ∈ Ik is given by a finite sum

λ(y0, . . . , yk, z0, . . . , zk) =
∑

α,β

λαβ y
αzβ.

It suffices to show that there are λ1, λ2 ∈ P0 such that for any �ϕ ∈ C∞(U,DL(U ))

we have the estimates

‖�ϕ − �δ‖K ,c;B ≤ λ1(‖�ϕ‖K ,c;L ,l), (1)

‖�ϕ‖K ,c;B ≤ λ2(‖�ϕ‖K ,c;L ,l). (2)

In fact, these inequalities imply

‖dk R( �ϕ0)( �ϕ1, . . . , �ϕk)‖K ,m

≤
∑

α,β

λαβ‖�ϕ0‖α0
K ,c;L ,l · · · · · ‖ �ϕk‖αk

K ,c;L ,l
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· ‖ �ϕ0 − �δ‖β0
K ,c;B · ‖ �ϕ1‖β1

K ,c;B · · · · · ‖ �ϕk‖βk
K ,c;B

≤
∑

α,β

λαβ‖�ϕ0‖α0
K ,c;L ,l · · · · · ‖ �ϕk‖αk

K ,c;L ,l

· λ1(‖�ϕ0‖K ,c;L ,l)
β0 · λ2(‖�ϕ1‖K ,c;L ,l)

β1 · · · λ2(‖�ϕk‖K ,c;L ,l)
βk

= λ′(‖�ϕ0‖K ,c;L ,l , . . . , ‖�ϕk‖K ,c;L ,l)

with λ′ ∈ Pk given by

λ′(y0, . . . , yk) =
∑

λαβ y
αλ1(y0)

β0λ2(y1)
β1 · · · λ2(yk)βk .

Inequality (1) is seen as follows:

‖�ϕ − �δ‖K ,c;B = sup
x∈K ,|α|≤c

f ∈B

∣
∣
∣
∣

∫

L
f (y)∂α

x �ϕ(x)(y) dy − ∂α f (x)

∣
∣
∣
∣

≤ |L| · sup
f ∈B

‖ f ‖L ,0 · ‖ �ϕ‖K ,c;L ,l + sup
f ∈B

‖ f ‖K ,c

= λ1(‖�ϕ‖K ,c;L ,l)

with λ1(y0) = |L| · sup f ∈B‖ f ‖L ,0 · y0 + sup f ∈B‖ f ‖K ,c, where |L| denotes the
Lebesgue measure of L . Similarly, inequality (2) results from

‖�ϕ‖K ,c;B = sup
x∈K ,|α|≤c

f ∈B

∣
∣
∣
∣

∫

L
f (y)∂α

x �ϕ(x)(y) dy

∣
∣
∣
∣

≤ |L| · sup
f ∈B

‖ f ‖L ,0 · ‖ �ϕ‖K ,c;L ,l

= λ2(‖�ϕ‖K ,c;L ,l)

with λ2(y0) = |L| · sup f ∈B‖ f ‖L ,0 · y0. ��
Proposition 11 M(�) is a subalgebra of B(�) and N (�) is an ideal inM(�).

Proof This is evident from the definitions. ��
Theorem 12 Let u ∈ D′(�) and f ∈ C∞(�). Then

(i) ιu is moderate,
(ii) σ f is moderate,
(iii) ι f − σ f is negligible, and
(iv) if ιu is negligible then u = 0.

Proof (i): Fix x for the moderateness test and let U ∈ Ux (�) be arbitrary. Fix any
K , L � U andm ∈ N0. Then there are constants C = C(L) ∈ R

+ and l = l(L) ∈ N0
such that |〈u, ϕ〉| ≤ C‖ϕ‖L ,l for all ϕ ∈ DL(�). Hence, we see that
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‖(ιu)( �ϕ0)‖K ,m = ‖〈u, �ϕ0〉‖K ,m = sup
x∈K ,|α|≤m

∣
∣〈u, ∂α

x �ϕ0(x)〉
∣
∣

≤ C · sup
x∈K ,|α|≤m
y∈L ,|β|≤l

∣
∣
∣∂

α
x ∂β

y �ϕ0(x)(y)
∣
∣
∣ = C‖�ϕ0‖K ,m;L ,l = λ(‖�ϕ0‖K ,m;L ,l).

with λ(y0) = Cy0. Moreover, we have

‖d(ιu)( �ϕ0)( �ϕ1)‖K ,m ≤ C‖�ϕ1‖K ,m;L ,l = λ(‖�ϕ0‖K ,m;L ,l , ‖�ϕ1‖K ,m;L ,l)

with λ(y0, y1) = Cy1. Higher differentials of ιu vanish and the moderateness test is
satisfied with λ = 0 for k ≥ 2.

(ii): Fix x and letU ∈ Ux (�) be arbitrary. For any K , L � U andm ∈ N0 we have

‖(σ f )( �ϕ0)‖K ,m = ‖ f ‖K ,m = λ(‖�ϕ0‖K ,0;L ,0)

with λ(y0) = ‖ f ‖K ,m . Differentials of σ f vanish, i.e., λ = 0 for k ≥ 1.
(iii): Fix x and let U ∈ Ux (�) be arbitrary. For any K , L � U and m, k ∈ N0 we

have

(ι f − σ f )( �ϕ0) = 〈 f, �ϕ0 − �δ〉,
d(ι f − σ f )( �ϕ0)( �ϕ1) = 〈 f, �ϕ1〉,

dk(ι f − σ f )( �ϕ0)( �ϕ1, . . . , �ϕk) = 0 for k ≥ 2.

Hence, with c = m, l = 0 and B = { f } the negligibility test is satisfied with
λ(y0, z0) = z0 for k = 0, λ(y0, y1, z0, z1) = z1 for k = 1 and λ = 0 for k ≥ 2.

(iv): We show that every point x ∈ � has an open neighborhood V such that
u|V = 0, which implies u = 0.

Given x ∈ �, let U ∈ Ux (�) be as in the characterization of negligibility in
Proposition 8. Choose an open neighborhood V of x such that K := V � U and
r > 0 such that L := Br (K ) � U . With k = m = 0, Proposition 8 gives c, l ∈ N0,
λ ∈ I0 and B ⊆ C∞(U ), where λ has the form

λ(y, z) =
∑

α∈Nn
0 ,β∈N

λαβ y
αzβ.

Choose ϕ ∈ D(Rn) with suppϕ ⊆ B1(0),
∫

ϕ(x) dx = 1 and
∫

xγ ϕ(x) dx = 0 for
γ ∈ N

n
0 with 0 < |γ | ≤ q, where q is chosen such that β(q + 1) > α(n + c + l)

for all α, β with λαβ �= 0 (e.g., take q = (n + c + l) degy λ, where degy λ is
the degree of λ with respect to y). For ε > 0 set ϕε(y) = ε−nϕ(y/ε). Then for
ε < r , �ϕε(x)(y) := ϕε(y − x) defines an element �ϕε ∈ C∞(K ,DL(�)) because
suppϕε(.−x) = x+suppϕε ⊆ Bε(x) ⊆ Br (K ) ⊆ L for x ∈ Br−ε(K ). Consequently,
we have

‖(ιu)( �ϕε)‖K ,0 ≤ λ(‖�ϕε‖K ,c;L ,l , ‖�ϕε − �δ‖K ,c;B).
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Because of the estimates

‖�ϕε‖K ,c;L ,l = O(ε−(n+l+c))

‖�ϕε − �δ‖K ,c;B = O(εq+1),

which may be verified by a direct calculation, we have

‖(ιu)( �ϕε)‖K ,0 ≤
∑

α,β

λα,β · O(ε−α(n+c+l)) · O(εβ(q+1)) → 0

by the choice of q, which means that (ιu)( �ϕε)|V → 0 in C(V ) and hence also in
D′(V ). On the other hand, we have

〈u, �ϕε〉|V → u|V
in D′(V ), as is easily verified. This completes the proof. ��
Theorem 13 For X ∈ C∞(�, R

n) we have

(i) D̃X (M(�)) ⊆ M(�) and D̂X (M(�)) ⊆ M(�),
(ii) D̃X (N (�)) ⊆ N (�) and D̂X (N (�)) ⊆ N (�).

Proof The claims for D̃X are clear because

‖dk(D̃X R)( �ϕ)( �ψ, . . . , �ψ)‖K ,m = ‖DX (dk R( �ϕ)( �ψ, . . . , �ψ))‖K ,m

≤ C‖dk R( �ϕ)( �ψ, . . . , �ψ)‖K ,m+1

for some constant C depending on X . As to D̂X , we have to deal with terms of the
form

dk+1R( �ϕ)(DSK
X �ϕ, �ψ, . . . , �ψ) and dk R( �ϕ)(DSK

X
�ψ, �ψ, . . . , �ψ)

for which we use the estimate

‖DSK
X �ϕ‖K ,c;L ,l ≤ C‖�ϕ‖K ,c,+1;L ,l+1

for some constant C depending on X . ��
We now come to the quotient algebra.

Definition 14 We define the Colombeau algebra of generalized functions on � by
G(�) := M(�)/N (�).

G(�) is a C∞(�)-module and an associative commutative algebra with unit σ(1).
ι is a linear embedding of D′(�) and σ an algebra embedding of C∞(�) into G(�)

such that ι f = σ f in G(�) for all smooth functions f ∈ C∞(�). Furthermore, the
derivatives D̂X and D̃X are well-defined on G(�).
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Finally,we establish sheaf properties ofG. Note that for�′ � � open, the restriction
R|�′( �ϕ) := R( �ϕ) is well-defined because forU ⊆ �′ openwe haveC∞(U,D(�′)) ⊆
C∞(U,D(�)).

Proposition 15 Let R ∈ B(�) and �′ ⊆ � be open. If R is moderate then R|�′ is
moderate; if R is negligible then R|�′ is negligible.

Proof Suppose that R ∈ M(�). Fix x ∈ �′, which gives U ∈ Ux (�). Set U ′ :=
U ∩ �′ ∈ Ux (�

′) and let K , L � U ′ and m, k ∈ N0 be arbitrary. Then there are
c, l, λ as in Definition 6. Let now �ϕ′

0, . . . , �ϕ′
k ∈ C∞(U ′,DL(U ′)) be given. Choose

ρ ∈ D(U ′) such that ρ ≡ 1 on a neighborhood of K . Then ρ · �ϕ′
i ∈ C∞(U,DL(U ))

(i = 0 . . . k) and

‖dk R|�′( �ϕ′
0)( �ϕ′

1, . . . , �ϕ′
k)‖K ,m = ‖dk R|�′(ρ �ϕ′

0)(ρ �ϕ′
1, . . . , ρ �ϕ′

k)‖K ,m

= ‖dk R(ρ �ϕ′
0)(ρ �ϕ′

1, . . . , ρ �ϕ′
k)‖K ,m

≤ λ(‖ρ �ϕ′
0‖K ,c;L ,l , . . . , ‖ρ �ϕ′

k‖K ,c;L ,l)

= λ(‖�ϕ′
0‖K ,c;L ,l , . . . , ‖�ϕ′

k‖K ,c;L ,l).

Hence, the moderateness test is satisfied for R|�′ .
Now suppose that R ∈ N (�). For the negligibility test fix x ∈ �′, which gives

U ∈ Ux (�). Set U ′ := U ∩ �′ and let K , L � U ′ and m, k ∈ N0 be arbi-
trary. Then ∃c, l, B, λ as in Definition 7. Let now �ϕ′

0, . . . , �ϕ′
k ∈ C∞(U ′,DL(U ′))

be given. Choose ρ ∈ D(U ′) such that ρ ≡ 1 on a neighborhood of K . Then
ρ · �ϕ′

i ∈ C∞(U,DL(U )) (i = 0 . . . k) and

‖dk R|�′( �ϕ′
0)( �ϕ′

1, . . . , �ϕ′
k)‖K ,m = ‖dk R|�′(ρ �ϕ′

0)(ρ �ϕ′
1, . . . , ρ �ϕ′

k)‖K ,m

= ‖dk R(ρ �ϕ′
0)(ρ �ϕ′

1, . . . , ρ �ϕ′
k)‖K ,m

≤ λ(‖ρ �ϕ′
0‖K ,c;L ,l , . . . , ‖ρ �ϕ′

k‖K ,c;L ,l , ‖ρ �ϕ′
0 − �δ‖K ,c;B, . . . , ‖ρ �ϕ′

k‖K ,c;B)

= λ(‖�ϕ′
0‖K ,c;L ,l , . . . , ‖�ϕ′

k‖K ,c;L ,l , ‖�ϕ′
0 − �δ‖K ,c;B, . . . , ‖�ϕ′

k‖K ,c;B)

which shows negligibility of R|�′ . ��
Proposition 16 G(−) is a sheaf of algebras on �.

Proof Let X ⊆ � be open and (Xi )i be a family of open subsets of � such that
⋃

i Xi = X .
We first remark that if R ∈ B(X) satisfies R|Xi ∈ N (Xi ) for all i then R ∈ N (X),

as is evident from the definition of negligibility.
Suppose now that we are given Ri ∈ M(Xi ) such that Ri |Xi∩X j − R j |Xi∩X j ∈

N (Xi ∩ X j ) for all i, j with Xi ∩ X j �= ∅. Let (χi )i be a partition of unity subordinate
to (Xi )i , i.e., a family of mappings χi ∈ C∞(X) such that 0 ≤ χi ≤ 1, (suppχi )i
is locally finite,

∑

i χi (x) = 1 for all x ∈ X and suppχi ⊆ Xi . Choose functions
ρi ∈ C∞(Xi ,D(Xi )) which are equal to 1 on an open neighborhood of the diagonal
in Xi × Xi for each i . For V ⊆ X open and �ϕ ∈ C∞(V,D(X)) we define RV ( �ϕ) ∈
C∞(V ) by
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RV ( �ϕ) :=
∑

i

χi |V · (Ri )V∩Xi (ρi |V∩Xi · �ϕ|V∩Xi ). (3)

For showing smoothness of RV consider a curve c ∈ C∞(R,C∞(V,D(X))). We
have to show that t �→ RV (c(t)) is an element of C∞(R,C∞(V )). By [11, 3.8, p. 28]
it suffices to show that for each open subset W ⊆ V which is relatively compact in V
the curve t �→ RV (c(t))|W = RW (c(t)|W ) is smooth, but this holds because the sum
in (3) then is finite. Hence, (RV )V ∈ B(�).

Fix x ∈ X for the moderateness test. There is a finite index set F and an open
neighborhood W ∈ Ux (X) such that W ∩ suppχi �= ∅ implies i ∈ F . We can also
assume that x ∈ ⋂

i∈F Xi . Let Y be a neighborhood of x such that ρi ≡ 1 on Y × Y
for all i ∈ F . For each i ∈ F let Ui ∈ Ux (Xi ) be obtained from moderateness of
Ri as in Definition 6. Set U := ⋂

i∈F Ui ∩ W ∩ Y ∈ Ux (X), and let K , L � U as
well as m, k ∈ N0 be arbitrary. For each i ∈ F there are ci , li , λi such that for any
�ϕ0, . . . , �ϕk ∈ C∞(U,DL(U )) we have

‖dk Ri ( �ϕ0)( �ϕ1, . . . , �ϕk)‖K ,m ≤ λi (‖�ϕ0‖K ,ci ;L ,li , . . . , ‖�ϕk‖K ,ci ;L ,li ).

Now we have, for �ϕ ∈ C∞(U,DL(U )),

R( �ϕ)|W =
∑

i∈F
χi |W · (Ri )W∩Xi (ρi �ϕ|W∩Xi )

and hence, for �ϕ0, . . . , �ϕk ∈ C∞(U,DL(U )),

dk R( �ϕ0)( �ϕ1, . . . , �ϕk)|W
=

∑

i∈F
χi |W · dk((Ri )W∩Xi )(ρi �ϕ0|W∩Xi )(ρi �ϕ1|W∩Xi , . . . , ρi �ϕk |W∩Xi ).

We see that

‖dk R( �ϕ0)( �ϕ1, . . . , �ϕk)‖K ,m

≤
∑

i∈F
C(m) · ‖χi‖K ,m · λi (‖�ϕ0‖K ,ci ;L ,li , . . . , ‖�ϕk‖K ,ci ;L ,li )

= λ(‖�ϕ0‖K ,c;L ,l , . . . , ‖�ϕk‖K ,c;L ,l)

with c = max j∈F c j , l = max j∈F l j , some constant C(m) coming from the Leibniz
rule, and λ ∈ Pk given by

λ =
∑

i∈F
C(m)‖χi‖K ,m · λi .
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This shows that R is moderate. Finally, we claim that R|X j − R j ∈ N (X j ) for all j .
For this we first note that

(R|X j − R j )( �ϕ) =
∑

i

χi |X j · (Ri (ρi �ϕ|Xi∩X j ) − R j ( �ϕ))

for �ϕ ∈ C∞(X j ,D(X j )). Again, for x ∈ X j there is a finite index set F and an
open neighborhood W ∈ Ux (X) such that W ∩ suppχi �= ∅ implies i ∈ F , and we
can assume that x ∈ ⋂

i∈F Xi . Let Y be a neighborhood of x such that ρi ≡ 1 on
Y × Y for all i ∈ F and let Ui ∈ Ux (Xi ∩ X j ) be given by the negligibility test of
Ri |Xi∩X j − R j |Xi∩X j according to Definition 7. Set U := ⋂

i∈F Ui ∩ W ∩ Y . Fix
any K , L � U and m, k ∈ N0. For each i ∈ F there are ci , li , λi , Bi such that for
�ϕ0, . . . , �ϕk ∈ C∞(U,DL(U )) we have

‖dk(Ri |Xi∩X j − R j |Xi∩X j )( �ϕ0)( �ϕ1, . . . , �ϕk)‖K ,m

≤ λi (‖�ϕ0‖K ,ci ;L ,li , . . . , ‖�ϕ0 − �δ‖K ,ci ;Bi , ‖�ϕ1‖K ,ci ;Bi , . . . , ‖�ϕk‖K ,ci ;Bi ).

As above, we then have

‖dk(R|X j − R j )( �ϕ0)( �ϕ1, . . . , �ϕk)‖K ,m

≤
∑

i∈F
C(m) · ‖χi‖K ,m · λi (‖�ϕ0‖K ,ci ;L ,li , . . . , ‖�ϕ0 − �δ‖K ,ci ;Bi , ‖�ϕ1‖K ,ci ;Bi , . . .)

≤ λ(‖�ϕ0‖K ,c;L ,l , . . . , ‖�ϕ0 − �δ‖K ,c;B, ‖�ϕ0‖K ,c;B, . . .)

with c = maxi∈F ci , l = maxi∈F li , B = ⋃

i∈F Bi , and λ ∈ Ik given by

λ =
∑

i∈F
C(m)‖χ‖K ,m · λi .

This completes the proof. ��

4 An elementary version

Wewill nowgive a variant of the construction of Sect. 3 similar in spirit toColombeau’s
elementary algebra [2]: if we only consider derivatives along the coordinate lines of
R
n we can replace the smoothing kernels �ϕ ∈ C∞(U,DL(�)) by convolutions. This

way, one can use a simpler basic space which does not involve calculus on infinite
dimensional locally convex spaces anymore:

Definition 17 Let � ⊆ R
n be open. We set

U (�) := {(ϕ, x) ∈ D(Rn) × � | suppϕ + x ⊆ �}

and define Bc(�) to be the set of all mappings R : U (�) → C such that R(ϕ, ·) is
smooth for fixed ϕ.
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Note that this is almost the basic space used originally by Colombeau (see [2,
1.2.1, p. 18] or [9, Definition 1.4.3, p. 59]) but withD(Rn) in place of the space of test
functions whose integral equals one. We now introduce a notation for the convolution
kernel determined by a test function.

Definition 18 For ϕ ∈ D(Rn) we define �
ϕ ∈ C∞(Rn,D(Rn)) by

�
ϕ(x)(y) := ϕ(y − x).

In fact, with this definition we have 〈u,
�
ϕ〉 = u ∗ ϕ̌, where as usually we set ϕ̌(y) :=

ϕ(−y). Furthermore, for c ∈ N0 we write

‖ϕ‖c := sup
x∈Rn ,|α|≤c

∣
∣∂αϕ(x)

∣
∣ (ϕ ∈ D(Rn)).

The direct adaptation of Definition 6,7 then looks as follows:

Definition 19 Let R ∈ Bc(�). Then R is called moderate if

(∀x ∈ �) (∃U ∈ Ux (�)) (∀K , L � U : K � L) (∀m ∈ N0)

(∃c ∈ N0) (∃λ ∈ P0) (∀ϕ ∈ D(Rn) : K + suppϕ ⊆ L) :
‖R(ϕ, .)‖K ,m ≤ λ(‖ϕ‖c).

The subset of all moderate elements of Bc(�) is denoted by Mc(�).
Similarly, R is called negligible if

(∀x ∈ �) (∃U ∈ Ux (�)) (∀K , L � U : K � L) (∀m ∈ N0) (∃c ∈ N0)

(∃λ ∈ I0) (∃B ⊆ C∞(U ) bounded) (∀ϕ ∈ D(Rn) : K + suppϕ ⊆ L) :
‖R(ϕ, .)‖K ,m ≤ λ(‖ϕ‖c, ‖ �

ϕ − �δ‖K ,c;B).

The subset of all negligible elements of Bc(�) is denoted by N c(�).

It is convenient to work with the following simplification of these definitions.

Proposition 20 R ∈ Bc(�) is moderate if and only if

(∀K � �) (∃r > 0 : Br (K ) � �) (∀m ∈ N0) (∃c ∈ N0)

(∃λ ∈ P0) (∀ϕ ∈ D(Rn) : suppϕ ⊆ Br (0)) :
‖R(ϕ, .)‖K ,m ≤ λ(‖ϕ‖c).

Similarly, R ∈ Bc(�) is negligible if and only if

(∀K � �) (∃r > 0 : Br (K ) � �) (∀m ∈ N0) (∃c ∈ N0)

(∃λ ∈ I0) (∃B ⊆ C∞(�) bounded) (∀ϕ ∈ D(Rn) : suppϕ ⊆ Br (0)) :
‖R(ϕ, .)‖K ,m ≤ λ(‖ϕ‖c, ‖ �

ϕ − �δ‖K ,c;B).
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Proof Suppose R is moderate and fix K � �. We can cover K by finitely many open
sets Ui obtained from Definition 19 and write K = ⋃

i Ki with Ki � Ui . Choose
r > 0 such that Li := Br (Ki ) � Ui for all i . Fixing m, by moderateness there exist
ci and λi for each i . Set c = maxi ci and choose λ with λ ≥ λi for all i . Now given
ϕ ∈ D(Rn)with suppϕ ⊆ Br (0)we also have Ki +suppϕ ⊆ Li and we can estimate

‖R(ϕ, .)‖K ,m ≤ sup
i

‖R(ϕ, .)‖Ki ,m ≤ sup
i

λi (‖ϕ‖ci ) ≤ λ(‖ϕ‖c).

Conversely, suppose the condition holds and fix x ∈ � for the moderateness test.
Choose a > 0 such that Ba(x) � �. By assumption there is r > 0 with Br+a(x) � �.
SetU := Br/2(x). Then, fix K � L � U andm for the moderateness test. There are c
and λ by assumption. Now given ϕ with K + suppϕ ⊆ L , we see that for y ∈ suppϕ

and an arbitrary point z ∈ K we have |y| ≤ |y + z − x | + |z − x | < r , which means
that suppϕ ⊆ Br (0). But then ‖R(ϕ, .)‖K ,m ≤ λ(‖ϕ‖c) as desired.

If R is negligible we proceed similarly until the choice of Ki � Li � Ui and m
gives ci , λi and Bi . Choose χi ∈ D(Ui ) with χi ≡ 1 on a neighborhood of Li , and
define B := ⋃

i {χi f | f ∈ Bi }, which is bounded in C∞(�). Then with c = maxi ci
and λ ≥ λi for all i we have

‖R(ϕ, .)‖K ,m ≤ sup
i

λi (‖ϕ‖ci , ‖ �
ϕ − �δ‖Ki ,ci ;Bi ) ≤ λ(‖ϕ‖c, ‖ �

ϕ − �δ‖K ,c;B).

The converse is seen as formoderateness by restricting the elements of B ⊆ C∞(�)

to U . ��
The embeddings now take the following form.

Definition 21 We define ιc : D′(�) → Bc(�) and σ c : C∞(�) → Bc(�) by

(ιcu)(ϕ, x) := 〈u, ϕ(. − x)〉 (u ∈ D′(�))

(σ c f )(ϕ, x) := f (x) ( f ∈ C∞(�)).

Partial derivatives on Bc(�) then can be defined via differentiation in the second
variable:

Definition 22 Let R ∈ Bc(�). We define derivatives Di : Bc(�) → Bc(�) (i =
1, . . . , n) by

(Di R)(ϕ, x) := ∂

∂xi
(x �→ R(ϕ, x)).

Theorem 23 We have Di (Mc(�)) ⊆ Mc(�) and Di (N c(�)) ⊆ N c(�).

Proof This is evident from the definitions. ��
Proposition 24 We have Di ◦ ι = ι ◦ ∂i and Di ◦ σ = σ ◦ ∂i .
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Proof Di (ιu)(ϕ, x) = ∂
∂xi

〈u(y), ϕ(y−x)〉 = 〈u(y),−(∂iϕ)(y−x)〉 = 〈∂i u(y), ϕ(y−
x)〉 = ι(∂i u)(ϕ, x). The second claim is clear. ��
Proposition 25 N c(�) ⊆ Mc(�).

Proof The result follows from

‖ �
ϕ − �δ‖K ,c;B ≤ λ1(‖ϕ‖c1)

for suitable λ1 and c1, which is seen as in the proof of Proposition 10. ��
Similarly to Proposition 11 we have:

Proposition 26 Mc(�) is a subalgebra of Bc(�) andN c(�) is an ideal inMc(�).

Theorem 27 Let u ∈ D′(�) and f ∈ C∞(�). Then

(i) ιcu is moderate,
(ii) σ c f is moderate,
(iii) ιc f − σ c f is negligible, and
(iv) if ιcu is negligible then u = 0.

The proof is almost identical to that of Theorem 12 and hence omitted.

Definition 28 We define the elementary Colombeau algebra of generalized functions
on � by Gc(�) := Mc(�)/N c(�).

As before, one may show that Gc is a sheaf.

5 Canonical mappings

In this section we show that the algebra G constructed above is near to being universal
in the sense that there exist canonical mappings from it into most of the classical
Colombeau algebras which are compatible with the embeddings.

We begin by constructing a mapping G(�) → Gc(�).

Definition 29 Given R ∈ B(�) we define R̃ ∈ Bc(�) by

R̃(ϕ, x) := R( �ϕ)(x) ((ϕ, x) ∈ U (�))

where �ϕ ∈ C∞(�,D(�)) is chosen such that �ϕ = �
ϕ in a neighborhood of x .

This definition is meaningful: given (ϕ, x) in U (�) we have suppϕ(. − x ′) ⊆ �

for x ′ in a neighborhood V of x . Choosing ρ ∈ D(�) with supp ρ ⊆ V and ρ ≡ 1 in
a neighborhood of x , we can take �ϕ(x) := ρ

�
ϕ. Obviously, R̃(ϕ, x) does not depend

on the choice of �ϕ(x) and R̃(ϕ, .) is smooth, so indeed we have R̃ ∈ Bc(�).

Proposition 30 Let R ∈ B(�). Then the following holds:

(i) ι̃u = ιcu for u ∈ D′(�).
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(ii) σ̃ f = σ c f for f ∈ C∞(�).
(iii) R̃ ∈ Mc(�) for R ∈ M(�).
(iv) R̃ ∈ N c(�) for R ∈ N (�).

Proof (i): For u ∈ D′(�) we have

ι̃u (ϕ, x) = (ιu)( �ϕ)(x) = 〈u, �ϕ(x)〉 = 〈u,
�
ϕ(x)〉 = 〈u(y), ϕ(y − x)〉 = (ιcu)(ϕ, x).

(ii) is clear.
(iii): Suppose that R ∈ M(�). Fixing x ∈ �, we obtain U as in Proposition 8. Let
K � L � U and m be given, set k = 0, and choose L ′ such that L � L ′ � U . Then
Proposition 8 gives c, l, λ such that for �ϕ ∈ C∞(K ,DL ′(U )),

‖R( �ϕ)‖K ,m ≤ λ(‖�ϕ‖K ,c;L ′,l).

Now for ϕ ∈ D(Rn) with K + suppϕ ⊆ L we have �
ϕ ∈ C∞(K ,DL ′(U )), which

gives

‖R̃(ϕ, .)‖K ,m = ‖R(
�
ϕ)‖K ,m ≤ λ(‖ �

ϕ‖K ,c;L ′,l) ≤ λ(‖ϕ‖c+l)

which proves that R̃ ∈ Mc(�).
(iv): Similarly, if R ∈ N (�) then for x ∈ � we have U as in Proposition 8. For

K � L � U , m given, k = 0, and L ′ such that L � L ′ � U , we obtain c, l, λ, B as
in Proposition 8 such that

‖R( �ϕ)‖K ,m ≤ λ(‖�ϕ‖K ,c;L ′,l , ‖�ϕ − �δ‖K ,c;B)

and hence

‖R̃(ϕ, .)‖K ,m = ‖R(
�
ϕ)‖K ,m

≤ λ(‖ �
ϕ‖K ,c;L ′,l , ‖ �

ϕ − �δ‖K ,c;B)

≤ λ(‖ϕ‖c+l , ‖ �
ϕ − �δ‖K ,c;B)

which gives negligibility of R̃. ��

5.1 The special algebra

We define the special Colombeau algebra Gs with the embedding as in [4]: fix a
mollifier ρ ∈ S(Rn) with

∫

ρ(x) dx = 1,
∫

xαρ(x) dx = 0 ∀α ∈ N
n
0\{0}.

Choosing χ ∈ D(Rn) with 0 ≤ χ ≤ 1, χ ≡ 1 on B1(0) and suppχ ⊆ B2(0) we set

ρε(y) := ε−nρ(y/ε), θε(y) := ρε(y)χ(y |ln ε|) (ε > 0).
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Moreover, with

Kε = {x ∈ � | d(x, R
n\�) ≥ ε} ∩ B1/ε(0) � � (ε > 0)

we choose functions κε ∈ D(�) such that 0 ≤ κε ≤ 1 and κε ≡ 1 on Kε. Then the
special algebra Gs(�) is given by

E s(�) := C∞(�)I with I := (0, 1],
E s
M (�) := {(uε)ε ∈ E s(�) | ∀K � � ∀m ∈ N0 ∃N ∈ N : ‖uε‖K ,m = O(ε−N )},

N s(�) := {(uε)ε ∈ E s(�) | ∀K � � ∀m ∈ N0 ∀N ∈ N : ‖uε‖K ,m = O(εN )},
Gs(�) := E s

M (�)/N s(�),

(ιsu)ε := 〈u, �ψε〉 (u ∈ D′(�)),

(σ s f )ε := f ( f ∈ C∞(�)),

�ψε(x)(y) := θε(x − y)κε(y).

Definition 31 For R ∈ B(�) we define Rs = (Rs
ε)ε ∈ E s(�) by

Rs
ε(x) := R( �ψε)(x).

Proposition 32 (i) (ιu)s = ιsu for u ∈ D′(�).
(ii) (σ f )s = σ s f for f ∈ C∞(�).
(iii) Rs ∈ E s

M (�) for R ∈ M(�).
(iv) Rs ∈ N s(�) for R ∈ N (�).

Proof (i) and (ii) are clear.
For (iii) it suffices to show the needed estimate locally. Fix x ∈ �, which gives

U ∈ Ux (�) as inProposition 8.Choose any K , L such that x ∈ K � L � U , fixm, and
set k = 0. Then there are c, l, λ as in Proposition 8.Because supp �ψε(x) ⊆ B2|ln ε|−1(x)

we have �ψε ∈ C∞(K ,DL(U )) for ε small enough, which gives

‖Rs
ε‖K ,m ≤ λ(‖ �ψε‖K ,c;L ,l).

Consequently, (Rs
ε)ε ∈ E s

M (�) follows from

‖ �ψε‖K ,c;L ,l = sup
x,α,y,β

∣
∣
∣∂

α
x ∂β

y

(

ρε(x − y)χ((x − y) |ln ε|)κε(y)
)
∣
∣
∣ = O(ε−n−c−l).

For negligibility we proceed similarly; the claim then follows by using that for a
bounded subset B ⊆ C∞(U ) we have ‖ �ψε − �δ‖K ,c;B = O(εN ) for all N ∈ N, which
is seen as in [4, Prop. 12, p. 38] and actually merely a restatement of the fact that
ιs f − σ s f = O(εN ) for all N uniformly for f ∈ B. ��
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5.2 The diffeomorphism invariant algebra

There are several variants of the diffeomorphism invariant algebra Gd ; we will employ
the following formulation [10,13,14]:

Ed (�) := C∞(D(�),C∞(�))

EdM (�) := {R ∈ C∞(D(�)) | ∀K � � ∀k,m ∈ N0 ∀( �ϕε)ε ∈ S(�) ∀( �ψ1,ε)ε, . . . ,

( �ψk,ε)ε ∈ S0(�) ∃N ∈ N : ‖dk R( �ϕε)( �ψ1,ε, . . . , �ψk,ε)‖K ,m = O(ε−N )},
N d (�) := {R ∈ C∞(D(�)) | ∀K � � ∀k,m ∈ N0 ∀( �ϕε)ε ∈ S(�) ∀( �ψ1,ε)ε, . . . ,

( �ψk,ε)ε ∈ S0(�) ∀N ∈ N : ‖dk R( �ϕε)( �ψ1,ε, . . . , �ψk,ε)‖K ,m = O(εN )},
Gd (�) := EdM (�)/N d (�),

(ιdu)(ϕ)(x) := 〈u, ϕ〉,
(σ d f )(ϕ)(x) := f (x).

The spaces S(�) and S0(�) employed in this definition are given as follows:

Definition 33 Let a net of smoothing kernels ( �ϕε)ε ∈ C∞(�,D(�))I be given and
denote the corresponding net of smoothing operators by (�ε)ε ∈ L(D′(�),C∞(�))I .
Then ( �ϕε)ε is called a test object on � if

(i) �ε → id in L(D′(�),D′(�)),
(ii) ∀p ∈ csn(L(D′(�),C∞(�))) ∃N ∈ N: p(�ε) = O(ε−N ),
(iii) ∀p ∈ csn(L(C∞(�),C∞(�))) ∀m ∈ N: p(�ε|C∞(�) − id) = O(εm),
(iv) ∀x ∈ � ∃V ∈ Ux (�) ∀r > 0 ∃ε0 > 0 ∀y ∈ V ∀ε < ε0: suppϕε(y) ⊆ Br (y).

We denote the set of test objects on� by S(�). Similarly, ( �ϕε)ε is called a 0-test object
if it satisfies these conditions with (i) and (iii) replaced by the following conditions:

(i’) �ε → 0 in L(D′(�),D′(�)),
(iii’) ∀p ∈ csn(L(C∞(�),C∞(�))) ∀m ∈ N: p(�ε|C∞(�)) = O(εm).

The set of all 0-test objects on � is denoted by S0(�).

Definition 34 For R ∈ B(�) we define Rd ∈ Ed(�) by

Rd(ϕ)(x) := R([x ′ �→ ϕ])(x).
Proposition 35 (i) (ιu)d = ιdu for u ∈ D′(�).
(ii) (σ f )d = σ du for f ∈ C∞(�).
(iii) Rd ∈ Ed

M (�) for R ∈ M(�).
(iv) Rd ∈ N d(�) for R ∈ N (�).

Proof (i) and (ii) are clear from the definition. (iii) and (iv) follow directly from the
estimates

‖�ϕε‖K ,c;L ,l = O(ε−N ) for some N ,

‖�ϕε − �δ‖K ,c;B = O(εN ) for all N ,

which hold by definition of the spaces S(�) and S0(�). ��
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5.3 The elementary algebra

For Colombeau’s elementary algebra we employ the formulation of [9, Section 1.4],
Sect. 1.4. For k ∈ N0 we let Ak(R

n) be the set of all ϕ ∈ D(Rn) with integral one
such that, if k ≥ 1, all moments of ϕ order up to k vanish.

Ue(�) := {(ϕ, x) ∈ A0(R
n) × � | x + suppϕ ⊆ �}

Ee(�) := {R : Ue(�) → C | ∀ϕ ∈ A0(R
n) : R(ϕ, .) is smooth}

Ee
M (�) := {R ∈ Ee(�) | ∀K � � ∀m ∈ N0 ∃N ∈ N ∀ϕ ∈ AN (Rn) :

‖R(Sεϕ, .)‖K ,m = O(ε−N )}
N e(�) := {R ∈ Ee(�) | ∀K � � ∀m ∈ N0 ∀N ∈ N ∃q ∈ N ∀ϕ ∈ Aq(R

n) :
‖R(Sεϕ, .)‖K ,m = O(εN )}

Ge(�) := Ee
M (�)/N e(�)

(ιeu)(ϕ, x) := 〈u, ϕ(. − x)〉
(σ e f )(ϕ, x) := f (x)

Definition 36 For R ∈ Bc(�) we define Re ∈ Ee(�) by Re(ϕ, x) := R(ϕ, x).

Proposition 37 (i) (ιcu)e = ιeu for u ∈ D′(�).
(ii) (σ c f )e = σ eu for f ∈ C∞(�).
(iii) Re ∈ Ee

M (�) for R ∈ Mc(�).
(iv) Re ∈ N e(�) for R ∈ N c(�).

Proof Again, (i) and (ii) are clear from the definition. For (iii), fix K � � and
m ∈ N0. From Proposition 20 we obtain r , c and λ such that for suppϕ ⊆ Br (0),
‖R(ϕ, .)‖K ,m ≤ λ(‖ϕ‖c). For ϕ ∈ A0(R

n) and ε small enough, supp Sεϕ ⊆ Br (0),
so we only have to take into account that ‖Sεϕ‖c = O(ε−N ) for some N ∈ N.
Similarly, (iv) is obtained from the fact that given any N , for q large enough we have
‖(Sεϕ)∗ − �δ‖K ,c;B = O(εN ) for all ϕ ∈ Aq(R

n). ��
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12. Nedeljkov, M., Pilipović, S.: Generalized function algebras and PDEs with singularities. A survey. Zb.
Rad. (Beogr.) 11(19), 61–120 (2006)

13. Nigsch, E.A.: The functional analytic foundation of Colombeau algebras. J. Math. Anal. Appl. 421(1),
415–435 (2015). https://doi.org/10.1016/j.jmaa.2014.07.014

14. Nigsch, E.A.: Nonlinear generalized sections of vector bundles. J. Math. Anal. Appl. 440, 183–219
(2016). https://doi.org/10.1016/j.jmaa.2016.03.022

15. Oberguggenberger, M.: Multiplication of Distributions and Applications to Partial Differential Equa-
tions. Pitman Research Notes in Mathematics 259. Longman, Harlow (1992)

16. Schwartz, L.: Espaces de fonctions différentiables à valeurs vectorielles. J. Anal. Math. 4(1), 88–148
(1955). https://doi.org/10.1007/BF02787718

17. Schwartz, L.: Théorie des distributions à valeurs vectorielles. Ann. Inst. Fourier 7 (1957). https://doi.
org/10.5802/aif.68. issn: 0373-0956

18. Schwartz, L.:Théorie des distributions.Nouvelle édition, entièrement corrigée, refondue et augmentée.
Paris: Hermann, (1966)

19. Thomas, E.G.F.: A polarization identity for multilinear maps. Indag. Math. New Ser. 25(3), 468–474
(2014). https://doi.org/10.1016/j.indag.2013.11.003

20. Treves, F.: Topological Vector Spaces, Distributions and Kernels. Academic Press, New York (1976)

https://doi.org/10.1016/j.jmaa.2009.05.046
https://doi.org/10.4064/dm447-0-1
https://doi.org/10.4064/dm447-0-1
https://doi.org/10.1007/s006050050001
https://doi.org/10.1016/j.jmaa.2014.07.014
https://doi.org/10.1016/j.jmaa.2016.03.022
https://doi.org/10.1007/BF02787718
https://doi.org/10.5802/aif.68
https://doi.org/10.5802/aif.68
https://doi.org/10.1016/j.indag.2013.11.003

	Colombeau algebras without asymptotics
	Abstract
	1 Introduction
	2 Preliminaries
	3 Construction of the algebra
	4 An elementary version
	5 Canonical mappings
	5.1 The special algebra
	5.2 The diffeomorphism invariant algebra
	5.3 The elementary algebra

	Acknowledgements
	References




