ERRATUM TO "THE VANISHING EULER CHARACTERISTIC OF AN ISOLATED DETERMINANTAL SINGULARITY", ISRAEL J. MATH. **197** (2013), 475–495

 $_{\rm BY}$

J. J. NUÑO-BALLESTEROS

Departament de Geometria i Topologia, Universitat de València Campus de Burjassot, 46100 Burjassot, Spain e-mail: Juan.Nuno@uv.es

AND

B. Oréfice-Okamoto and J. N. Tomazella

Departamento de Matemática, Universidade Federal de São Carlos Caixa Postal 676, 13560-905, São Carlos, SP, Brazil e-mail: bruna@dm.ufscar.br, tomazella@dm.ufscar.br

In [4, Theorem A.5], we present the following result.

THEOREM A.5 (flawed version): Let $X \subset \mathbb{C}^n$ be a complex analytic manifold of dimension d and let $M = X \cap B(0, \epsilon)$ for some $\epsilon > 0$. Let $f : X \to \mathbb{C}$ be a holomorphic Morse function without critical points on $X \cap S_{\epsilon}$. Then,

 $\chi(f^{-1}(c) \cap M) = \chi(M) + (-1)^{d+1} \# \Sigma f|_M,$

where c is a regular value of $f|_M$ and $\#\Sigma f|_M$ is the number of critical points of $f|_M$.

We use [4, Theorem A.4] to show Theorem A.5. But [4, Theorem A.4] is wrong, we are grateful to Matthias Zach for providing us a counter-example (see Fig. 1). Here f is a linear projection which has no critical points on $X \cap S_{\epsilon}$. However, f also has no critical points on M, but M_a and M_b are not homotopy equivalent. So (M, f) cannot satisfy condition (C) of Palais–Smale.

Received December 5, 2016 and in revised form March 7, 2017

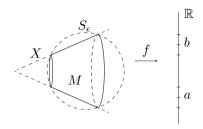


Figure 1

Therefore, we cannot ensure that Theorem A.5 is true unless we add the condition (C) of Palais–Smale. However, in [4], we present this result because it was necessary to use it in a much less general framework. We just need it to be true when X_s is a smoothing of an isolated singularity $(X,0) \subset (\mathbb{C}^N,0)$ and f is a Morsification of a function germ with isolated singularity $f_0: (X,0) \to \mathbb{C}$. Therefore, Theorem A.4 of [4] must be removed and Theorem A.5 must be replaced by Theorem A.5, which we show in this note.

Let $(X,0) \subset (\mathbb{C}^N,0)$ be a germ of analytic variety with isolated singularity and $f : (X,0) \to (\mathbb{C},0)$ a function on it, also with isolated singularity. A Morsification is a function $F : (\mathscr{X}, 0) \to (\mathbb{C}, 0)$ such that:

- (1) $(\mathscr{X}, 0) \subset (\mathbb{C}^N \times \mathbb{C}, 0)$ is a smoothing of (X, 0). This means that the projection $\pi : (\mathscr{X}, 0) \to (\mathbb{C}, 0)$ given by $\pi(x, s) = s$ is flat and that if we put $X_s := \pi^{-1}(s)$, then $X_0 = X$ and X_s is smooth for $s \neq 0$.
- (2) If $f_s : X_s \to \mathbb{C}$ is given by $f_s(x) = F(x, s)$, then $f_0 = f$ and f_s is a Morse function for $s \neq 0$.

We fix the representative of $F : (\mathscr{X}, 0) \to (\mathbb{C}, 0)$ in the open set $B_{\epsilon} \times D_{\beta}$, where $B_{\epsilon} = \{x \in \mathbb{C}^N : \|x\| < \epsilon\}, D_{\beta} = \{z \in \mathbb{C} : |z| < \beta\}$ and $\epsilon, \beta > 0$ are small enough. Hence, X_s is a closed analytic subset of B_{ϵ} and $f_s : X_s \to \mathbb{C}$ is a holomorphic function, for each $s \in D_{\beta}$.

THEOREM A.5 (corrected version): Let $(X, 0) \subset (\mathbb{C}^N, 0)$ be a germ of analytic variety with isolated singularity, with $d = \dim(X, 0)$. Let $f : (X, 0) \to \mathbb{C}$ be a function with isolated singularity and $F : (\mathscr{X}, 0) \to (\mathbb{C}, 0)$ be a Morsification of f. There exist small enough real numbers $0 < \beta \ll \delta \ll \epsilon \ll 1$ such that

$$\chi(f_s^{-1}(c)) = \chi(X_s) + (-1)^{d+1} \# \Sigma f_s,$$

for any $c \in D_{\delta}$ a regular value of f_s and $s \in D_{\beta} \setminus \{0\}$.

Vol. 224, 2018

ERRATUM

The proof of the theorem is based on Morse theory. We will use it in two steps of the proof, one for the function $G_s : X_s \to [0, +\infty)$, where $G_s = |f_s|^2$, and another one for $g_s : f_s^{-1}(\overline{D}_{\delta}) \to [-\delta, \delta]$, where g_s is the real part of f_s and $\delta > 0$ is small enough. In the first case, X_s is not compact, so we need to control the critical points at infinity (in the sense of [2, 10.8]). These are the critical points of the restriction of the function to the boundary $\overline{X} \cap S_{\epsilon}$. In the second case, $f_s^{-1}(\overline{D}_{\delta})$ is a closed submanifold with boundary of X_s . Besides the critical points at infinity, we also need to consider the critical points of the boundary itself, that is, the critical points of the restriction to $f_s^{-1}(\partial D_{\delta})$. We present a pair of lemmas which will be useful to deal with these points.

Assume that $f: M \to \mathbb{R}$ is a smooth function, where M is a smooth manifold with boundary. Let $p \in \partial M$ be a regular point of f. Then, p is a critical point of the restriction $f|_{\partial M} : \partial M \to \mathbb{R}$ if and only if the gradient of f at pis collinear with the normal vector to the boundary of M at p (with respect to some Riemannian metric). We recall that p is called an outward (resp. inward) boundary critical point if the gradient of f at p points outward (resp. inward).

Let $(X,0) \subset (\mathbb{R}^n,0)$ be a real analytic variety with isolated singularity and let $g: (X,0) \to (\mathbb{R},0)$ be an analytic function with isolated singularity. We denote by $(\Sigma,0)$ the analytic variety given by the set of points x where the gradients of g and ρ are collinear, where $\rho : (X,0) \to \mathbb{R}$ is the function $\rho(x) = ||x||^2$. Assume $(X,0) = V(\phi_1,\ldots,\phi_r)$ for some analytic functions $\phi_i: (\mathbb{R}^n, 0) \to (\mathbb{R}, 0)$. We also suppose that g is the restriction of some analytic function $\overline{g}: (\mathbb{R}^n, 0) \to (\mathbb{R}, 0)$. Then $(\Sigma, 0)$ is given by the zeros of the minors of the matrix $(\nabla \overline{g}, x, \nabla \phi_1, \ldots, \nabla \phi_r)$ of order n - d + 2, where $d = \dim(X, 0)$. Moreover, if $\epsilon > 0$ is a Milnor radius for (X, 0) and we fix a representative $g: X \to \mathbb{R}$ in the open ball B_{ϵ} , the critical points at infinity of g are exactly the points in $\Sigma \cap S_{\epsilon}$.

LEMMA 0.1: Let $(X, 0) \subset (\mathbb{R}^n, 0)$ be a real analytic variety with isolated singularity larity and let $g: (X, 0) \to (\mathbb{R}, 0)$ be an analytic function with isolated singularity. There exists $\epsilon_0 > 0$ such that for all ϵ with $0 < \epsilon < \epsilon_0$ and for all $x \in \Sigma \cap S_{\epsilon}$, $g(x) \neq 0$ and if g(x) > 0 (resp. g(x) < 0), then x is an outward (resp. inward) boundary critical point.

Proof. We first show that $(\Sigma \cap g^{-1}(0), 0) = (\{0\}, 0)$. If not, by the curve selection lemma, there would be an analytic arc $\gamma : [0, \eta) \to \mathbb{R}^n$ such that $\gamma(0) = 0$ and $\gamma(0, \eta) \subset \Sigma \cap g^{-1}(0) \setminus \{0\}$.

Since γ is not constant and after shrinking η if necessary, we can assume that $\gamma(t) \neq 0$ and $\gamma'(t) \neq 0$, for all $t \in (0, \eta)$. In fact, we also assume that for each $i = 1, \ldots, n$, either $\gamma_i = 0$ or $\gamma_i(t) \neq 0$ and $\gamma'_i(t) \neq 0$, for all $0 < t < \eta$. Since γ_i is either constant, strictly increasing or strictly decreasing and $\gamma_i(0) = 0$, it follows that $\gamma_i(t)$ and $\gamma'_i(t)$ must have the same sign along $(0, \eta)$. In particular, we have

$$\langle \gamma(t), \gamma'(t) \rangle = \sum_{i=1}^{n} \gamma_i(t) \gamma'_i(t) > 0, \quad \forall t \in (0, \eta).$$

Since $\gamma(t) \in \Sigma$, we have for all $0 < t < \eta$

$$\nabla \overline{g}(\gamma(t)) = \lambda_0(t)\gamma(t) + \sum_{i=1}^r \lambda_i(t)\nabla \phi_i(\gamma(t)),$$

for some $\lambda_i(t) \in \mathbb{R}$, i = 0, ..., r. Note that the fact that g has isolated singularity implies that $\lambda_0(t) \neq 0$.

On the other hand, $g(\gamma(t)) = 0$, for all $0 < t < \eta$, so

$$0 = (g \circ \gamma)'(t) = (\overline{g} \circ \gamma)'(t) = \langle \nabla \overline{g}(t), \gamma'(t) \rangle = \lambda_0(t) \langle \gamma(t), \gamma'(t) \rangle,$$

which gives a contradiction. Hence, we have shown the first part of the lemma.

Observe that a similar argument proves also the second part of the lemma. In fact, if we take now an analytic arc $\gamma : [0, \eta) \to \mathbb{R}^n$ such that $\gamma(0) = 0$ and $\gamma(0, \eta) \subset \Sigma \setminus \{0\}$, we know that $g(\gamma(t)) \neq 0$, for all $0 < t < \eta$. After shrinking η if necessary, we can assume that $(g \circ \gamma)'(t) \neq 0$ and $\langle \gamma(t), \gamma'(t) \rangle > 0$, for all $0 < t < \eta$. Since $g(\gamma(0)) = 0$, the sign of $g(\gamma(t))$ coincides with the sign of its derivative:

$$(g \circ \gamma)'(t) = (\overline{g} \circ \gamma)'(t) = \langle \nabla \overline{g}(t), \gamma'(t) \rangle = \lambda_0(t) \langle \gamma(t), \gamma'(t) \rangle.$$

If $g(\gamma(t)) > 0$ (resp. $g(\gamma(t)) < 0$), then $\lambda_0(t) > 0$ (resp. $\lambda_0(t) < 0$) and thus $\gamma(t)$ is an outward (resp. inward) boundary critical point.

Let X be a complex analytic manifold and $f : X \to \mathbb{C}$ be a holomorphic function. Let g be the real part of f and $G = |f|^2$. We denote by $\widetilde{\Sigma}$ the subset of points $x \in X$ where $\nabla g(x)$ and $\nabla G(x)$ are collinear. Assume $\delta^2 > 0$ is a regular value of G and consider the restriction

$$g: G^{-1}[0, \delta^2] = f^{-1}(\overline{D}_{\delta}) \longrightarrow [-\delta, \delta].$$

Then, $\widetilde{\Sigma} \cap G^{-1}(\delta^2)$ is equal to the set of boundary critical points of $g: f^{-1}(\overline{D}_{\delta}) \to [-\delta, \delta].$

508

ERRATUM

LEMMA 0.2: With the above notation, we have:

- (1) If $f(x) \neq 0$, then f is regular at x if and only if G is regular at x.
- (2) For all $x \in \widetilde{\Sigma} \cap G^{-1}(\delta^2)$, $g(x) \neq 0$ and if g(x) > 0 (resp. g(x) < 0), then x is an outward (resp. inward) boundary critical point.

Proof. By taking local coordinates in X, we can assume that X is an open subset of \mathbb{C}^d . For all $i = 1, \ldots, d$, we have $G_{z_i} = \overline{f} f_{z_i}$ and $G_{\overline{z}_i} = f\overline{f}_{\overline{z}_i}$, so item (1) is obvious.

To see item (2), we observe that $g = (f + \overline{f})/2$, hence $g_{z_i} = \frac{1}{2}f_{z_i}$ and $g_{\overline{z}_i} = \frac{1}{2}\overline{f}_{\overline{z}_i}$, for all $i = 1, \ldots, d$. If $x \in \widetilde{\Sigma} \cap G^{-1}(\delta^2)$, then x is a regular point of G and $G(x) = \delta^2 > 0$. Thus, x is also a regular point of f and g, hence $G_{z_i}(x) = \lambda g_{z_i}(x)$ for some $\lambda \neq 0$. Hence,

$$\overline{f}(x)f_{z_i}(x) = \lambda \frac{1}{2}f_{z_i}(x), \quad \forall i = 1, \dots, d.$$

This implies $f(x) = \lambda/2 \in \mathbb{R}$, so $g(x) = \lambda/2 \neq 0$ and if g(x) > 0 (resp. g(x) < 0), then x is an outward (resp. inward) boundary critical point.

Proof of Theorem A.5. We can see X_s as the germ of a real analytic variety of dimension 2d in \mathbb{R}^{2N} . We write $f_s(x) = g_s(x) + ih_s(x)$ and $G_s(x) = |f_s(x)|^2$, for each $x \in X_s$.

We use [4, Lemma A.6], which is unaffected by the mistake; then g_0 has isolated singularity. By Lemma 0.1 and after shrinking ϵ if necessary, we have that for all $x \in \Sigma \cap S_{\epsilon}$, $g_0(x) \neq 0$, and if $g_0(x) > 0$ (resp. $g_0(x) < 0$), then xis an outward (resp. inward) boundary critical point. We also assume that ϵ is small enough in such a way that $(g_0)|_{\overline{X} \cap S_{\epsilon}}$ has only isolated critical points.

Let $\eta > 0$ such that $|g_0(x)| > \eta$, for all $x \in \Sigma(g_0|_{\overline{X} \cap S_{\epsilon}})$. Take also $\alpha, \delta > 0$ such that $0 < \alpha < \delta < \eta$ and the closed disk \overline{D}_{δ} is contained in the image f(X)and δ^2 is a regular value of G. Finally, by continuity, we can choose $\beta > 0$ small enough, such that:

- (1) $\overline{D}_{\delta} \subset f_s(X_s)$ and δ^2 is a regular value of G_s ,
- (2) $|g_s(x)| > \eta$, for all $x \in \Sigma(g_s|_{\overline{X}_s \cap S_\epsilon})$,
- (3) $|g_s(x)| < \alpha$, for all $x \in \Sigma(g_s)$,

for all $0 < |s| < \beta$.

We apply Morse theory to the function $g_s : f_s^{-1}(\overline{D}_{\delta}) \to [-\delta, \delta]$. Observe that this is a non-proper Morse function, so we have to use stratified Morse theory in the sense of [2, 10.8]. Let $b_1, b_2 \in \mathbb{R}$ such that $-\delta < b_1 < -\alpha$ and $\alpha < b_2 < \delta$ (see Fig. 2). Then,

 $f_s^{-1}(\overline{D}_{\delta}) = g_s^{-1}[-\delta, \delta] = g_s^{-1}[-\delta, b_1] \cup g_s^{-1}(b_1, b_2] \cup g_s^{-1}(b_2, \delta].$

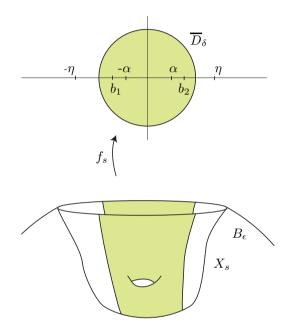


Figure 2

By conditions (2) and (3), $g_s^{-1}(b_2, \delta]$ does not contain critical points at infinity nor interior critical points. Also, by Lemma 0.2, all the boundary critical points are outward. It follows from [2, 10.8] or [1, Theorem 4.1] that the homotopy type of $g_s^{-1}[-\delta, b]$, with $b_2 \leq b \leq \delta$, does not change when passing through these critical values, that is,

$$f_s^{-1}(\overline{D}_{\delta}) \simeq g_s^{-1}[-\delta, b_1] \cup g_s^{-1}(b_1, b_2].$$

Also by [2, 10.8], since $g_s^{-1}(b_1, b_2]$ contains $\#\Sigma f_s$ Morse critical points of g_s with index d, we have

 $f_s^{-1}(\overline{D}_{\delta}) \simeq g_s^{-1}[-\delta, b_1]$ with $\#\Sigma f_s$ cells of dimension d attached.

Hence,

$$\chi(f_s^{-1}(\overline{D}_{\delta})) = \chi(g_s^{-1}[-\delta, b_1]) + (-1)^d \# \Sigma f_s.$$

510

Vol. 224, 2018

ERRATUM

We observe that $g_s^{-1}[-\delta, b_1]$ is a locally closed subset of \mathbb{C}^N , f_s is a submersion on $g_s^{-1}[-\delta, b_1]$ and the restriction of f_s to the closure of $g_s^{-1}[-\delta, b_1]$ is a proper map. Then, by the Thom first isotopy lemma, f_s is a fibration on $g_s^{-1}[-\delta, b_1]$. Therefore,

$$\chi(g_s^{-1}[-\delta,b_1]) = \chi(f_s^{-1}(b_1))\chi(\overline{D}_\delta \cap ([-\delta,b_1] \times \mathbb{R})) = \chi(f_s^{-1}(b_1)).$$

Since f_s is a fibration on the subset of D_{δ} of its regular values, the homotopy type of $f_s^{-1}(c)$ is independent of the regular value c. Thus,

$$\chi(f_s^{-1}(c)) = \chi(f_s^{-1}(\overline{D}_{\delta})) + (-1)^{d+1} \# \Sigma f_s.$$

It only remains to show that $\chi(f_s^{-1}(\overline{D}_{\delta})) = \chi(X_s)$. To see this, we apply again Morse theory to the function $G_s : X_s \to [0, +\infty)$. For $b_3 \in \mathbb{R}$ big enough, we have

$$X_s = G_s^{-1}[0, b_3] = G_s^{-1}[0, \delta^2] \cup G_s^{-1}[\delta^2, b_3].$$

By Lemma 0.1, all the critical points at infinity in $G_s^{-1}[\delta^2, b_3]$ are outward. Again, by [2, 10.8],

$$X_s \simeq G_s^{-1}[0,\delta^2] = f_s^{-1}(\overline{D}_\delta). \qquad \blacksquare$$

Remark 0.3: When $X = \mathbb{C}^n$, we get another proof of the following well know formula for the Milnor number of a function (see [3, Theorem 7.2]): let f: $(\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be a holomorphic function with isolated singularity; then

$$\mu(f) = \dim_{\mathbb{C}} \frac{\mathcal{O}_n}{J(f)},$$

where \mathcal{O}_n is the local ring of homolorphic function germs in $(\mathbb{C}^n, 0)$ and J(f) is the ideal generated by the partial derivatives of f. In fact, by definition $\mu(f)$ is the number of (n-1)-spheres in the Milnor fibre $f^{-1}(c)$. Since $f^{-1}(c)$ has the homotopy type of a wedge of (n-1)-spheres, by Theorem A.5 we have

$$\mu(f) = (-1)^{n-1} (\chi(f^{-1}(c)) - 1) = \# \Sigma f_s,$$

where $f_s : B_{\epsilon} \to \mathbb{C}$ is a Morsification of f. But the number $\#\Sigma f_s$ is equal to the local degree of the gradient $\nabla f : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ which is equal to $\dim_{\mathbb{C}} \mathcal{O}_n/J(f)$.

References

- D. Braess, Morse-Theorie f
 ür berandete Mannigfaltigkeiten, Mathematische Annalen 208 (1974), 133–148.
- [2] M. Goresky and R. MacPherson, Stratified Morse Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 14, Springer-Verlag, Berlin, 1988.
- [3] J. Milnor, Singular Points of Complex Hypersurfaces, Annals of Mathematics Studies, Vol. 61, Princeton University Press, Princeton, NJ, 1968.
- [4] J. J. Nuño-Ballesteros, B. Oréfice-Okamoto and J. N. Tomazella, The vanishing Euler characteristic of an isolated determinantal singularity, Israel Journal of Mathematics 197 (2013), 475–495.