
ISRAEL JOURNAL OF MATHEMATICS 224 (2018), 505–512

DOI: 10.1007/s11856-018-1664-6

ERRATUM TO “THE VANISHING EULER
CHARACTERISTIC OF AN ISOLATED DETERMINANTAL
SINGULARITY”, ISRAEL J. MATH. 197 (2013), 475–495

BY

J. J. Nuño-Ballesteros

Departament de Geometria i Topologia, Universitat de València

Campus de Burjassot, 46100 Burjassot, Spain

e-mail: Juan.Nuno@uv.es

AND
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In [4, Theorem A.5], we present the following result.

Theorem A.5 (flawed version): Let X ⊂ Cn be a complex analytic manifold

of dimension d and let M = X ∩ B(0, ε) for some ε > 0. Let f : X → C be a

holomorphic Morse function without critical points on X ∩ Sε. Then,

χ(f−1(c) ∩M) = χ(M) + (−1)d+1#Σf |M ,

where c is a regular value of f |M and #Σf |M is the number of critical points

of f |M .

We use [4, Theorem A.4] to show Theorem A.5. But [4, Theorem A.4] is

wrong, we are grateful to Matthias Zach for providing us a counter-example

(see Fig. 1). Here f is a linear projection which has no critical points on X∩Sε.

However, f also has no critical points on M , but Ma and Mb are not homotopy

equivalent. So (M, f) cannot satisfy condition (C) of Palais–Smale.
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Figure 1

Therefore, we cannot ensure that Theorem A.5 is true unless we add the

condition (C) of Palais–Smale. However, in [4], we present this result because

it was necessary to use it in a much less general framework. We just need it to

be true when Xs is a smoothing of an isolated singularity (X, 0) ⊂ (CN , 0) and

f is a Morsification of a function germ with isolated singularity f0 : (X, 0) → C.

Therefore, Theorem A.4 of [4] must be removed and Theorem A.5 must be

replaced by Theorem A.5, which we show in this note.

Let (X, 0) ⊂ (CN , 0) be a germ of analytic variety with isolated singularity

and f : (X, 0) → (C, 0) a function on it, also with isolated singularity. A

Morsification is a function F : (X , 0) → (C, 0) such that:

(1) (X , 0) ⊂ (CN × C, 0) is a smoothing of (X, 0). This means that the

projection π : (X , 0) → (C, 0) given by π(x, s) = s is flat and that if

we put Xs := π−1(s), then X0 = X and Xs is smooth for s �= 0.

(2) If fs : Xs → C is given by fs(x) = F (x, s), then f0 = f and fs is a

Morse function for s �= 0.

We fix the representative of F : (X , 0) → (C, 0) in the open set Bε × Dβ,

where Bε = {x ∈ CN : ‖x‖ < ε}, Dβ = {z ∈ C : |z| < β} and ε, β > 0 are

small enough. Hence, Xs is a closed analytic subset of Bε and fs : Xs → C is a

holomorphic function, for each s ∈ Dβ .

Theorem A.5 (corrected version): Let (X, 0) ⊂ (CN , 0) be a germ of analytic

variety with isolated singularity, with d = dim(X, 0). Let f : (X, 0) → C be a

function with isolated singularity and F : (X , 0) → (C, 0) be a Morsification of

f . There exist small enough real numbers 0 < β � δ � ε � 1 such that

χ(f−1
s (c)) = χ(Xs) + (−1)d+1#Σfs,

for any c ∈ Dδ a regular value of fs and s ∈ Dβ \ {0}.
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The proof of the theorem is based on Morse theory. We will use it in two

steps of the proof, one for the function Gs : Xs → [0,+∞), where Gs = |fs|2,
and another one for gs : f−1

s (Dδ) → [−δ, δ], where gs is the real part of fs

and δ > 0 is small enough. In the first case, Xs is not compact, so we need to

control the critical points at infinity (in the sense of [2, 10.8]). These are the

critical points of the restriction of the function to the boundary X ∩ Sε. In the

second case, f−1
s (Dδ) is a closed submanifold with boundary of Xs. Besides

the critical points at infinity, we also need to consider the critical points of the

boundary itself, that is, the critical points of the restriction to f−1
s (∂Dδ). We

present a pair of lemmas which will be useful to deal with these points.

Assume that f : M → R is a smooth function, where M is a smooth manifold

with boundary. Let p ∈ ∂M be a regular point of f . Then, p is a critical

point of the restriction f |∂M : ∂M → R if and only if the gradient of f at p

is collinear with the normal vector to the boundary of M at p (with respect to

some Riemannian metric). We recall that p is called an outward (resp. inward)

boundary critical point if the gradient of f at p points outward (resp. inward).

Let (X, 0) ⊂ (Rn, 0) be a real analytic variety with isolated singularity and

let g : (X, 0) → (R, 0) be an analytic function with isolated singularity. We

denote by (Σ, 0) the analytic variety given by the set of points x where the

gradients of g and ρ are collinear, where ρ : (X, 0) → R is the function

ρ(x) = ‖x‖2. Assume (X, 0) = V (φ1, . . . , φr) for some analytic functions

φi : (R
n, 0) → (R, 0). We also suppose that g is the restriction of some analytic

function g : (Rn, 0) → (R, 0). Then (Σ, 0) is given by the zeros of the minors

of the matrix (∇g, x,∇φ1, . . . ,∇φr) of order n − d + 2, where d = dim(X, 0).

Moreover, if ε > 0 is a Milnor radius for (X, 0) and we fix a representative

g : X → R in the open ball Bε, the critical points at infinity of g are exactly

the points in Σ ∩ Sε.

Lemma 0.1: Let (X, 0) ⊂ (Rn, 0) be a real analytic variety with isolated singu-

larity and let g : (X, 0) → (R, 0) be an analytic function with isolated singularity.

There exists ε0 > 0 such that for all ε with 0 < ε < ε0 and for all x ∈ Σ ∩ Sε,

g(x) �= 0 and if g(x) > 0 (resp. g(x) < 0), then x is an outward (resp. inward)

boundary critical point.

Proof. We first show that (Σ ∩ g−1(0), 0) = ({0}, 0). If not, by the curve

selection lemma, there would be an analytic arc γ : [0, η) → Rn such that

γ(0) = 0 and γ(0, η) ⊂ Σ ∩ g−1(0) \ {0}.
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Since γ is not constant and after shrinking η if necessary, we can assume that

γ(t) �= 0 and γ′(t) �= 0, for all t ∈ (0, η). In fact, we also assume that for each

i = 1, . . . , n, either γi = 0 or γi(t) �= 0 and γ′
i(t) �= 0, for all 0 < t < η. Since

γi is either constant, strictly increasing or strictly decreasing and γi(0) = 0, it

follows that γi(t) and γ′
i(t) must have the same sign along (0, η). In particular,

we have

〈γ(t), γ′(t)〉 =
n∑

i=1

γi(t)γ
′
i(t) > 0, ∀t ∈ (0, η).

Since γ(t) ∈ Σ, we have for all 0 < t < η

∇g(γ(t)) = λ0(t)γ(t) +

r∑
i=1

λi(t)∇φi(γ(t)),

for some λi(t) ∈ R, i = 0, . . . , r. Note that the fact that g has isolated singularity

implies that λ0(t) �= 0.

On the other hand, g(γ(t)) = 0, for all 0 < t < η, so

0 = (g ◦ γ)′(t) = (g ◦ γ)′(t) = 〈∇g(t), γ′(t)〉 = λ0(t)〈γ(t), γ′(t)〉,
which gives a contradiction. Hence, we have shown the first part of the lemma.

Observe that a similar argument proves also the second part of the lemma.

In fact, if we take now an analytic arc γ : [0, η) → R
n such that γ(0) = 0 and

γ(0, η) ⊂ Σ \ {0}, we know that g(γ(t)) �= 0, for all 0 < t < η. After shrinking

η if necessary, we can assume that (g ◦ γ)′(t) �= 0 and 〈γ(t), γ′(t)〉 > 0, for all

0 < t < η. Since g(γ(0)) = 0, the sign of g(γ(t)) coincides with the sign of its

derivative:

(g ◦ γ)′(t) = (g ◦ γ)′(t) = 〈∇g(t), γ′(t)〉 = λ0(t)〈γ(t), γ′(t)〉.
If g(γ(t)) > 0 (resp. g(γ(t)) < 0), then λ0(t) > 0 (resp. λ0(t) < 0) and thus γ(t)

is an outward (resp. inward) boundary critical point.

Let X be a complex analytic manifold and f : X → C be a holomorphic

function. Let g be the real part of f and G = |f |2. We denote by Σ̃ the subset

of points x ∈ X where ∇g(x) and ∇G(x) are collinear. Assume δ2 > 0 is a

regular value of G and consider the restriction

g : G−1[0, δ2] = f−1(Dδ) −→ [−δ, δ].

Then, Σ̃ ∩ G−1(δ2) is equal to the set of boundary critical points of

g : f−1(Dδ) → [−δ, δ].
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Lemma 0.2: With the above notation, we have:

(1) If f(x) �= 0, then f is regular at x if and only if G is regular at x.

(2) For all x ∈ Σ̃∩G−1(δ2), g(x) �= 0 and if g(x) > 0 (resp. g(x) < 0), then

x is an outward (resp. inward) boundary critical point.

Proof. By taking local coordinates in X , we can assume that X is an open

subset of Cd. For all i = 1, . . . , d, we have Gzi = ffzi and Gzi
= ffzi

, so item

(1) is obvious.

To see item (2), we observe that g = (f + f)/2, hence gzi = 1
2fzi and

gzi
= 1

2fzi
, for all i = 1, . . . , d. If x ∈ Σ̃ ∩ G−1(δ2), then x is a regular point

of G and G(x) = δ2 > 0. Thus, x is also a regular point of f and g, hence

Gzi(x) = λgzi(x) for some λ �= 0. Hence,

f(x)fzi(x) = λ
1

2
fzi(x), ∀i = 1, . . . , d.

This implies f(x) = λ/2 ∈ R, so g(x) = λ/2 �= 0 and if g(x) > 0 (resp. g(x) < 0),

then x is an outward (resp. inward) boundary critical point.

Proof of Theorem A.5. We can see Xs as the germ of a real analytic variety of

dimension 2d in R2N . We write fs(x) = gs(x) + ihs(x) and Gs(x) = |fs(x)|2,
for each x ∈ Xs.

We use [4, Lemma A.6], which is unaffected by the mistake; then g0 has

isolated singularity. By Lemma 0.1 and after shrinking ε if necessary, we have

that for all x ∈ Σ ∩ Sε, g0(x) �= 0, and if g0(x) > 0 (resp. g0(x) < 0), then x

is an outward (resp. inward) boundary critical point. We also assume that ε is

small enough in such a way that (g0)|X∩Sε
has only isolated critical points.

Let η > 0 such that |g0(x)| > η, for all x ∈ Σ(g0|X∩Sε
). Take also α, δ > 0

such that 0 < α < δ < η and the closed disk Dδ is contained in the image f(X)

and δ2 is a regular value of G. Finally, by continuity, we can choose β > 0 small

enough, such that:

(1) Dδ ⊂ fs(Xs) and δ2 is a regular value of Gs,

(2) |gs(x)| > η, for all x ∈ Σ(gs|Xs∩Sε
),

(3) |gs(x)| < α, for all x ∈ Σ(gs),

for all 0 < |s| < β.

We apply Morse theory to the function gs : f
−1
s (Dδ) → [−δ, δ]. Observe that

this is a non-proper Morse function, so we have to use stratified Morse theory

in the sense of [2, 10.8]. Let b1, b2,∈ R such that −δ < b1 < −α and α < b2 < δ
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(see Fig. 2). Then,

f−1
s (Dδ) = g−1

s [−δ, δ] = g−1
s [−δ, b1] ∪ g−1

s (b1, b2] ∪ g−1
s (b2, δ].

-

Bε

Xs

Dδ

η ηα-α

b1 b2

fs

Figure 2

By conditions (2) and (3), g−1
s (b2, δ] does not contain critical points at infinity

nor interior critical points. Also, by Lemma 0.2, all the boundary critical points

are outward. It follows from [2, 10.8] or [1, Theorem 4.1] that the homotopy

type of g−1
s [−δ, b], with b2 ≤ b ≤ δ, does not change when passing through these

critical values, that is,

f−1
s (Dδ) � g−1

s [−δ, b1] ∪ g−1
s (b1, b2].

Also by [2, 10.8], since g−1
s (b1, b2] contains #Σfs Morse critical points of gs

with index d, we have

f−1
s (Dδ) � g−1

s [−δ, b1] with #Σfs cells of dimension d attached.

Hence,

χ(f−1
s (Dδ)) = χ(g−1

s [−δ, b1]) + (−1)d#Σfs.
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We observe that g−1
s [−δ, b1] is a locally closed subset of CN , fs is a submersion

on g−1
s [−δ, b1] and the restriction of fs to the closure of g−1

s [−δ, b1] is a proper

map. Then, by the Thom first isotopy lemma, fs is a fibration on g−1
s [−δ, b1].

Therefore,

χ(g−1
s [−δ, b1]) = χ(f−1

s (b1))χ(Dδ ∩ ([−δ, b1]× R)) = χ(f−1
s (b1)).

Since fs is a fibration on the subset of Dδ of its regular values, the homotopy

type of f−1
s (c) is independent of the regular value c. Thus,

χ(f−1
s (c)) = χ(f−1

s (Dδ)) + (−1)d+1#Σfs.

It only remains to show that χ(f−1
s (Dδ)) = χ(Xs). To see this, we apply

again Morse theory to the function Gs : Xs → [0,+∞). For b3 ∈ R big enough,

we have

Xs = G−1
s [0, b3] = G−1

s [0, δ2] ∪G−1
s [δ2, b3].

By Lemma 0.1, all the critical points at infinity in G−1
s [δ2, b3] are outward.

Again, by [2, 10.8],

Xs � G−1
s [0, δ2] = f−1

s (Dδ).

Remark 0.3: When X = Cn, we get another proof of the following well know

formula for the Milnor number of a function (see [3, Theorem 7.2]): let f :

(Cn, 0) → (C, 0) be a holomorphic function with isolated singularity; then

μ(f) = dimC

On

J(f)
,

where On is the local ring of homolorphic function germs in (Cn, 0) and J(f) is

the ideal generated by the partial derivatives of f . In fact, by definition μ(f) is

the number of (n− 1)-spheres in the Milnor fibre f−1(c). Since f−1(c) has the

homotopy type of a wedge of (n− 1)-spheres, by Theorem A.5 we have

μ(f) = (−1)n−1(χ(f−1(c))− 1) = #Σfs,

where fs : Bε → C is a Morsification of f . But the number #Σfs is equal

to the local degree of the gradient ∇f : (Cn, 0) → (Cn, 0) which is equal to

dimC On/J(f).
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