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Abstract
Hyperelastic-based plastic constitutive equation based on the multiplicative decomposition of the deformation gradient

tensor is reviewed comprehensively and its exact formulation is given for the description of the finite deformation and

rotation in this article. Further, it is extended to describe the general loading behavior including the monotonic, the cyclic

and the non-proportional loading behaviors by incorporating the rigorous plastic flow rules and the subloading surface

model. In addition, it is extended also to the rate-dependency based on the overstress model, and the exact hyperelastic-

based plastic constitutive equation of friction is formulated by incorporating the subloading-friction model. They are the

exact constitutive equations describing the monotonic and the cyclic loading behavior up to the finite deformation/rotation

and the friction behavior under the finite sliding/rotation with the rate-dependency, which have remained to be unsolved for

a long time, although they have been required in the history of elastoplasticity theory.

1 Introduction

The elastic deformation and the plastic deformation are

physically different to each other such that the former is

induced by the deformation of material particles them-

selves but the latter is induced by the mutual slips between

the material particles. Therefore, the elastoplasticity is

based on the premise that the deformation is decomposed

into the elastic and the plastic deformations, so that the

irreversible change of substructure is described by the

isotropic and the anisotropic hardenings which evolve only

by the plastic deformation, while the elastic deformation is

irrelevant to the irreversible change of substructure. Here,

it should be noticed that the deformation and its rate can be

described exactly by the deformation gradient tensor which

transforms the reference infinitesimal line element to the

current one. Therefore, the exact elastoplastic constitutive

equation must be formulated by incorporating the definite

decomposition of the deformation gradient tensor into the

elastic and the plastic parts which is realized by the mul-

tiplicative decomposition of the deformation gradient

tensor [52, 55, 56, 58–60]. However, it now passed already

a half century after the proposition of the multiplicative

decomposition of deformation gradient tensor. In the

meantime, unfortunately the hypoelastic-based plasticity

has been studied enthusiastically by numerous workers

represented by Rodney Hill and James R. Rice after the

proposition of the hypoelasticity by Truesdell [83], which

is not based on the multiplicative decomposition definitely.

The multiplicative hyperelastic-based plasticity has been

studied centrally by Simo and his colleagues (e.g.

[68, 74–77, 79–81]) in the last century, in which the log-

arithmic strain has been used mainly leading to the co-

axiality of stress and strain rate so that it has been limited

to the isotropy. It has been developed actively from this

century on by Menzel and Steinmann [63], Wallin et al.

[87], Dettmer and Reese [14], Menzel et al. [64], Wallin

and Ristinmaa [86], Gurtin and Anand [18], Sansour et al.

[73], Vladimirov et al. [84, 85], Henann and Anand [47],

Hashiguchi and Yamakawa [46], Brepols et al. [6],

Hashiguchi [27, 31], etc. in which constitutive relations are

formulated in the intermediate configuration imagined

fictitiously by the hyperelastic unloading to the stress-free

state. However, the plastic flow rule with the generality for

the elastically anisotropy remains unsolved and only the

conventional plasticity model (named by Drucker [15])

with the yield surface enclosing the elastic domain have

been incorporated so that only the monotonic loading
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behavior of elastically-isotropic materials are concerned in

them.

The precise description of the plastic strain rate induced

by the rate of stress inside the yield surface is inevitable for

the prediction of cyclic loading behavior which is crucial

for the accurate mechanical design of solids and structures

in engineering. A lot of works have been executed and

various unconventional plastic constitutive (cyclic plastic-

ity) models (named by Drucker [15]) have been proposed

aiming at describing the plastic strain rate caused by the

rate of stress inside the yield surface after 1960s when the

demands of mechanical designs for the vibration proof and

the earthquake proof have been highly raised responding to

the high development of machine industries and the fre-

quent occurrences of earthquakes in Niigata (Japan) and

Chili, etc. Among various unconventional models the multi

surface model [51, 66], the two surface model [12, 53, 91]

and the superposed-kinematic hardening model [10, 67] are

well-known. However, they inherit a small yield surface

enclosing purely-elastic domain from the conventional

plasticity model and are based on the premise that the

plastic strain rate develops with the translation of the small

yield surface so that they are called the cyclic kinematic

hardening model. Therefore, they possess various defects,

e.g. (1) the abrupt transition from the elastic to the plastic

state violating the continuity and the smoothness condi-

tions [21, 22, 24], (2) the incorporation of the offset value

of the plastic strain at yield, (3) the incapability of cyclic

loading behavior for the stress amplitude less than the

small yield surface assumed inside the conventional yield

surface, (4) the incapability of the non-proportional loading

behavior, (5) the incapability of extension to the rate-de-

pendency at high rate of deformation up to the impact

loading behavior, (6) the limitation to the description of

deformation behavior in metals, (7) the necessity of the

additional cumbersome operation to pull-back the stress to

the yield surface. On the other hand, only the subloading

surface model [19, 20, 33] does not incorporate the yield

surface enclosing a purely-elastic domain so that it pos-

sesses the high ability for describing not only the mono-

tonic but also the cyclic and the non-proportional loading

behaviors, resolving all the above-mentioned defects in the

other elastoplasticity models. In addition, it possesses the

automatic controlling function to pull-back the stress to the

yield surface when the stress goes out from the yield sur-

face in numerical calculations [19, 20, 33]. It is capable of

describing the elastoplastic deformation behavior in not

only metals but also soils [38, 42, 89] and further the

friction behavior rigorously [24, 26, 40, 41]. It would be

regarded to be the governing law of the irreversible

mechanical phenomena of solids.

The subloading surface model has been incorporated to

the commercial software Marc 2017.1 version in Marc

Software Corporation as the standard installation by the

name ‘‘Hashiguchi model’’, which can be used by all Marc

contractors (users). Therefore, it is explained in the Marc

user manual [61] in brief. Needless to say, however, it is

limited to the formulation in the ordinary current configu-

ration, whereas there is no commercial software installed

the multiplicative hyperelastic-based plastic constitutive

equation up to date.

First, the basic frameworks of the elastoplastic consti-

tutive equations will be reviewed briefly in order to confirm

the necessity of the multiplicative decomposition of the

deformation gradient tensor into the elastic and the plastic

parts. Therein, the fundamentals in the multiplicative

decomposition will be delineated concisely where the

interpretation of the isoclinic concept is given thoroughly.

Then, the exact hyperelastic-based plastic constitutive

equation will be formulated within the framework of the

multiplicative decomposition of the deformation gradient

tensor, incorporating the rigorous plastic flow rules and the

subloading surface model. It will be extended to the rate-

dependency based on the overstress model by revising the

former formulations of the overstress model so as to be

applicable to the general rate ranging from the quasi-static

to the impact loading behaviors [31, 33]. Further, the exact

hyperelastic-based plastic constitutive equation of friction

is formulated rigorously, in which not only the rotation but

also the deformation of the contact surface can be incor-

porated, although the hypoelastic-based plastic constitutive

equation has been formulated in the past [31, 33, 40, 41].

They are the exact constitutive equations describing not

only the monotonic and the cyclic loading behavior under

the finite deformation/rotation and the cyclic friction

behavior under the finite sliding/rotation. Then, the com-

prehensive review will be given for the multiplicative

hyperelastic-based plasticity for finite deformation/rotation

and finite friction-sliding/rotation, incorporating the vari-

ous novel, rational formulations which have not been

shown in existing literatures.

The direct notations u � v for urvr, u� v for uivj, Av for

Airvr, A : B for ArsBrs, AB for AirBrj, C : A for CijrsArs,

A : C for ArsCrsij, A� B for AijBkl and C : N for CijrsNrskl

are used for arbitrary vectors u and v, second-order tensors

A and B, fourth-order tensors C and N, where the Ein-

stein’s summation convention is applied for letters with

repeated indices taking 1, 2, 3. Further, 0 and O stand for

the zero vector and tensor, respectively, I and I stand for

the second-order and the fourth-order identity tensors

possessing the components of the Kronecker’s delta dij
ðdij ¼ 1 for i ¼ j; dij ¼ 0 for i 6¼ jÞ and I ijkl ¼ dikdjl,
respectively, trA ¼ Aijdij for the trace, A0 ¼ A� (trAÞI=3
for the deviatoric tensor, A�1 for the inverse tensor satis-

fying AA�1 ¼ I and kAk ¼
ffiffiffiffiffiffiffiffiffiffiffi

AijAij

p

for the magnitude and
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the symbol ðÞT for the transposed tensor. The notations

sym½A� � ðAþ ATÞ=2 and ant½A� � ðA� ATÞ=2 stand for

the symmetric and the antisymmetric parts, respectively. (�)

stands for the material-time derivative. The symbol h i
designates the Macaulay’s bracket defined by

hsi ¼ ðsþ jsj=2Þ, i.e. s\0 : hsi ¼ 0 and s� 0 : hsi ¼ s (s:

arbitrary scalar variable).

2 Classification of Elastoplastic Constitutive
Equations

The advantages of the multiplicative hyperelastic-based

plasticity should be clarified prior to its formulation which

is to be the purpose of this article. The basic frameworks of

elastoplastic constitutive equations are classified and their

features are described concisely in the following.

2.1 Infinitesimal Elastoplasticity

1. The infinitesimal strain is additively decomposed into

the elastic and the plastic parts.

2. The reference and the current configurations are not

distinguished.

3. The Cauchy stress is used as the stress measure.

4. The stress is related to the elastic strain by the

hyperelastic relation based on the strain energy poten-

tial function.

5. The plastic strain rate is calculated and its accumula-

tion leads to the plastic strain.

6. The elastic strain is calculated by subtracting the

plastic strain from the strain.

7. The stress is calculated by substituting the elastic strain

into the hyperelastic equation.

8. The infinitesimal elastic and plastic deformation with-

out a rotation is described.

2.2 Hypoelastic-Based Plasticity

1. The symmetric and the anti-symmetric parts of the

velocity gradient are defined as the strain rate and the

spin, respectively.

2. The strain rate and the spin are additively decomposed

into the elastic and the plastic parts.

3. The formulation is performed in the current configu-

ration which is influenced by the material rotation.

4. The elastic strain rate is related to the stress rate by the

hypoelastic relation [83], so that the elastic deforma-

tion cannot be described exactly.

5. The corotational stress rate is used in order to exclude

the influence of material rotation from the material-

time derivative of stress, while the responses by

various corotational stress rate have been examined

by Dafalias [11], Zbib and Aifantis [92], Gambirasio

et al. [17], etc.

6. The cumbersome operation is required for the time-

integration of the corotational stress rate in order to

calculate the stress (cf. [13, 33, 78], etc.).

7. The finite plastic deformation with the finite rotation

are described under the restriction of the infinitesimal

elastic deformation.

Most of past literatures ([3, 4, 13, 33, 78], etc.) are

concerned mainly with the explanation within the frame-

work of the hypoelastic-based plasticity.

2.3 Multiplicative Hyperelastic-Based Plasticity

1. The deformation gradient tensor is multiplicatively

decomposed into the elastic and the plastic parts.

2. The formulation is performed in the intermediate

configuration which is not influenced by the material

rotation by virtue of the isoclinic concept [58–60] as

will be described in Sect. 3.

3. The strain rate and the spin in the intermediate

configuration are additively decomposed into the

purely elastic and the purely plastic parts exactly.

4. The Mandel stress [58] in the intermediate configura-

tion is adopted as the stress measure, which is work-

conjugate to the strain rate in the intermediate

configuration.

5. The second Piola–Kirchhoff stress is related to the

right Cauchy–Green deformation tensor in the inter-

mediate configuration by the hyperelastic relation, and

the Mandel stress is calculated by multiplying the

elastic right Cauchy–Green deformation tensor to the

second Piola–Kirchhoff stress.

6. The plastic velocity gradient is calculated and its

accumulation leads to the plastic deformation gradient.

7. The elastic deformation gradient is calculated by

excluding the plastic deformation gradient from the

deformation gradient, from which the elastic right

Cauchy–Green deformation tensor is calculated.

8. The second Piola–Kirchhoff stress is calculated by

substituting the elastic right Cauchy–Green deforma-

tion tensor into the hyperelastic relation.

9. The finite elastic and plastic deformations with the

finite rotation can be described exactly.

Consequently, the exact elastoplastic constitutive equation

based on the multiplicative decomposition will be formu-

lated in the subsequent sections.
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3 Multiplicative Decomposition
of Deformation Gradient Tensor Based
on Isoclinic Concept

The following physical facts should be noticed for the

rigorous formulation of elastoplastic constitutive equation.

(1) Decomposition of deformation/rotation into elas-

tic and plastic parts:

The physical mechanisms of the elastic deformation

and the plastic deformation are substantially differ-

ent to each other such that the former is induced by

the deformation of material particles themselves and

the latter is induced by the mutual slips between

material particles. Therefore, the deformation must

be decomposed into the purely elastic deformation

with the potential energy function and the plastic

deformation exactly. Then, the irreversible variation

of mechanical response is described rigorously by

incorporating the internal variables which evolve

only by the plastic deformation. If not, the irrational

result is caused such that the internal variables

evolve even by the elastic deformation.

(2) Deformation/rotation (rate) measures based on

deformation gradient tensor:

The deformation/rotation (rate) of materials can be

described exactly by the deformation gradient tensor

F. Then, the elastic and the plastic parts must be

described rigorously by the definite decomposition

of the deformation gradient tensor into the elastic

and the plastic parts.

Based on the above-mentioned basic requirements, the

multiplicative decomposition of the deformation gradient

tensor was advocated by Kroner [54], Lee and Liu [56],

Lee [55], Mandel [58–60] and Kratochvil [52]. Then, the

deformation gradient F ¼ ox=oX, where x and X are the

position vectors in the current and the reference configu-

rations, respectively, is multiplicatively decomposed into

the elastic deformation gradient Fe and the plastic defor-

mation gradient Fp.

F ¼ FeFp ð1Þ

Here, based on the requirement of the exact decomposition

of deformation into the purely elastic and the plastic parts,

Fe is calculated from the current stress by the hyperelastic

relation reflecting the real hyperelastic property of material

and then Fp is calculated from F and Fe. In other words, the

plastic deformation gradient Fp is obtained by the

unloading to the stress-free state along the hyperelastic

relation. The unloaded configuration to the stress-free state

is called the intermediate configuration. Equation (1) is

regarded as the three-dimensional extension of the multi-

plicative decomposition of the stretch k ¼ l=l0 into

k ¼ kekp with ke ¼ l=lp; kp ¼ lp=l0 where l is the current

length, l0 is the initial length, and lp is the length in the

unloaded state to the stress-free state.

Here, note that solids possess the heterogeneous sub-

structures which are statically-indeterminate (non-static

stability) in general. Therefore, the purely-elastic defor-

mation is induced only in the initiation of unloading pro-

cess and the plastic deformation is slightly induced

(removed) in the actual unloading process to the stress-free

state. In order to let all material points be released to the

real stress-free state, we must give different amounts of de-

stressing to individual material points by cutting a material

up into pieces. Therefore, the vector d �X of the infinitesimal

line-element in the intermediate configuration is merely a

fictitious vector differing from an actual position vector

because it is merely calculated to fulfill the following

equation from the elastic deformation gradient tensor Fe or

the plastic deformation gradient Fp, while dX and dx are

the actual infinitesimal line-elements.

d �X ¼ Fe�1

dx ¼ FpdX ð2Þ

In addition, the following equations do not possess any

primal physical roles.

Fe ¼ ox

o �X
; Fp ¼ o �X

oX

The elastoplastic deformation process base on this notion is

illustrated in Fig. 1 where the initial, the intermediate and

the current configurations are specified by the symbols K0,
�K and K, respectively. The tensors in the current config-

uration are designated by the lowercase letter as t, the ones

in the reference configuration by the uppercase letters as T

and the ones in the intermediate configuration by the

uppercase letters with the upper bar as �T.

Note here that

X

F

eF

pF

dX

0

dx
x

dX

X

Fig. 1 Multiplicative decomposition of deformation gradient
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(1) A rigid-body rotation is involved in the deformation

gradient F in general.

(2) The multiplicative decomposition in Eq. (1) is

rewritten as F ¼ FeFp ¼ ðFeRTÞðRFpÞ ¼ Fe�Fp�,
where R is an arbitrary rigid-body rotation added

to the intermediate configuration and

Fe� ¼ FeRT ;Fp� ¼ RFp. Therefore, the intermediate

configuration is not determined uniquely depending

on the rigid-body rotation added to the intermediate

configuration.

Then, the extensive debates as to which an elastic

deformation gradient or a plastic deformation gradient

must involve the rigid-body rotation have been repeated for

a long time after the proposition of the multiplicative

decomposition. The inclusion of the rigid-body rotation in

the plastic deformation gradient has been insisted in many

literatures. This situation would be caused by worrying the

fact that the elastic distortion is known from the current

stress but the rigid-body rotation is unknown and thus it is

possible to exclude only the elastic distortion but it is

impossible to exclude both of the rigid-body rotation and

the elastic distortion from the current configuration in order

to get to the intermediate configuration. On the other hand,

the inclusion of the rigid-body rotation in the elastic

deformation gradient has been insisted by the others.

One has only to assume the intermediate configuration

so as to lead to the rigorous formulation of constitutive

equation, since it is not actual but merely fictitious. The

multiplicative hyperelastic-based plastic constitutive

equation can be formulated rigorously in the intermediate

configuration, since the strain rate and the spin tensors in

the intermediate configuration can be decomposed into the

purely elastic and plastic parts exactly as will be shown in

Eq. (13) with Eq. (10). Then, the plastic and the elastic

deformation gradient tensors are formulated as follows:

(1) The plastic deformation gradient Fp is formulated by

the plastic constitutive equation which, needless to

say, is independent of the rigid-body rotation. Here,

note that the plastic deformation is independent of

the rotation of substructure since the material

particles move in parallel along the substructure.

(2) The elastic deformation gradient Fe is formulated by

excluding Fp from the deformation gradient F.

(3) The elastic orthogonal tensor Re in the polar

decomposition Fe ¼ ReUe stands for the rotation of

substructure.

Consequently, the substructure does not rotate in the

intermediate configuration, where, needless to say, the

rigid-body rotation is involved in the elastic deformation

gradient tensor. It has been called the isoclinic concept by

Mandel [58–60], while ‘‘isoclinic’’ means ‘‘equal inclina-

tion’’, which is schematically shown in Fig. 2.

Here, it should be noted that the actual configuration is

the current configuration but the intermediate configuration

is the fictitious one. Therefore, it is natural to formulate

first the constitutive equation in the current configuration

and after that we transform it to the intermediate configu-

ration, resulting in the multiplicative hyperelastic-based

plastic constitutive equation.

Further, Fp is decomposed into the plastic storage part

Fp
ks causing the kinematic hardening and the plastic dissi-

pative part Fp
kd multiplicatively [57] as follows (see Fig. 3):

Fp ¼ Fp
ksF

p
kd ð3Þ

Based on the right Cauchy–Green deformation tensor

C � FTF; ð4Þ

the following tensors of the storage parts �C
e
and C

_
p
ks and

the dissipative parts Cp and C
_

p
kd are defined.

�C
e � FeTFe ¼ ðRe �U

eÞTRe �U
e ¼ �U

e2
;Cp � FpTFp;

C
_

p
ks � FpT

ks F
p
ks ¼ U

_
p2
ks ;C

p
kd � FpT

kd F
p
kd

(

ð5Þ

where one has

�C
p

ks � Fp�T
ks C

_
p
ksF

p�1
ks ¼ �G ð6Þ

�G is the metric tensor in the intermediate configuration.

The hat symbol ð_Þ is added to the variables based in the

kinematic hardening intermediate configuration K
_

as

shown in Fig. 3.

The velocity gradient l in the current configuration K is

additively decomposed into the elastic and the plastic parts:

l ¼ le þ lp ð7Þ

where

l � _FF
�1
;

le � _F
e
Fe�1; lp � Fe _F

p
Fp�1Fe�1 ¼ Fe �L

p
Fe�1;

�L
p � _F

p
Fp�1

8

<

:

ð8Þ

Further, the velocity gradient �L defined as the con-

travariant-covariant pull-back of the velocity gradient

tensor l in the current configuration to the intermediate

configuration �K can be additively decomposed into the

purely elastic and the purely plastic parts exactly as

follows:

�L ¼ �L
e þ �L

p ð9Þ

where
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�L � Fe�1lFe;

�L
e � Fe�1leFe ¼ Fe�1 _F

e
; �L

p � Fe�1lpFe ¼ _F
p
Fp�1

�

ð10Þ

Therefore, �L and �L
e
; �L

p
can be adopted in the exact for-

mulation of elastoplastic constitutive equation. Let them be

decomposed additively into the symmetric and the

antisymmetric parts, i.e.

�L ¼ �Dþ �W

�L
e ¼ �D

e þ �W
e
; �L

p ¼ �D
p þ �W

p

(

ð11Þ

�D ¼ �D
e þ �D

p
; �W ¼ �W

e þ �W
p ð12Þ

where

eR

F

Substructure rotation

Total 
deformation/rotation

0

e e e=F R U

Elastic deformation
eU

p p p=F R U

Elastic deformation/rotation
and  rigid-body rotation

Plastic deformation/rotation

∼

Fig. 2 Multiplicative decomposition of deformation gradient, where the rigid-body rotation is included in elastic deformation gradient, so that

the substructure does not rotate in the intermediate configuration: Isoclinic concept (Mandel [58–60])

X

F

eF

pF

dX

0

dx
x

dX

X

dX

X
p
dkF

p
skF

Fig. 3 Multiplicative decompositions of deformation gradient tensor

for material with kinematic hardening
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�D ¼ sym½ �L�; �W ¼ ant½ �L�
�D
e ¼ sym½ �Le�; �W

e ¼ ant½ �Le�
�D
p ¼ sym½ �Lp�; �W

p ¼ ant½ �Lp�

8

>

<

>

:

ð13Þ

The material-time derivative of �C
e

is given from

Eqs. (5)1 and (9) as

_�C
e
¼ 2sym½ �Ce �L

e� ¼ 2sym½ �Ceð �L� �L
pÞ� ð14Þ

noting

_�C
e
¼ ðFeTFeÞ� ¼ FeT _F

e þ _F
eT
Fe

¼ FeTFeðFe�1 _F
eÞ þ ð _FeT

Fe�TÞFeTFe ¼ �C
e �L

e þ �L
eT �C

e

Further, the plastic velocity gradient �L
p
is additively

decomposed into the storage and the dissipative parts for

the kinematic hardening as follows:

�L
p ¼ �L

p

ks þ �L
p

kd ð15Þ

where

�L
p

ks � _F
p

ksF
p�1
ks ¼ �D

p

ks þ �W
p

ks;

�L
p

kd � Fp
ks L

_
p
kdF

p�1
ks ¼ �D

p

kd þ �W
p

kd

8

<

:

ð16Þ

�D
p

ks � sym �L
p

ks

� �

; �W
p

ks � ant �L
p

ks

� �

�D
p

kd � sym �L
p

kd

� �

; �W
p

kd � ant �L
p

kd

� �

�

ð17Þ

L
_

p
kd ¼ _F

p

kdF
p�1
kd � Fp�1

ks
�L
p

kdF
p
ks ð18Þ

noting

�L
p ¼ Fp

ksF
p
kd

� ��
Fp
ksF

p
kd

� ��1¼ _F
p

ksF
p
kd þ Fp

ks
_F
p

kd

� 	

Fp�1
kd Fp�1

ks

¼ _F
p

ksF
p�1
ks þ Fp

ks
_F
p

kdF
p�1
kd Fp�1

ks

The material-time derivative of C
_

p
ks in Eq. (5) is given

by

_
C
_

p
ks ¼ 2FpT

ks
�D
p

ksF
p
ks ¼ 2FpT

ks ð �D
p � �D

p

kdÞF
p
ks ð19Þ

noting

_
C
_

pT
ks ¼ FpT

ks F
p
ks

� ��¼ FpT
ks

_F
p

ks þ _F
pT

ks F
p
ks

¼ FpT
ks

_F
p

ksF
p�1
ks Fp

ks þ FpT
ks F

p�T
ks

_F
pT

ks F
p
ks

¼ FpT
ks

_F
p

ksF
p�1
ks Fp

ks þ FpT
ks

_F
p

ksF
p�1
ks

� 	T

Fp
ks

¼ FpT
ks

�L
p

ksF
p
ks þ FpT

ks
�L
pT

ks F
p
ks

¼ 2FpT
ks

�D
p

ksF
p
ks

with Eq. (15).

4 Stress Measures

Introduce the second Piola–Kirchhoff stress tensor �S in the

intermediate configuration, which is the contravariant pull-

back of the Kirchhoff stress tensor s, i.e.

�S � FpSFpT ¼ Fe�1ðFSFTÞFe�T � Fe�1sFe�Tð¼ �S
TÞ

ð20Þ

and the Mandel stress [58]

�M � �C
e �S ¼ FeTsFe�Tð6¼ �M

TÞ ð21Þ

noting

�C
e �S ¼ ðFeTFeÞðFe�1sFe�TÞ ¼ FeTsFe�T ð22Þ

Here, note that the work-conjugate stress measure with the

strain rare �L in the intermediate configuration is the

Mandel stress �M as known from

s : l ¼ tr½ðFe �SF
eTÞðFe �LF

e�1ÞT � ¼ trðFe �SF
eT
Fe�T �L

T
FeTÞ

¼ trðFeTFe �S �L
TÞ ¼ trð �Ce �S �L

TÞ ¼ �C
e �S : �L ¼ �M : �L

Further, the contravariant push-forward of the 2nd

Piola–Kirchhoff stress-like variable S
_

k in the kinematic

hardening variable from K
_

to �K is given by

�Sk � Fp
ksS

_

kF
pT
ks ð¼ �S

T

k Þ; S
_

k � Fp�1
ks

�SkF
p�T
ks ð¼ S

_
T
k Þ ð23Þ

Further, the Mandel-like variable �Mk for the kinematic

hardening variable is given by

�Mk ¼ �C
p

ks
�Sk ¼ �G�Sk ¼ �Sk ¼ �M

T

k

� 	

ð24Þ

noting Eq. (6). Note here that the Mandel stress �M is not

symmetric tensor in general but the Mandel-like kinematic

variable �Mk is the symmetric tensor.

The material-time derivative of the kinematic hardening

variable �Sk in the intermediate configuration is given by

_�Sk ¼ Fp
ks

_
S
_

kF
pT
ks þ 2sym �L

p

ks
�Sk

� �

ð25Þ

from Eqs. (16)1 and (23), noting

_�Sk ¼ Fp
ks

_
S
_

kF
pT
ks þ _F

p

ksS
_

kF
pT
ks þ Fp

ksS
_

k
_F
pT

ks

¼ Fp
ks

_
S
_

kF
pT
ks þ _F

p

ksF
p�1
ks

�SkF
p�T
ks FpT

ks þ Fp
ksF

p�1
ks

�SkF
p�T
ks

_F
pT

ks

¼ Fp
ks

_
S
_

kF
pT
ks þ _F

p

ksF
p�1
ks

�Sk þ �SkF
p�T
ks

_F
pT

ks

¼ Fp
ks

_
S
_

k
_F
pT

ks þ �L
p

ks
�Sk þ �L

p

ks
�Sk

� �T

Further, the material-time derivative of �Mk is given

from Eq. (25) with Eqs. (15) and (24) by
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_�Mk ¼ _�Sk ¼ Fp
ks

_
S
_

kF
pT
ks þ 2sym �L� �L

p

kd

� �

�Mk

� �

: ð26Þ

5 Hyperelastic Constitutive Equations

The 2nd Piola–Kirchhoff stress push-forwarded to the

intermediate configuration, �S, is given by incorporating the

strain energy function wð �CeÞ as follows:

�S ¼ 2
oweð �CeÞ
o �C

e ð27Þ

and the Mandel stress is given as

�M � �C
e �S ¼ 2 �C

e oweð �CeÞ
o �C

e ð6¼ �M
TÞ ð28Þ

The tensor �M satisfies the symmetry �M ¼ �M
T

for the

particular case that we is the function of invariants of �C
e
,

leading to the elastic isotropy.

The material-time derivative of the Mandel stress is

given noting Eq. (14) as

_�M ¼ �L
e
: sym½ �Ceð �L� �L

pÞ� ð29Þ

noting

ð �Ce �SÞ	 ¼ oð �Ce �SÞ
o �C

e : _�C
e ¼ �Sþ �C

e o�S

o �C
e


 �

: _�C
e

¼ �Sþ 2 �C
e oweð �CeÞ
o �C

e � o �C
e


 �

: _�C
e ¼ �L

e
: _�C

e ¼ �L
e
: sym½ �Ceð �L� �L

pÞ�

where �L
e
is the fourth-order hyperelastic tangent modulus

tensor given by

�L
e � o �M

o �C
e ¼ �Sþ 1

2
�C
e
: �C

e ð30Þ

with

�C
e � 2

o�S

o �C
e ¼ 4

o2weð �CeÞ
o �C

e � o �C
e ð31Þ

Further, let S
_

k be formulated incorporating the strain

energy function wkðC
_

p
ksÞ as

S
_

k ¼ 2
owkðC

_
p
ksÞ

oC
_

p
ks

ð32Þ

from which one has

�Mkð¼ �C
p

ks
�SkÞ ¼ �Sk ¼ Fp

ksS
_

kF
pT
ks ¼ 2Fp

ks

owkðC
_

p
ksÞ

oC
_

p
ks

FpT
ks

ð33Þ

noting Eqs. (23) and (24).

The material-time derivative of S
_

k is given from

Eq. (32) with Eq. (19) as

_
S
_

k ¼ C
_

k :
1

2

_
C
_

p
ks ¼ C

_
k : FpT

ks
�D
p � �D

p

kd

� �

Fp
ks ð34Þ

where

C
_

k � 2
oS

_

k

oC
_

p
ks

¼ 4
o2wkðC

_
p
ksÞ

oC
_

p
ks � oC

_
p
ks

ð35Þ

Substituting Eq. (34) into Eq. (26), _�Mk is given as

follows:

_�Mk ¼ Fp
ks C

_
k : FpT

ks
�D
p � �D

p

kd

� �

Fp
ksF

pT
ks

þ 2sym �L
p � �L

p

kd

� �

�Mk

� �

ð36Þ

6 Multiplicative Hyperelastic-Based Plastic
Equation for Conventional Model

The multiplicative hyperelastic-based plastic constitutive

equation [34] for the conventional model on the premise

that the inside of the yield surface is a purely elastic

domain, which is applicable only to the description of

monotonic loading behavior, will be given based on the

equations formulated in the preceding sections.

6.1 Flow Rules for Plastic Strain Rate and Plastic
Spin

The yield surface with the isotropic and the kinematic-

hardenings is described by

f ð �̂MÞ ¼ FðHÞ ð37Þ

in the intermediate configuration, where H is the isotropic

hardening variable and

�̂M � �M� �Mkð6¼ �̂M
TÞ ð38Þ

Here, let the function f ð �̂MÞ be chosen to be homogeneously

degree-one of �̂M. The yield surface in Eq. (37) is shown in

Fig. 4.

The yield condition in Eq. (37) is described in the cur-

rent configuration as

f ðr̂Þ ¼ FðHÞ ð39Þ

where

r̂ � r� a ð40Þ

r is the Cauchy stress, i.e.

r ¼ Fe �SF
eT
=detFe ð41Þ

The evolution rule of kinematic hardening variable (back

stress) a in the infinitesimal elastoplasticity is given by the

nonlinear kinematic hardening rule [1, 33] as follows:
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_a ¼ ck _ep � 1

bk
_epk ka


 �

¼ ck n̂� 1

bk
a


 �

_epk k ð42Þ

where

n̂ � of ðr̂Þ
or

=
of ðr̂Þ
or

�

�

�

�

�

�

�

�

ð n̂k k ¼ 1Þ ð43Þ

_ep is the infinitesimal plastic strain rate in the current

configuration, noting that the anisotropic hardening is

induced only by the deviatoric strain rate, and ck and bk are

the material parameters. Note that the kinematic hardening

saturates as a ! bkn̂.

Let the plastic strain rate be given by the symmetrized

associated flow rule, noting that the plastic strain rate is to

be the symmetric tensor, as follows [29, 30]:

�D
p ¼ _̂k �̂N ð _̂k� 0Þ ð44Þ

where
_̂k is the positive plastic multiplier and �̂N is the

normalized and symmetrized outward-normal tensor of the

yield surface, i.e.

�̂N � sym
of ð �̂MÞ
o �M

" #

.

sym
of ð �̂MÞ
o �M

" #
�

�

�

�

�

�

�

�

�

�

ðk �̂Nk ¼ 1Þ ð45Þ

If the symmetry �M ¼ �M
T

holds, the symmetry

of ð �̂MÞ=o �M ¼ sym½of ð �̂MÞ=o �M� also holds. The expression

in Eq. (44) for the asymmetric tensor �M is first adopted by

Hashiguchi [29].

The dissipative part in the plastic velocity gradient for

the kinematic hardening variable in Eq. (16) is assumed for

the nonlinear-kinematic rule in Eq. (42) as follows:

�D
p

kd ¼
1

bk
�D
p�

�

�

� �Mk ¼
1

bk

_̂k �Mk ð46Þ

Let the plastic spin �W
p
in Eq. (13) and the kinematic-

hardening spin W
_

p
kd in Eq. (16), which are induced by the

plastic strain rate and the dissipative part of kinematic

hardening rate, respectively, be given extending the equa-

tion in the hypoelastic-based plasticity by Zbib and

Aifantis [92] as follows:

�W
p ¼ gpð �M �D

p � �D
p �MÞ ¼ gp _̂kð �M �̂N� �̂N �MÞ

�W
p

kd ¼ gpkð �M �D
p

kd � �D
p

kd
�MÞ ¼ ðgpk=bkÞ

_̂k ð �M �Mk � �Mk
�MÞ

8

<

:

ð47Þ

where gp and gk
p are the material parameters, while the flow

rules in Eqs. (44) and (46) are exploited. The plastic spin

tensor �W
p
diminishes if the symmetry of the Mandel stress,

i.e. �M ¼ �MT due to the elastic isotropy and the plastic iso-

tropy due to �Mk ¼ O holds. Further, needless to say, the spin

tensor �W
p

kd diminishes for the plastic-isotropy with �Mk ¼ O.

The flow rules in Eqs. (44), (46) and (47) hold for the

general material with an anisotropy. On the other and, the

past formulations of flow rules (e.g. [14, 18, 46, 73, 84–87]

have been concerned only to materials with the symmetry of

the Mandel stress �M ¼ �M
T
on the premise of the elastic

isotropy, resulting in the symmetry of ð �̂MÞ=o �M ¼
sym½of ð �̂MÞ=o �M� by which the plastic flow rule in Eq. (44) is

reduced to �D
p ¼ _̂k �̂N, where �̂N is the normalized outward-

normal to the yield surface. Needless to say, it cannot be

allowed to assume easily the flow rule �L
p ¼ _̂k �̂N [50] by

which the plastic spin is inevitably ignored for the elastically

isotropicmaterial ( �M ¼ sym[ �M�; �̂N ¼ of ð �̂MÞ=o �Mkof ð �̂MÞ=
o �Mk ¼ sym½ �̂N�) even for the plastically anisotropic

material.

The velocity gradients are given by substituting

Eqs. (44), (46) and (47) into Eqs. (11) and (16) as follows:

�L
p ¼ _̂k½ �̂Nþ gpð �M �̂N� �̂N �MÞ�

�L
p

kd ¼ (1/bkÞ _̂k �Mk þ gpkð �M �Mk � �Mk
�MÞ

� �

8

<

:

ð48Þ

The flow rule �L
p ¼ _k �̂N [50] is irrelevant in general.

The substitutions of Eq. (48) into Eqs. (29) and (36)

yield:

_�M ¼ �L
e
: sym½ �Cef �L� _k½ �̂Nþ gpð �M �̂N� �̂N �MÞ�g� ð49Þ

_�Mk ¼ _̂kfFp
ks C

_
k : FpT

ks ð �̂N� ð1=bkÞ �MkÞFp
ksF

pT
ks

þ 2sym½ð �̂Nþ gpð �M �̂N� �̂N �MÞ
� ð1=bkÞf �Mk þ gpkð �M �Mk � �Mk

�MÞgÞ �Mk�g

ð50Þ

Yield surface

kM

ˆ( ) = ( )f F HM

M

M̂

0 ijM

( )N

Fig. 4 Yield surface in the intermediate configuration
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6.2 Plastic Strain Rate

The time-differentiation of Eq. (37) leads to the consis-

tency condition as follows:

of ð �̂MÞ
o �M

: ð _�M� _�MkÞ � _F ¼ 0 ð51Þ

Here, it holds from Eq. (37) that

of ð �̂MÞ
o �M

: �̂M ¼ f ð �̂MÞ ¼ F ð52Þ

by the Euler’s theorem for the homogenous function f ð �̂MÞ
of �̂M in degree-one, and then it follows that

�̂N : �̂M ¼ of ð �̂MÞ
o �̂M

: �̂M=
of ð �̂MÞ
o �̂M

�

�

�

�

�

�

�

�

�

�

¼ f ð �̂MÞ
. of ð �̂MÞ

o �̂M

�

�

�

�

�

�

�

�

�

�

¼ F
. of ð �̂MÞ

o �̂M

�

�

�

�

�

�

�

�

�

�

which leads to

1=
of ð �̂MÞ
o �̂M

�

�

�

�

�

�

�

�

�

�

¼
�̂N : �̂M

F
ð53Þ

where

�̂N � of ð �̂MÞ
o �̂M

=
of ð �̂MÞ
o �̂M

�

�

�

�

�

�

�

�

�

�

ð6¼ �̂N
T
; k �̂Nk ¼ 1Þ ð54Þ

The substitution of Eq. (53) into Eq. (51) leads to

�̂N : ð _�M� _�MkÞ �
_F

F
�̂N : �̂M ¼ 0 ð55Þ

resulting in

�̂N : _�M� �̂N :
F0 _H

F
�̂Mþ _�Mk


 �

¼ 0 ð56Þ

where F0 : dF/dH and

_H ¼ fHdð �M;H; �D
p
=k �DpkÞk �Dpk ¼ fHnð �M;H; �̂NÞ _̂k ð57Þ

noting Eq. (44) and the homogeneity of _H in degree-one of

�D
p
, while fHn ¼

ffiffiffiffiffiffiffiffi

2=3
p

holds for the equivalent plastic

strain hardening.

The substitutions of Eqs. (49), (50) and (57) into

Eq. (56) lead to

�̂N : _�M�Mp _̂k ¼ 0 ð58Þ

from which it follows that

_̂k ¼
�̂N : _�M

Mp
; �D

p ¼
�̂N : _�M

Mp
�̂N ð59Þ

where

Mp � �̂N :
F0fHnð �M;F; �̂NÞ

F
�̂M

"

þ Fp
ks C

_
k : FpT

ks ð �̂N� ð1=bkÞ �MkÞFp
ksF

pT
ks

þ 2sym½ð �̂Nþ gpð �M �̂N� �̂N �MÞ
� ð1=bkÞf �Mk þ gpkð �M �Mk � �Mk

�MÞgÞ �Mk��

ð60Þ

The substitution of Eq. (49) into Eq. (58) leads to the

consistency condition

�̂N : �L
e
: sym½ �Ce �L� � f �̂N : �L

e

: sym½ �Cef �̂Nþ gpð �M �̂N� �̂N �MÞg� þMpg _̂K ¼ 0 ð61Þ

using the symbol
_̂K for the plastic multiplier in terms of the

strain rate instead of
_̂k in terms of the stress rate. The

plastic multiplier is expressed from Eq. (61) as follows:

_̂K ¼
�̂N : �L

e
: sym½CeL�

Mp þ �̂N : �L
e
: sym½ �Cef �̂Nþ gpð �M �̂N� �̂N �MÞg�

ð62Þ

The loading criterion is given by

�D
p 6¼ O for f ð �̂MÞ ¼ FðHÞ and

_̂K[ 0

�D
p ¼ O for others

(

ð63Þ

which can be given actually as

�D
p 6¼ O for f ð �̂MÞ ¼ FðHÞ and �̂N : �L

e
: sym½ �Ce �L�[ 0

�D
p ¼ O for others

(

ð64Þ

noting the positivity of the denominator in the plastic

multiplier in Eq. (62), while the verification of these

loading criterion was given by Hashiguchi [24, 33] for the

current configuration.

7 Multiplicative Hyperelastic-Based Plastic
Equation Incorporating Initial Subloading
Surface Model

The conventional elastoplasticity model has been extended

to describe the plastic strain rate caused by the rate of stress

inside the yield surface, while the extended models are

called the unconventional elastoplasticity models by

Drucker [15]. The subloading surface model [19, 20] as the

unconventional elastoplasticity model is based on a quite

natural postulate that the plastic strain rate is induced

progressively as the stress approaches the yield surface. In

this model, the surface, termed the subloading surface, be

incorporated, which always passes through the current

stress point and maintains the similar shape and same

orientation to the yield surface, renamed as the normal-
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yield surface. Then, let the similarity ratio, i.e. the ratio of

the size of subloading surface to that of normal-yield sur-

face, termed the normal-yield ratio and designated by the

symbol R ð0
R
 1Þ, be introduced as the general measure

for approaching degree of stress to the normal-yield

surface.

7.1 Subloading surface and evolution rule
of normal-yield ratio

The subloading surface is represented by the following

equation (see Fig. 5).

f ð �̂MÞ ¼ RFðHÞ ð65Þ

Assume the following evolution rule of normal-yield

ratio [20].

_R ¼ UðRÞ �D
p�

�

�

� for �D
p 6¼ O ð66Þ

where UðRÞ is the monotonically-decreasing function of

the normal-yield ratio fulfilling the conditions (see Fig. 6)

UðRÞ

! þ1 for 0
R
Re ðquasi-elastic stateÞ
[ 0 for Re\R\1 ðsub-yield stateÞ
¼ 0 for R ¼ 1 ðnormal-yield stateÞ
\0 for R[ 1 ðover normal-yield stateÞ

8

>

>

<

>

>

:

ð67Þ

Reð\1Þ is the material constant denoting the value of R

below which only an elastic deformation is induced prac-

tically. Here, we assume the explicit form of UðRÞ as

follows:

UðRÞ ¼ u cot
p
2

hR� Rei
1� Re


 �

ð68Þ

where u is the material parameter. Equation (66) can be

time-integrated analytically as follows:

R ¼ 2

p
ð1� ReÞcos�1 cos

p
2

R0 � Re

1� Re


 �


� exp �u
p
2

�Dp � �Dp
0

1� Re


 ��

þ Re

ð69Þ

under the initial condition R ¼ R0 for �Dp ¼ �Dp
0, where

�Dp ¼
R

jj �Dpjjdt.

7.2 Plastic Strain Rate

The time-differentiation of the subloading surface in

Eq. (65) reads:

of ð �̂MÞ
o �̂M

:
_̂�M� _RF � R _F ¼ 0 ð70Þ

which can be described as

�̂N :
_̂�M�

_F

F
þ

_R

R


 �

�̂N : �̂M ¼ 0 ð71Þ

where

�̂N � of ð �̂MÞ
o �M

,

of ð �̂MÞ
o �M

�

�

�

�

�

�

�

�

�

�

ð6¼ �̂N
T
; k �̂Nk ¼ 1Þ ð72Þ

The following relation based on the Euler’s homogenous

function is used for the derivation of Eq. (71) from

Eq. (70), noting Eq. (65).

�̂N : �̂M ¼
of ð �̂MÞ
o �̂M

: �̂M

of ð �̂MÞ
o �̂M

�

�

�

�

�

�

¼ RF

of ð �̂MÞ
o �̂M

�

�

�

�

�

�

;
1

of ð �̂MÞ
o �̂M

�

�

�

�

�

�

¼
�̂N : �̂M

RF
: ð73Þ

The flow rules for the plastic strain rate, the dissipative

part of the kinematic hardening variable and the plastic

spin and the spin of the dissipative part of the kinematic

hardening are given by Eqs. (44), (46) and (47) themselves.

Sunloading surface
0

ˆ( )  ( )=f R F HM

ij

M

kM

Normal - yield surface
ˆ( ) ( )=f F HM

M̂

ˆ ( )N
ˆ ( )N

Fig. 5 Normal-yield and subloading surfaces in intermediate

configuration

eR R1
0

( ) ( || ||)= / pRU R D

p OD

=p OD

p OD

Fig. 6 Function U(R) in the evolution rule of normal-yield ratio
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The plastic modulus is given by the following equation

instead of Eq. (60).

Mp � �̂N :
F0fHnð �M;F; �̂NÞ

F
þ UðRÞ

R

 !

�̂M

"

þ Fp
ks C

_
k : FpT

ks ð �̂N� ð1=bkÞ �MkÞFp
ksF

pT
ks

þ 2sym �̂Nþ gp �M �̂N� �̂N �MÞ
��h

�ð1=bkÞf �Mk þ gpkð �M �Mk � �Mk
�MÞgÞ �Mk�

i

ð74Þ

The loading criterion is given by

�Dp 6¼ O for
_̂K[ 0

�D
p ¼ O for other

(

ð75Þ

which can be given actually as

�D
p 6¼ O for �̂N : �L

e
: sym½ �Ce �L�[ 0

�D
p ¼ O for other

(

ð76Þ

in which the fulfillment of the yield condition is not

required, although it is required in Eq. (63) or (64) for the

conventional model.

The subloading surface model possesses the following

distinguished abilities.

1. Smooth transition from elastic to plastic state is

described, which is observed in real material behavior.

Therefore, we don’t need to suffer from the determi-

nation of an offset value (plastic strain value at yield

point) influenced by an arbitrariness. In contrast, the

abrupt transition from the elastic to the plastic state is

depicted and the determination of offset value is

required in all of the other models i.e. the conventional

model and the cyclic kinematic hardening models (the

multi surface model: Mroz [66] and Iwan [51], the two

surface model: Dafalias and Popov [12] and Krieg [53]

and the superposed-kinematic hardening model: Cha-

boche et al. [10]) since they assume the small yield

surface enclosing the purely-elastic domain. The

influence of the material parameter u on the stress–

strain curve is depicted in Fig. 7. The larger the

material parameter u, the more rapidly the normal-

yield ratio R increases causing the more rapid increase

of stress, i.e. approaching the behavior of the conven-

tional elastoplasticity.

2. The continuity and the smoothness conditions

[21, 22, 24] are satisfied, while these conditions are

violated in all of the other models assuming the yield

surface enclosing the purely-elastic domain.

3. Plastic strain rate can be described even for low stress

level and for cyclic loading process under small stress

amplitudes since a purely-elastic domain is not

assumed.

4. The yield-judgment whether or not the stress reaches

the yield surface is unnecessary since the plastic strain

rate develops continuously as the stress approaches the

normal-yield surface. In contrast, the yield judgment is

required in all of the other elastoplastic models since

they assume a surface enclosing a purely-elastic

domain.

5. The stress is automatically pulled-back to the normal-

yield surface when it goes out from the surface in

numerical calculation because of _R\0 for R[ 1 from

Eq. (66) with Eq. (67)4 as seen in Fig. 8. In contrast,

the particular operation to pull-back the stress to the

yield surface is required in all of the other models

because they assume a surface enclosing a purely-

elastic domain.

For the concise illustration of the above-mentioned

feature of the subloading surface model, let the stress

0 || || dtD

M|| ||

Fig. 7 Influence of material parameter u on stress-strain curve

0
|| ||  f( ) or = p pRR  U

• ≠D D O

•

•

     = 0 for  = 1
< 0

> 0  for

  for 

1
( )

> 1

 <

R

R
U RR

⎧
⎪
⎨
⎪⎩  

M|| ||

  || || dt∫ D

Subloading surface model

Fig. 8 Stress is automatically controlled to be attracted to yield

surface in subloading surface model
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versus strain relation in the uniaxial loading for the iso-

tropic Mises material with the yield condition
ffiffiffiffiffiffiffiffi

3=2
p

r0k k ¼
F be shown in the current configuration. The relations of

the axial Cauchy stress ra and the normal-yield ratio R

versus the axial strain ea : $ dadt are depicted in Fig. 9.

The responses adopting the linear isotropic hardening F ¼
F0 þ hceep (hc: material constant, eep : $da

pdt) are depicted

in Fig. 9a and those for the nonlinear isotropic hardening

rule FðHÞ ¼ F0f1þ h1½1� expð�h2eepÞ�g are shown in

Fig. 9b. The two levels of axial strain increment dea =

0.0006 and 0.0055 are input in the numerical calculations.

Here, any special algorithm for pulling back the stress to

the yield surface is not introduced. The material parameters

are chosen as follows:

Material constants:

Youg’smodulus: E ¼ 100;000MPa,

Hardening
Linear isotropic: hc ¼ 7000MPa,

Nonlinar isotropic: h1 ¼ 0:8; h2 ¼ 50;

�

Evolution of normal-yield ratio : u ¼ 200:

Initial values:

Hardening function: F0 ¼ 500MPa;

Stress: r0 ¼ OMPa

The nonsmooth curves bent at the yield point are expressed

by the conventional model. Moreover, the stress deviates

from the exact curve of the concventional elastoplasticity.

The deviation becomes larger with the increases in the

nonlinearity of hardening and in the increase of input strain

increment. On the other hand, the stress is automatically

attracted to the normal-yield surface in the subloading

subloading surface model even for the quite large strain

increment dea ¼ 0.0055 (0:55%Þ. The zigzag lines tracing

the exact curve are calculated such that the stress rises up

when it lies below the normal-yield surface but it drops

down immediately if it goes over the normal-yield surface,

obeying the evolution rule of normal-yield ratio in Eq. (66)

with Eq. (68), i.e. _R[ 0 for R\1 and _R\0for R[ 1. The

amplitude of zigzag decreases gradulally in the monotonic

Exact curve of conventional elastoplasticity 
Calculated by the conventional elastoplastic model
Calculated by the subloading surface model
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Fig. 9 Numerical accuracies of the conventional model and the subloading surface model: uniaxial loading behavior of Mises material with

isotropic hardening. a Linear isotropic hardening. b Nonlinear isotropic hardening
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loading process, while, needless to say, the amplitude is

smaller for a smaller input increment of strain. Eventually,

the subloading surface model posseses the distinguished

high ability for numerical calculation as verified also

quantitatively in these concrete examples, which cannot be

attained in any other elastoplastic constitutive models

including the conventional model and the cyclic kinematic

hardening models.

8 Multiplicative Hyperelastic-Based Plastic
Equation Incorporating Extended
Subloading Surface Model

The initial subloading surface model is furnished with the

distinguished ability improving the conventional elasto-

plastic model as described in the last section. However, it is

incapable of describing the cyclic loading behavior, pre-

dicting open hysteresis loops because only elastic defor-

mation is induced in the unloading process. Then, it has

been extended such that the similarity-center of the normal-

yield and the subloading surfaces moves with the plastic

deformation, while the similarity-center is regarded as the

elastic-core because the most elastic deformation behavior

is induced when the stress lies on it, the normal-yield ratio

reducing to zero, i.e. the subloading surface reducing to a

point.

8.1 Basic Feature of Extended Subloading
Surface Model in Current Configuration

The uniaxial loading behavior is depicted in Fig. 10 in the

current configuration for the Mises material without a

hardening (F = F0 and a ¼ O) for simplicity. Here, �a is

the conjugate point in the subloading surface to the kine-

matic hardening variable (back stress) a in the normal-

yield surface. The elastic-core c goes up following the

stress by the plastic strain rate in the initial loading process

as seen in Fig. 10a, b. The subloading surface shrinks and

thus only elastic strain rate is induced until the stress goes

down to the elastic-core in the unloading process as seen in

Fig. 10c. After that the subloading surface begins to

expand and thus the plastic strain rate in the compression is

induced in the unloading-inverse loading process whilst the

similarity-center goes down following the stress by the

plastic strain rate as seen in Fig. 10d. Again only the elastic

strain rate is induced until the stress goes up to the simi-

larity-center in the reloading process from the complete

unloading as seen in Fig. 10e. After that the subloading

surface begins to expand and thus the plastic strain rate is

induced whilst the similarity-center goes up following the

stress by the plastic strain rate as seen in Fig. 10f. The

expanded figure of Fig. 10f is shown in the lowest part of

Fig. 10. Consequently, the closed hysteresis loop is

depicted realistically as shown in this figure.

The extended subloading surface model would describe

the cyclic loading behavior realistically as illustratively

shown in Fig. 11. It does not contain any drawbacks in the

cyclic plasticity models based on the kinematic hardening

concept, while the continuity and the smoothness condi-

tions [21, 22, 24] are satisfied only in this model. Then, it

has been applied to the descriptions of rate-independent

and rate-dependent elastoplastic deformation behavior of

not only metals but also soils and further the friction

phenomena between solids as will be described in detail in

the later sections.

The elastoplastic models other than the subloading

surface model, i.e. the conventional model and the cyclic

kinematic hardening models are incapable of describing

monotonic loading behavior realistically and also cyclic

loading behavior appropriately as was described in the

foregoing. In addition, it would be incapable of formulating

multiplicative hyperelastic-based plastic equation based on

them. Only the extended subloading surface model with the

translation of the elastic-core is capable of describing the

monotonic and cyclic loading behavior rigorously and can

be led to the multiplicative hyperelastic-based plasticity as

will be described in detail in the subsequent sections.

The normal-yield, subloading and elastic-core surfaces

in the current configuration is shown in Fig. 12. The

variables in the hypoelastic-based plasticity correspond to

the variables in the intermediate configuration for the

multiplicative hyperelastic-based plasticity as follows:

r ! �Mð6¼ �M
TÞ;

a ! �Mkð¼ �M
T

k Þ;
c ! �Mcð¼ �M

T

c Þ;
ĉ ¼ c� a ! �̂Mc ¼ �Mc � �Mkð¼ �̂MT

c Þ;
~r ¼ r� c ! ~�M ¼ �M� �Mcð6¼ ~�MTÞ;
�a ¼ c�Rĉðc� �a ¼ Rðc� aÞÞ ! �Mk ¼ �Mc � R �̂Mcð¼ �MT

k Þ;
~r ¼ r� �a ¼ ~rþ Rĉ ! �M ¼ �M� �Mk ¼ ~�Mþ R �̂Mcð6¼ �MTÞ

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

ð77Þ
�Mc is the elastic-core, i.e. the similarity-center of the

subloading surface to the normal-yield surface. �Mk is the

conjugate point in the subloading surface to the kinematic

hardening variable �Mk in the normal-yield surface. The

variables �Mk and �Mc leading to the anisotropy are the

symmetric tensors, although the Mandel stress �M is the

asymmetric tensor in general.

The evolution rule of the elastic-core, i.e. the similarity-

center c of the normal-yield and the subloading surfaces in

the infinitesimal elastoplasticity is given as follows [66]:
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(a)

(b)

(c)

(d)

(e)

(f)

(f)

Fig. 10 Prediction of uniaxial loading behavior by extended subload-

ing surface model in current configuration: a initial state, b initial

loading process, c unloading process until similarity-center, d unload-

ing-inverse loading process after passing similarity-center, e reloading

process until reaching elastic-core and f reloading process (———

Stress, — — — Elastic-core, - - - - - - - - Center of subloading

surface)
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_c ¼ c _ep � <c

v
_epk kn̂c


 �

¼ c _epk k �n� <c

v
n̂c


 �

ð78Þ

where c is the material parameters and �n is the normalized

outward-normal of the subloading surface, i.e.

�n � of ð�rÞ
or

. of ð�rÞ
or

�

�

�

�

�

�

�

�

ð �nk k ¼ 1Þ ð79Þ

�r � r� �a; �a ¼ c� Rĉ ð80Þ

�a is the conjugate point in the subloading surface to a in

the normal-yield surface. The elastic-core surface which

passes through the elastic-core and is similar to the normal-

yield surface with respect to the back-stress a is given as

follows (Fig. 12):

f ðĉÞ ¼ <cFðHÞ; i:e: <c ¼ f ðĉÞ=FðHÞ ð81Þ

where

ĉ � c� a ð82Þ

<cð0
<c 
 1Þ is called the elastic-core yield ratio des-

ignating the ratio of the size of the elastic-core surface to

that of the normal-yield surface, i.e. the approaching-de-

gree of the elastic-core to the normal surface, and vð\1Þ is
the material parameter designating the limit value of <c. n̂c
is the normalized outward-normal of the elastic-core sur-

face, i.e.

n̂c �
of ðĉÞ
oc

. of ðĉÞ
oc

�

�

�

�

�

�

�

�

n̂ck k ¼ 1ð Þ ð83Þ

The following inequality holds for Eq. (78).

n̂c : _c ¼ c _epk k n̂c : �n� <c

v
n̂c : n̂c


 �


 0 for <c ¼ v

ð84Þ

Therefore, the elastic-core does not go out from the limit

elastic-core surface f ðĉÞ ¼ vFðHÞ (see Fig. 12).

pε0

σ

0
Initial subloading surface model Extended subloading surface model

Elastic-core (similarity-center)

σ

pε

Fig. 11 Modification of subloading surface model to describe cyclic loading behavior
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Fig. 12 Normal-yield, subloading and elastic-core surfaces in current

configuration. a General case. b Mises material
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The validity of the extended subloading surface model

in the hypoelastic-based plasticity has been verified widely

(cf. e.g. [33, 43, 45]).

8.2 Multiplicative Decomposition of Plastic
Deformation Gradient for Elastic-Core

Analogously to the multiplicative decomposition of the

plastic deformation gradient for the kinematic hardening in

Eq. (3), decompose Fp into the plastic storage part Fp
cs

causing the translation of the elastic-core and its plastic

dissipative part Fp
cd multiplicatively as follows [29, 30]:

F ¼ FeFp; Fp ¼ Fp
ksF

p
kd; F

p ¼ Fp
csF

p
cd ð85Þ

The configurations based on these decompositions are

illustrated in Fig. 13.

The following tensors of the storage part C
^

p
cs � FpT

cs F
p
cs

and the dissipative part C
^

p
cd � FpT

cs F
p
cd are defined.

C
^

p
cs � FpT

cs F
p
cs ¼ U

^
p2
cs ; Cp

cd � FpT
cd F

p
cd ð86Þ

where one has

�C
p

cs � Fp�T
cs C

^
p
csF

p�1
cs ¼ �G ð87Þ

Tensor variables in the elastic-core intermediate configu-

ration are specified by adding the hat symbol ð^Þ.
Further, the following additive decomposition of the

velocity gradient holds for the elastic-core analogously to

Eqs. (15)–(19) for the kinematic hardening variable.

�L
p ¼ �L

p

cs þ �L
p

cd ð88Þ

where

�L
p

cs � _F
p

csF
p�1
cs ¼ �D

p

cs þ �W
p

cs;

�L
p

cd � Fp
csL
^

p
cdF

p�1
cs ¼ �D

p

cd þ �W
p

cd

(

ð89Þ

�D
p

cs � sym½ �Lp

cs�; �W
p

cs � ant½ �Lp

cs�
�D
p

cd � sym½ �Lp

cd�; �W
p

cd � ant½ �Lp

cd�

(

ð90Þ

L
^

p
cdF

p�1
cd � Fp�1

cs L�1
cd F

p
cs ð91Þ

noting

�L
p ¼ Fp

csF
p
cd

� ��
Fp
csF

p
cd

� ��1¼ _F
p

CSF
p�1
cs þ Fp

cs
_F
p

cdF
p�1
cd Fp�1

cs

The material-time derivative of C
^

p
ks in Eq. (5) is given

by

_
C
^

p
cs ¼ 2FpT

cs
�D
p

csF
p
cs ¼ 2FpT

cs
�D
p � �D

p

cd

� �

Fp
cs ð92Þ

X

F

eF

pF
dX

0

dx
x

dX

X

dX

X

p
dkF

p
ksF

dX

X

p
dcF

p
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Fig. 13 Multiplicative decompositions of deformation gradient tensor for material with translations of kinematic hardening variable and elastic-

core
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8.3 Elastic-Core

The contravariant push-forward of the 2nd Piola–Kirchhoff

stress-like variable for the elastic-core S
^

c from K
^

to �K is

given by

�Sc � Fp
csS

^

cF
pT
cs ð¼ �S

T

c Þ; S
^

c � Fp�1
cs

�ScF
p�1
cs ð¼ S

^
T
c Þ ð93Þ

Further, the Mandel-like variable �Mc for the elastic-core is

given by

�Mc ¼ �C
p

cs
�Sc ¼ �G�Sc ¼ �Scð ¼ �M

T

c Þ ð94Þ

noting Eq. (87). Note here that the Mandel stress �M is the

asymmetric tensor in general but the Mandel-like elastic-

core �Mc is the symmetric tensor.

The material-time derivative of �Mc is given analogously

to Eq. (26) for that of the kinematic hardening as follows:

_�Mc ¼ _�Sc ¼ Fp
cs

_
S
^

c F
pT
cs þ 2sym½ð �L� �L

p

cdÞ �Mc� ð95Þ

8.4 Hyperelasticity for Elastic-Core

Further, let S
^

c be formulated incorporating the strain

energy function wcðC
^

p
csÞ as

S
^

c ¼ 2
owcðC

^
p
csÞ

oC
^

p
cs

ð96Þ

from which ��Sc and �Mc are given by

�Mcð¼ �C
p

cs
�ScÞ ¼ �Sc ¼ Fp

csS
^

cF
pT
cs ¼ 2Fp

cs

owcðC
^

p
csÞ

oC
^

p
cs

FpT
cs

ð97Þ

noting Eqs. (87), (93) and (96).

The material-time derivative of S
^

c is given from

Eq. (96) with Eq. (92) as

_
S
^

c ¼ C
^

c :
1

2

_
C
^

p
cs ¼ C

^
c : FpT

cs ðD
p � �D

p

cdÞF
p
cs ð98Þ

where

C
^

c � 2
oS

^

c

oC
^

p
cs

¼ 4
o2wcðC

^
p
csÞ

oC
^

p
cs � oC

^
p
cs

ð99Þ

Substituting Eq. (98) into Eq. (95), _�Mc is given as

follows:

_�Mc ¼ Fp
cs C

^
c : FpT

cs
�D
p � �D

p

cd

� �

Fp
csF

pT
cs

þ 2sym �L
p � �L

p

cd

� �

�Mc

� �

ð100Þ

8.5 Normal-Yield, Subloading and Elastic-Core
Surfaces

The subloading surface in Eq. (65) for the initial

subloading surface model is extended as follows:

f ð �MÞ ¼ RFðHÞ ð101Þ

in the intermediate configuration, which are depicted in

Fig. 14.

The subloading surface is given from Eq. (101) with

Eq. (77) as follows:

f ð ~�Mþ R �̂McÞ ¼ RFðHÞ ð102Þ

from which the normal-yield ratio R is calculated.

The material-time derivative of the kinematic hardening

variable �Mk is given by

(a) General case
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elastic-core surface

R
M

Subloading surface

Normal-yield surface

(b) Mises material
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Normal-yield surface
3M

M

M

cM

kM

ˆ
cM

M
( )( ) =f RF HM

kM

1M
2M

kM
kM

ˆ
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Fig. 14 Normal-yield, subloading and elastic-core surfaces in the

intermediate configuration. a General case. b Mises material
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_�Mk ¼ R _�Mk þ ð1� RÞ _�Mc � _R �̂Mc ð103Þ

leading to

_�M � _�M� R _�Mk � ð1� RÞ _�Mc þ _R �̂Mc ð104Þ

The elastic-core surface which passes through the

elastic-core �Mc and is similar to the normal-yield surface

with respect to the back-stress �Mk in the hyperelastic-based

plasticity is given noting Eq. (81) as follows:

f ð �̂McÞ ¼ <cFðHÞ; i:e: <c ¼ f ð �̂McÞ=FðHÞ ð105Þ

8.6 Plastic Flow Rules

The plastic strain rate is given in the following associated

flow rule proposed by Hashiguchi [29, 30].

�D
p ¼ _�k �N ð _�k� 0Þ ð106Þ

where _�k is the positive plastic multiplier and

�N � sym
of ð �MÞ
o �M


 ��

sym
of ð �MÞ
o �M


 �
�

�

�

�

�

�

�

�

ð¼ �NTÞðk �Nk ¼ 1Þ

ð107Þ

which is the normalized and symmetrized tensor. If the

strain energy functions we is given by invariants of �C
e

leading to the elastic isotropy, the symmetries of the

Mandel stress �M ¼ �M
T
holds resulting in the symmetry

of ð �MÞ=o �M ¼ ðof ð �MÞ=o �MÞT .
The dissipative parts of the plastic velocity gradient for

the kinematic hardening variable and the elastic-core are

given from Eqs. (42) and (78) as follows:

�D
p

kd ¼
1

bk
�D
p�

�

�

� �Mk ¼
1

bk

_�k �Mk ð108Þ

�D
p

cd ¼
<c

v
�D
p�

�

�

� �̂Nc ¼
<c

v
_�k �̂Nc ð109Þ

where

�̂Nc �
of ð �̂McÞ
o �̂Mc

. of ð �̂McÞ
o �̂Mc

�

�

�

�

�

�

�

�

�

�

ðk �̂Nck ¼ 1Þ ð110Þ

In order to describe a higher tangent modulus in the

reloading process than in the unloading process, e.g. the

generalized Masing effect [62], the material parameter u is

extended to

u ¼ �u expðuc<cCrÞ ð111Þ

where �u and uc are material constants, <c is given by

Eq. (105) and Cr is given as follows [27, 31]:

Cr � �N : �̂NC ð�1
Cr 
 1Þ ð112Þ

Cr is larger when the direction of the plastic strain rate is

nearer to the outward-normal of the elastic-core surface,

and thus u is larger in the reloading process and smaller in

the reverse loading process.

Let the plastic spin �W
p
; the kinematic-hardening spin

W
_

p
kd and the elastic-core spin W

^
p
cd be given extending the

equation in the hypoelastic-based plasticity by Zbib and

Aifantis [92] and incorporating Eqs. (106), (108) and (109)

as follows:

�W
p ¼ gpð �M �D

p � �D
p �MÞ ¼ gp _�kð �M �N� �N �MÞ

�W
p

kd ¼ gpk �M �D
p

kd � �D
p

kd
�M

� �

¼ gpk=bk
� � _�kð �M �Mk � �Mk

�MÞ
�W
p

cd ¼ gpc �M �D
p

cd � �D
p

cd
�M

� �

¼ gpcð<c=vÞ _�kð �M �̂Nc � �̂Nc
�MÞ

8

>

>

<

>

>

:

ð113Þ

where gc
p is the material parameter. The plastic spin tensor

�W
p
diminishes if the symmetry of the Mandel stress, i.e.

�M ¼ �MT due to the elastic isotropy and the plastic isotropy

due to �Mk ¼ �Mc ¼ O hold. Further, the spin tensors �W
p

kd

and �W
p

cd diminish for the plastic-isotropy due to
�Mk ¼ �Mc ¼ O.

The velocity gradients are given by substituting

Eqs. (106), (108), (109) and (113) into Eqs. (11)3, (16)2
and (89)2 as follows:

�L
p ¼ _�k½ �Nþ gpð �M �N� �N �MÞ�

�L
p

kd ¼ ð1=bkÞ _�k �Mk þ gpkð �M �Mk � �Mk
�MÞ

� �

�L
p

cd ¼ ð<c=vÞ _�k½ �̂Nc þ gpcð �M �̂Nc � �̂Nc
�MÞ�

8

>

>

<

>

>

:

ð114Þ

The substitutions of Eq. (114) into Eqs. (29), (36) and

(100) yield:

_�M ¼ �L
e
: sym½ �Cef �L� _�k½ �Nþ gpð �M �N� �N �MÞ�g� ð115Þ

_�Mk ¼ _�kfFp
ks C

_
k : FpT

ks ½ �N� ð1=bkÞ �Mk�Fp
ksF

pT
ks

þ 2sym½ð �Nþ gpð �M �N� �N �MÞ
� ð1=bkÞ½ �Mk þ gpkð �M �Mk � �Mk

�MÞ�Þ �Mk�g
ð116Þ

_�Mc ¼ _�kfFp
cs C

_
c : FpT

cs ð �N� ð<c=vÞ �̂NcÞFp
csF

pT
cs

þ 2sym½ð �Nþ gpð �M �N� �N �MÞ

� ð<c=vÞ½ �̂Nc þ gpcð �M �̂Nc � �̂Nc
�MÞ�Þ �Mc�g

ð117Þ

8.7 Plastic Strain Rate

The elastic constitutive equation is given by Eqs. (27)–

(29). The plastic strain rate will be formulated in this

section. The formulations given in this section is not nec-

essary in the numerical calculation by the return-mapping

based on the closet-point projection.
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The time-differentiation of Eq. (101) leads to the con-

sistency condition of the subloading surface as follows:

of ð �MÞ
o �M

: _�M� _RF � R _F ¼ 0 ð118Þ

It holds from Eq. (101) that

of ð �MÞ
o �M

: �Mð¼ f ð �MÞÞ ¼ RF ð119Þ

by the Euler’s theorem for the homogenous function f ð �MÞ
of �M in degree-one, and then it follows that

�N : �M ¼ of ð �MÞ
o �M

: �M
. of ð �MÞ

o �M

�

�

�

�

�

�

�

�

¼ f ð �MÞ
. of ð �MÞ

o �M

�

�

�

�

�

�

�

�

¼ RF
. of ð �MÞ

o �M

�

�

�

�

�

�

�

�

which leads to

1
. of ð �MÞ

o �M

�

�

�

�

�

�

�

�

¼
�N : �M

RF
ð120Þ

where

�N � of ð �MÞ
o �M

. of ð �MÞ
o �M

�

�

�

�

�

�

�

�

6¼ �NT ; k �Nk ¼ 1
� �

ð121Þ

The substitution of Eq. (120) into Eq. (118) leads to

�N : _�M�
_F

F
þ

_R

R


 �

�N : �M ¼ 0 ð122Þ

The further substitution of Eq. (104) into Eq. (122) leads to

�N : _�M� �N :
_F

F
�Mþ

_R

R
ð �M� R �̂McÞ þ R _�Mk þ ð1� RÞ _�Mc


 �

¼ 0

ð123Þ

Furthermore, substituting the relation

�M� R �̂Mc ¼ �M� �Mk � ð �Mc � �MkÞ ¼ ~�M ð124Þ

Equation (123) is rewritten as

�N : _�M� �N :
F0 _H

F
�Mþ

_R

R
~�Mþ R _�Mk þ ð1� RÞ _�Mc


 �

¼ 0

ð125Þ

where

_H ¼ fHdð �M;H; �D
p
=k �DpkÞk �Dpk ¼ fHnð �M;H; �NÞ _�k ð126Þ

_R ¼ UðRÞ �D
p�

�

�

� ¼ UðRÞ _�k for �D
p 6¼ O ð127Þ

based on Eqs. (57) and (66) with Eq. (106).

The substitutions of Eqs. (116), (117), (126) and (127)

into Eq. (125) lead to the consistency condition:

�N : _�M� �Mp _�k ¼ 0 ð128Þ

from which it follows that

_�k ¼
�N : _�M
�Mp ; �D

p ¼
�N : _�M
�Mp

�N ð129Þ

where

�Mp � �N :
F0fHnð �M;F; �NÞ

F
�Mþ UðRÞ

R
~�M




þ RfFp
ks C

_
k : FpT

ks ½ �N� ð1=bkÞ �Mk�Fp
ksF

pT
ks

þ 2sym½ð �Nþ gpð �M �N� �N �MÞ
�ð1=bkÞ½ �Mk þ gpkð �M �Mk � �Mk

�MÞ�Þ �Mk�g

þð1� RÞfFp
cs C

_
c : FpT

cs ð �N� ð<c=vÞ �̂NcÞFp
csF

pT
cs

þ2sym½ð �Nþ gpð �M �N� �N �MÞ

� ð<c=vÞ½ �̂Nc þ gpcð �M �̂Nc � �̂Nc
�MÞ�Þ �Mc�g�

ð130Þ

The substitution of Eq. (115) into Eq. (128) leads to the

consistency condition:

�N : �L
e
: sym½ �Ce �L� � f �N : �L

e
: sym½ �Cef �N

þ gpð �M �N� �N �MÞg� þ �Mpg _�K ¼ 0
ð131Þ

using the symbol _�K for the plastic multiplier in terms of the

strain rate instead of _�k in terms of the stress rate. The

plastic multiplier is given from Eq. (131) as follows:

_�K ¼
�N : �L

e
: sym½CeL�

�Mp þ �N : �L
e
: sym½ �Cef �Nþ gpð �M �N� �N �MÞg�

ð132Þ

The loading criterion is given by

�D
p 6¼ O for _�K[ 0

�D
p ¼ O for other

�

ð133Þ

which can be given actually as

�D
p 6¼ O for �N : �L

e
: sym½ �Ce �L�[ 0

�D
p ¼ O for other

(

ð134Þ

9 Material Functions

Material functions contained in the constitutive equations

formulated in the preceding sections are given for metals

and soils in this section.

9.1 Metals

The hyperelastic equation and the yield functions for

metals are shown below in the intermediate configuration.
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9.1.1 Hyperelastic Equations

The hyperelastic equations are given for the stress, the

kinematic hardening variable and the elastic-core.

9.1.1.1 Stress The following strain energy function of

elastic deformation in the Modified Neo-Hookean elasticity

may be adopted [84, 85].

weð �CeÞ ¼ 1

2
Kfdet �Ce � 1� 2ln(

ffiffiffiffiffiffiffiffiffiffiffiffi

det �C
e

p

Þg

þ 1

2
lðtr �Ce � 3� 2ln

ffiffiffiffiffiffiffiffiffiffiffiffi

det �C
e

p

Þ
ð135Þ

where l and K are the material constants. The substitution

of Eq. (135) into Eq. (27) reads:

�S ¼ 1

2
Kðdet �Ce � 1) �C

e�1 þ lð �G� �C
e�1Þ ð136Þ

noting

odetCe

o �C
e ¼ ðdetCeÞ �Ce�1

o
ffiffiffiffiffiffiffiffiffiffiffiffi

detCe
p

o �C
e ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi

detCe
p

�C
e�1

o ln
ffiffiffiffiffiffiffiffiffiffiffiffi

detCe
p

o �C
e ¼ 1

2
�C
e�1

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð137Þ

It is followed from Eq. (136) that

�M ¼ �C
e �S ¼ ktr½ð �Ce � �GÞ=2� �Ce þ l �C

eð �Ce � �GÞ ð138Þ

s ¼ Fe �SF
eT ¼ ktr[(be � g)/2�be þ lbeðbe � gÞ ð139Þ

where g ¼ Fe�T �GFeT is the metric tensor in the current

configurations.

The hyperelastic tangent modulus tensor �C
e
in Eq. (31)

is given for Eq. (136) by

�C
e ¼ K½ðdet �CeÞ �Ce�1 � �C

e�1 þ (det �C
e � 1) �C

e� � 2l �C
e

ð140Þ

where �C
e
is the fourth-order tensor defined as

�C
e � o �C

e�1

o �C
e ¼ � �C

e�1
ICe�1

�Ce
ijkl �

o �Ce�1
ij

�Ce
kl

¼ � �Ce�1
ik

�Ce�1
jl

 

¼ � �Ce�1
ik

�Ce�1
jl þ �Ce�1

il
�Ce�1
jk

� 	

=2
	

ð141Þ

which possesses the minor symmetry �Ce
ijkl ¼ �Ce

jikl ¼ �Ce
ijlk

and the major symmetry �Ce
ijkl ¼ �Ce

klij.

9.1.1.2 Kinematic Hardening Variable Assume the fol-

lowing strain energy function for kinematic hardening,

which possesses the identical form to the shear part in

Eq. (135).

wk C
_

p
ks

� 	

¼ Ck

1

2
trC

_
p
ks � 3

� 	

� ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detC
_

p
ks

q
 �

ð142Þ

where Ck is material constant. It is derived from Eq. (32)

that

S
_

k ¼ 2
owkðC

_
p
ksÞ

oC
_

p
ks

¼ CkðG
_

�C
_

p�1
ks Þ ð143Þ

Then, the Mandel-like kinematic hardening variable is

given from Eqs. (33) and (143) as follows:

�Mk ¼ CkðFp
ksF

pT
ks � �GÞ ð144Þ

noting

�Mk ¼ Fp
ksCkðG

_

�C
_

p�1
ks ÞFpT

ks ¼ Fp
ksCk G

_

� FpT
ks F

p
ks

� ��1
h i

FpT
ks

C
_

k in Eq. (35) is given for Eq. (143) as

C
_

k ¼ Ck C
_

p�1
ks I C

_
p�1
ks ð145Þ

9.1.1.3 Elastic-Core Assume the following strain energy

function for elastic-core analogously to the kinematic

hardening variable described in 9.1.2.

wc C
^

p
cs

� 	

¼ Cc

1

2
trC

^
p
cs � 3

� 	

� ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detC
^

p
cs

q


 �

ð146Þ

where Cc is material constant. The following relations hold.

S
^

c ¼ 2
owcðC

^
p
csÞ

oC
^

p
cs

¼ Cc G
^

�C
^

p�1
cs

� 	

ð147Þ

�Mc ¼ Cc Fp
csF

pT
cs � �G

� �

ð148Þ

C
^

c in Eq. (99) is given for Eq. (146) as

C
^

c ¼ Cc C
^

p�1
cs I C

^
p�1
cs ð149Þ

9.1.2 Yield Functions

Assume the von Mises yield function and the plastic

equivalent hardening, i.e.

f ð �̂M
0
Þ ¼

ffiffiffi

3

2

r

k �̂M
0
k ð150Þ
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FðHÞ ¼ F0f1þ h1½1� expð�h2HÞ�g ; H ¼
Z

ffiffiffi

2

3

r

�D
p�

�

�

�dt

ð151Þ

for which we have

_F ¼ F0 _H; F0 � F0h1h2 expð�h2HÞ;

_H ¼
ffiffiffi

2

3

r

�D
p�

�

�

� ¼
ffiffiffi

2

3

r

_�k
ð152Þ

F ? (1 ? h1)F0 holds for H ? ! in Eq. (151). It follows

for Eq. (150) that

�̂N ¼
�̂M
0

k �̂M
0
k
; �̂N ¼ sym½ �̂M

0
�

ksym½ �̂M
0
�k

ð153Þ

The subloading surface for the normal-yield surface in

Eq. (150) is given noting Eq. (101), i.e. (102) by the fol-

lowing equation.
ffiffiffi

3

2

r

�M
0�

�

�

� ¼ RFðHÞ ð154Þ

i.e.
ffiffiffi

3

2

r

k ~�M
0
þ R �̂Mc

0k ¼ RFðHÞ ð155Þ

from which the normal-yield yield ratio is given by

R ¼
~�M0 : �̂M

0
c þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~�M0 : �̂M
0
c

� 	2

þ 2
3
F2 � jj �̂M

0
cjj

2
� 	

jj ~�M0jj2
r

2
3
F2 � jj �̂M

0
cjj

2

ð156Þ

9.2 Soils

The hyperelastic equation and the yield functions for soils

are shown below in the intermediate configuration.

9.2.1 Hyperelastic Equation

The hyperelastic constitutive equation of soils was pro-

posed first by Houlsby [48] and it has been extended to

various multiplicative hyperelastic equations by Borja and

Tamagnini [5], Callari et al. [9], etc. using the Hencky

(logarithmic) strain in the current configuration and by

Yamakawa et al. [90] using the second Piola–Kirchhoff

stress in the intermediate configuration, while they involve

various impertinences or incompleteness. The hyperelastic

equation within the framework of the multiplicative finite

strain theory for soils was shown by Hashiguchi [33] but it

involves some impertinences. The exact equation will be

shown in the following [37]:

The isotropic hyperelastic equation is given by intro-

ducing the function of the variables lnJe and tr �C
e
(tr �C

e � 3

in detailed expression) which stand for the volumetric

strain and deviatoric strain, respectively, as follows:

�S ¼ 2
owðlnJe; tr �CeÞ

o �C
e

¼ 2
owðlnJe; tr �CeÞ

o ln Je
o ln Je

o �C
e þ 2

owðlnJe; tr �CeÞ
otr �C

e

otr �C
e

o �C
e

ð157Þ

where

Je ¼ detFe; �C
e ¼ FeTFe; detCe ¼ Je2

Fe ¼ Fe
volF

e;F
e

vol � Je1=3g;Fe � Je�1=3Fe

�C
e � FeTFe ¼ Je�2=3 �C

e
; tr �C

e ¼ Je�2=3tr �C
e

detFe ¼ detCe ¼ 1

�C
e ¼ �G; tr �C

e ¼ 3; �C
e0 ¼ O for Fe ¼ Fe

vol


 �

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð158Þ

Fe
vol is the volumetric part and Fe is the so-called uni-

modular tensor designating the isochoric (constant volume,

i.e. deviatoric) part of Fe. In addition, tr �C
e ¼ 3 (Fe ¼ Fe

volÞ
and ln Je ¼ 0 ðFe ¼ FeÞ is required in the purely volumet-

ric deformation and the purely deviatoric deformation,

respectively.

The following partial derivatives hold.

o ln Je

o �C
e ¼ 1

2Je
ffiffiffiffiffiffiffiffiffiffiffiffi

det �C
e

p ðdet �CeÞ �Ce�1 ¼ 1

2
�C
e�1

otr �C
e

o �C
e ¼ Je�2=3 �G� 1

3
ðtr �CeÞ �Ce�1


 �

8

>

>

<

>

>

:

ð159Þ

noting

o lnJe

o �C
e ¼ o lnJe

oJe
oJe

o �C
e ¼

1

Je
o
ffiffiffiffiffiffiffiffiffiffiffiffi

det �C
e

p

o �C
e ¼ 1

Je
1

2
ffiffiffiffiffiffiffiffiffiffiffiffi

det �C
e

p odet �C
e

o �C
e

¼ 1

2Je
ffiffiffiffiffiffiffiffiffiffiffiffi

det �C
e

p ðdet �CeÞ �Ce�1

otr �C
e

o �C
e ¼ otr½ðdet �CeÞ�1=3 �C

e�
o �C

e ¼ o½ðdet �CeÞ�1=3
tr �C

e�
o �C

e

¼ ðdet �CeÞ�1=3 �G� 1

3
ðtr �CeÞ �Ce�1


 �

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

The substitution of Eq. (159) into Eq. (157) reads:

�S ¼ owðlnJe; tr �CeÞ
o ln Je

�C
e�1

þ 2
owðlnJe; tr �CeÞ

otr �C
e Je�2=3 �G� 1

3
ðtr �CeÞ �Ce�1


 �

ð160Þ

Let the following strain energy function be assumed.

wðlnJe; tr �CeÞ ¼ #F ln Je þ ~jð�PM0 þ #F0ÞJe�1=~j

þ G0J
e�n=~jðtr �Ce � 3Þ ð161Þ

noting
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Je�n=~j ¼ exp � n

~j
ln Je

� 	

where �PM0 is the initial value of the pressure defined in

terms of the Mandel stress �M, i.e. �PM � �(1/3)tr �M. ~k and

~j are the material constants standing for the inclinations of

the isotropic and the swelling lines in the both logarithmic

linear relation of pressure and the volume (cf. [33]).

#(\1/2) is material constant, while the volume becomes

infinite as the pressure approaches #F, while the hardening

function F coincides to the preconsolidation pressure in the

isotropic consolidation process. G0 is the initial value of

elastic shear modulus, n standing for the pressure-depen-

dence of the shear modulus.

The following partial derivatives hold for Eq. (161).

owðln Je; tr �CeÞ
o ln J

¼ #F � ð�PM0 þ #F0ÞJe�1=~j

� n

~j
G0J

�n=~jðtr �Ce � 3Þ
owðln Je; tr �CeÞ

otr �C
e ¼ G0J

e�n=~j

8

>

>

>

>

>

<

>

>

>

>

>

:

ð162Þ

noting oJe
�n= ~j

=o ln Je ¼ �ðn=~jÞJe�n=~j.

Equation (160) with Eq. (162) reads:

�S¼ #F� ð�PM0 þ #F0ÞJe�1=~j � n

~j
G0J

e�n=~jðtr �Ce � 3)
h i

�C
e�1

þ 2G0J
e�n=~jJe�2=3 �G� 1

3
ðtr �CeÞ �Ce�1


 �

ð163Þ

from which the Mandel stress is given as follows:

�M ¼ �C
e �S ¼ #F � ð�PM0 þ #F0ÞJe�1=~j

h

� n

~j
G0J

e�n=~jðtr �Ce � 3)
i

�Gþ 2G0J
e�n=~j �C

e0 ð164Þ

noting Je�2=3 �C
e0 ¼ �Ce0 by virtue of Eq. (158)7.

It is follows from Eq. (164) that

�PM þ #F
�PM0 þ #F0

¼ Je�1=~j ¼ exp � 1

~j
lnJe


 �

for Fe ¼ Fe
vol

ð165Þ

i.e.

lnJe ¼ �~j ln
�PM þ #F
�PM0 þ #F0

for Fe ¼ Fe
vol ð166Þ

and

�M
0 ¼ 2G0

�PM þ #F
�PM0 þ #F0


 �n

�C
e0 ð167Þ

which would describe appropriately the basic characteris-

tics in the volumetric and the deviatoric deformations.

Equations (164), (166) and (167) are rewritten as

s ¼ #F � ðps0 þ #F0ÞJe�1=~j � n

~j
G0J

e�n=~jðtrbe � 3)
h i

g

þ 2G0J
e�n=~jbe0

ð168Þ

with

lnJe ¼ �~j ln
ps þ #F

ps0 þ #F0

for Fe ¼ Fe
vol ð169Þ

and

s0 ¼ 2G0

ps þ #F

ps0 þ #F0


 �n

be0 ð170Þ

in the current configuration, where s is the Kirchhoff stress
tensor, ps0 is the initial value of ps � �ðtrsÞ=3 and be is the
elastic unimodular left Cauchy–Green deformation tensor,

i.e.

s ¼ Fe�T �MFeT ¼ Fe �SFeT
� �

ð171Þ

be � FeFeT ð172Þ

The above-mentioned elastic equation is reduced to the

infinitesimal strain theory by adopting the strain energy

function

wðeev; eedÞ ¼ #Feev þ ~jðp0 þ #F0Þ exp � eev
~j


 �

þ G0 exp n � eev
~j


 �
 �

ee2d ð173Þ

as follows:

r¼ #F� (p0þ#F0Þexp �eev
~j


 �

� n

~j
G0 exp n �eev

~j


 �
 �

ee2d

� �

g

þ 2G0 exp n �eev
~j


 �
 �

ee0

ð174Þ

resulting in

pþ #F

p0 þ #F0

¼ exp � eev
~j


 �

for ee0 ¼ O eed ¼ 0
� �

i.e.

eev ¼ �~j ln
pþ #F

p0 þ #F0


 �

for ee0 ¼ O eed ¼ 0
� �

ð175Þ

and

r0 ¼ 2G0exp n � eev
~j


 �
 �

ee0 ¼ 2G0

pþ #F

p0 þ #F0


 �n

ee0 ð176Þ

where p is the pressure, i.e. p � �ðtrr)/3 and its initial

value is denoted by p0. ee is the infinitesimal elastic strain

tensor and eev ffi tree; eed ¼ ee0k k.
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The elastic balk modulus K and the elastic shear mod-

ulus G adopted in the hypoelasticity for the above-men-

tioned elastic equations are given as follows:

K ¼ � _p

dev
ffi _rm

_eev


 �

¼ pþ #F

~j
;

G ¼ _r0k k
de

0�

�

�

�

ffi _r0k k
_ee0k k


 �

¼ G0

pþ #F

p0 þ #F0


 �n ð177Þ

where dev � trle; de � sym½le�, while n ffi 0.5 can be chosen

in most of soils [82].

The elastic constitutive equations of soils formulated

above possess the following physical validities.

1. It is applicable up to the finite deformation/rotation.

2. It is applicable up to the negative pressure range which

depends on the preconsolidation pressure.

3. The shear modulus increases depending on the

pressure.

4. They are consistent for the multiplicative hyperelas-

ticity, the infinitesimal hyperelasticity and the

hypoelasticity.

9.2.2 Yield Functions

The modified Cam-clay yield surface [8, 72], which is

exhibited as the ellipsoid passing through the origin and

possessing the long axis coinciding to the hydrostatic axis

in the three-dimensional stress space, was extended by

Hashiguchi and Mase [39] as follows (Fig. 15):

�PM � ½ð1=2Þ � nh�F
F=2

� �2

þ
�M
0�

�

�

�

MF=2

( )

¼ 1 ð178Þ

where F is the isotropic hardening function corresponding

to the long axis of the ellipsoidal yield surface, nh ð\#Þ is
the material constant describing the translation to the

negative pressure range by nhF along the hydrostatic

direction and M is the ratio of the short axis to the long

axis, which is the function of the Lode angle as follows

[25]):

M ¼ 7

8þ cos 3hM

2
ffiffiffi

6
p

sin/c

3� sin/c

¼ 7

8þ cos 3hM
Mc ð179Þ

where /c is the friction angle in the tri-axial compression

sate, while Mc � 2
ffiffiffi

6
p

sin/c=ð3� sin/cÞ is the value of M
in that state (hM = p/3), and

cos 3hM �
ffiffiffi

6
p

trt03M; t0M �
�M
0

�M
0�

�

�

�

ð180Þ

Equation (178) is expressed in the separated form of the

function f ð�PM;XÞ of the stress and the hardening function

F, i.e.

f ð�PM;XÞ ¼ F; f ð�PM;XÞ

¼
�PM ½1þ ðX=�PMÞ2� for nh ¼ 0

1

~nh
ð�PMX

� �nh �PMÞ for nh 6¼ 0

8

>

<

>

:

ð181Þ

where

~nh � 2ð1� nhÞnh; �nh � 1� 2nh;

�PMX
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�P2
M þ 2~nhX2

q ð182Þ

X �
�M
0�

�

�

�

M
ð183Þ

The isotropic hardening function is given as [23].

FðHÞ ¼ F0exp
�lnJp

~k� ~j


 �

ð184Þ

where Jp ¼ detFp and F0 is the initial value of F.

10 Calculation Procedures

The calculation procedure by the above-mentioned for-

mulations is described in this section.

First, the plastic multiplier _�K is calculated by the input

of the velocity gradient �L into Eq. (62), while �L is calcu-

lated from the current velocity gradient l by Eq. (10). Then,

substituting it into Eq. (114), the plastic and the dissipative

parts �L
p
, �L

p

kd and
�L
p

cd are calculated. On the other hand, the

plastic multiplier _�K is calculated directly from the plastic

flow rule in Eq. (106) and the stress rate is calculated by

Eq. (29) under �L ¼ O in the plastic corrector process in the

return-mapping method. Thereafter, the stress and the

tensor-valued internal variables are calculated by the pro-

cess described below.

The deformation gradient tensor is updated by

Fnþ1 ¼ f ½n; nþ1�Fn ð185Þ

where

/2h MF

1

0

1

(1 h F( ) hF F

M

F (1/ 2 )h F / 2F
F

(= /( ))1 2 hM M

MP

|| ||'M

/2MF

Fig. 15 Yield surface of soils with tensile strength
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f ½n; nþ1� � Iþ Du�rxn ð186Þ

with the displacement vector u, designatingrxn � oð Þ=oxn
and noting

f ½n; nþ1� � Fnþ1F
�1
n ¼ oxnþ1

oX

oX

oxn
¼ oxnþ1

oxn
¼ oðxn þ DuÞ

oxn
¼ Iþ Du�rxn

ð187Þ

The rates of the plastic gradient and its dissipative parts

are given from Eqs. (10)3, (18) and (91) as follows:

_F
p ¼ �L

p
Fp

_F
p

kd ¼ L
_

p
kdF

p
kd ¼ ðFp�1

ks
�L
p

kdF
p
ksÞF

p
kd

_F
p

cd ¼ L
^ p

cdF
p
cd ¼ Fp�1

cs
�L
p

cdF
p
cs

� �

Fp
cd

8

>

>

<

>

>

:

ð188Þ

where �L
p
, �L

p

kd and
�L
p

cd are given by Eq. (114). The storage

parts Fe; Fp
ks and Fp

cs of the deformation gradient are given

by substituting the results of the time-integrations of

Eq. (188) into

Fe ¼ FFp�1; Fp
ks ¼ FpFp�1

kd ; Fp
cs ¼ FpFp�1

cd ð189Þ

Further, �C
e
;C
_

p
ks and C

^
p
cs are calculated by substituting

Eq. (189) into Eqs. (5) and (86). Further, the stress �S, the

kinematic hardening variable S
_

k and the elastic-core S
^

c

are calculated by substituting �C
e
;C
_

p
ks and C

^
p
cs into

Eqs. (27), (32) and (96). The isotropic hardening variable

and the normal-yield ratio are calculated by the time-in-

tegration of Eqs. (126) and (127).

The plastic constitutive equation with the plastic mod-

ulus in Eq. (130) is not necessary to be used in the

numerical calculation by the return-mapping in which the

plastic strain rate is calculated by use of only the plastic

flow rule in Eq. (106) and then the stress and internal

variables are calculated by the procedures described above.

The time-integrations of Eq. (188) for the tensors Fp,

Fp
kd and Fp

cd can be executed in high efficiency by the

tensor exponential method [46, 65, 88] which is delineated

below.

The equations in Eq. (188) are collectively described in

terms of an arbitrary second-order tensors T and Z as

follows:

_TðtÞ ¼ ZTðtÞ ð190Þ

Consider the following candidate as the numerical solution

of Eq. (190) for the time-interval Dt ¼ ½tn; tnþ1�.
Tnþ1 ¼ expðZDtÞTn ð191Þ

provided that Z and Tn are constant during the time-in-

terval. The time-differentiation of Eq. (191) leads to

_Tnþ1 ¼
dTnþ1

dt
¼ dðexpðZDtÞÞ

dt
Tn

¼ d

dt
Iþ ZDt þ 1

2!
ðZDtÞ2 þ 1

3!
ðZDtÞ3 þ � � �


 �

Tn

¼ Zþ ðZDtÞZþ 1

2!
ðZDtÞ2Zþ � � �


 �

Tn

¼ Z Iþ ðZDtÞ þ 1

2!
ðZDtÞ2 þ � � �


 �

Tn

¼ Z expðZDtÞTn ¼ ZTnþ1

ð192Þ

coinciding to Eq. (190) and thus the rightness of the can-

didate in Eq. (191) is proven. The tensor Z is given by �L
p
,

L
_

p
kd and L

^
p
cd for F

p, Fp
kd and Fp

cd, respectively, as shown in

Eq. (188).

11 Loading Criterion in Return-Mapping
for Subloading Surface Model

The subloading surface model is capable of describing not

only the monotonic but also the cyclic and the non-pro-

portional loading behaviors, since the yield surface

enclosing the purely-elastic domain is not incorporated in

this model. However, the particular attention is required for

the return-mapping method in numerical calculations for

this model, in which rather large loading increments are

input in the elastic trial step. In fact, there exists the pos-

sibility of the occurrence of plastic strain increment even

when the stress increment is directed inward of the

subloading surface. Therefore, a particular loading crite-

rion after the elastic trial step and a particular calculation

procedure in the initiation of plastic corrector step are

required in the return-mapping projection for the subload-

ing surface model. This fact has not been recognized in the

past formulations [2, 16, 28, 33, 46, 90] and the inexact

loading criterions after the elastic trial step have been

shown in the past [32, 49]. The closet point projection in

the return-mapping method for the extended subloading

surface model was proposed first by Anjiki et al. [2] and

subsequently Iguchi et al. [49] in the multiplicative

decomposition and followed the results of Anjiki et al. [2]

later by Fincato and Tsutsumi [16].

The exact loading criterion after the elastic trial step and

the initial treatment in the plastic corrector step for the

subloading surface model will be formulated below

extending the former equations in the current configuration

[36] to the equations in the intermediate configuration

within the framework of the multiplicative elastoplaticity.
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11.1 Formulation of Loading Criterion

Consider the loading criterion at the initial stage of the

plastic corrector step. The following facts should be

noticed, referring to Fig. 16, where the elastic trial steps for

the initial subloading surface model ð �Mc ¼ �MkÞ and the

extended subloading surface model ð �Mc 6¼ �MkÞ are shown

in Fig. 16a, b, respectively, designating the kinematic

hardening variable and the elastic-core, i.e. the similarity-

center of the normal-yield and the subloading surfaces by
�Mk and �Mc, respectively.

1. The plastic strain increment is obviously induced in the

plastic corrector step if the stress increment D �M
trial

nþ1 �
�M
trial

nþ1 � �Mn in the elastic trial step is directed outward

of the subloading surface at the step n, while it is not

induced if the stress �M
trial

nþ1 stays inside the elastic

response region, i.e. f ð �Mtrial
nþ1Þ � ReFðHnÞ\0. Here, the

stress at the end of the step n and the elastic trail step

are denoted by �Mn and �M
trial

nþ1, respectively, and
�Mtrial
nþ1

is given by �Mtrial
nþ1 ¼ �M

trial

nþ1 � �Mtrial
nþ1 where

�Mtrial
nþ1 on the

subloading surface is the conjugate point of �Mkn on the

normal-yield surface.

2. The plastic strain increment is induced if the stress

increment D �M
trial

nþ1 makes the acute angle with the

outward-normal of the subloading surface at the elastic

trial step even if the stress increment D �M
trial

nþ1 is directed

inward of the subloading surface at the final state of the

step n, while it is not induced if the stress �M
trial

nþ1 stays

inside the elastic response region, i.e.

f ð �Mtrial
nþ1Þ � ReFðHnÞ\0.

Then, the loading criterion in the return-mapping method

for the subloading surface model is given as follows:

where

D �M
trial

nþ1 � �M
trial

nþ1 � �Mn ð194Þ

�̂Mc � �Mcn � �Mkn ð195Þ

~�Mn ¼ �Mn � �Mcn;
~�M
trial

nþ1 ¼ �M
trial

nþ1 � �Mcn ð196Þ

�Mkn ¼ �Mcn � Rn
�̂Mcn; �M

e
kn ¼ �Mcn � Re

�̂Mcn; �Mtrial
knþ1

¼ �Mcn � Rtrial
nþ1

�̂Mcn

ð197Þ

�Mn ¼ �Mn � �Mkn ¼ ~�Mn þ Rn
�̂Mcn; �Mtrial

nþ1

¼ �M
trial

nþ1 � �Mtrial
knþ1 ¼ ~�M

trial

nþ1 þ Rtrial
nþ1

�̂Mcn ð198Þ

�Nn �
of ð �MnÞ
o �Mn

=
of ð �MnÞ
o �Mn

�

�

�

�

�

�

�

�

;

�Ntrial
nþ1 �

of ð �Mtrial
nþ1Þ

o �M
trial

nþ1

=
of ð �Mtrial

nþ1Þ
o �M

trial

nþ1

�

�

�

�

�

�

�

�

�

�

ð199Þ

11.2 Initiation of Plastic Corrector Step for Mises
Material

The following equation holds at the end of the step n for

the Mises material.
ffiffiffiffiffiffiffiffi

3=2
p

�M
0
n

�

�

�

� ¼ RnFðHnÞ ð200Þ

which is rewritten as

ffiffiffiffiffiffiffiffi

3=2
p

~�M
0
n þ Rn

�̂M
0
cn

�

�

�

�

�

�
¼ RnFðHnÞ ð201Þ

from which Rn is given by

(193)
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Rn ¼

~�M
0
n :

�̂M
0
cn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð ~�M
0
n :

�̂M
0
cnÞ

2 þ ð2=3ÞðFðHnÞÞ2 � �̂M
0
cn

�

�

�

�

�

�

2

 �

~�M
0
n

�

�

�

�

�

�

2

s

ð2=3ÞðFðHnÞÞ2 � �̂M
0
cn

�

�

�

�

�

�

2

ð202Þ

Analogously, the following equation holds at the end of the

elastic trial step for the Mises material.

ffiffiffiffiffiffiffiffi

3=2
p

�M
trial0
nþ1

�

�

�

�

�

�
¼ Rtrial

nþ1FðHnÞ ð203Þ

which is rewritten as

ffiffiffiffiffiffiffiffi

3=2
p

~�M
trial0
nþ1 þ Rtrial

nþ1
�̂M
0
cn

�

�

�

�

�

�
¼ Rtrial

nþ1FðHnÞ ð204Þ

from which Rtrial
nþ1 is given by

Normal-yield surface at step n
0 ijM

Subloading surface
at elastic trial step

Subloading surface at step n

Elastic response region

1
trial

+nM

nM

Normal-yield surface at step n
0 ijM

Subloading surface
at elastic trial step

Subloading surface at step n

ncM

Elastic response region

knM

trialtrial
1+1+ ( ) 0( nnkn R F Hf −− ) =M M

( )( 0e
e nkn F Hf R− =)−M M

( ) ( ) 0k n nn Rf F H−− =M M

( ) ( ) 0nknf F H−− =M M

nkM

0
1+nM

(a) Initial subloading surface model .

(b) Extended subloading surface model                 .

trial
1+

ˆ
nN

( )c k≠M M

0
1+

ˆ
nN

0
1+nN

0 0
11 ++( ( )nnknf HR F)− =M M

Initial subloading surface

Initial subloading surface

ˆ
nN

trial
1+

ˆ
nN

e
nM

1
trial

+nN

1
trial

+nN

nM
nN

1
trial

+nM

1
trial

+nM
1

trial
+knM

( )c k=M M
( ) ( ) 0nknf F H−− =M M

( )( 0e nkn F Hf R− =)−M M

0
1+( ( )nnknf HR F)− =M M

trial
1+ ( ) 0( nnkn R F Hf −− ) =M M

( ) ( ) 0kn n nRf F H−− =M M

knM
1

trial
+nM

0
1+nM

0
1+nM

Fig. 16 Loading criterion when elastic trial stress is directed inward of subloading surface at step n in return-mapping method
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Rtrial
nþ1 ¼

~�M
trial0
nþ1 : �̂M

0
cn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~�M
trial0
nþ1 : �̂M

0
cn

� 	2

þ ð2=3ÞðFðHnÞÞ2 � �̂M
0
cn

�

�

�

�

�

�

2

 �

~�M
trial0
nþ1

�

�

�

�

�

�

2
s

ð2=3ÞðFðHnÞÞ2 � ~�M
trial0
nþ1

�

�

�

�

�

�

2

ð205Þ

The plastic corrector step is executed until the

subloading surface equation

f ð �Mnþ1Þ � Rnþ1FðHnþ1Þ ¼ 0 ð206Þ

is satisfied within the prescribed tolerance.

The plastic corrector step is started for the difference

from the subloading surface f ð �MnÞ ¼ RnFðHnÞ in the end

of the step n to the subloading surface f ð �Mtrial
nþ1Þ ¼

Rtrial
nþ1FðHnÞ in the elastic trial step for the case 1) ii). On the

other hand, it must be executed for the case 2) ii) b) by the

special procedures described in the following.

The subloading surface once shrinks inducing only

elastic strain increment and turns to expand inducing the

plastic strain increment after it contacts tangentially to the

stress increment D �M
trial

nþ1 in the process of the stress varia-

tion from �Mn as shown in Fig. 16. Then, we need to cal-

culate the normal-yield ratio R0
nþ1 in the state that the

subloading surface contacts tangentially to the line-ele-

ment. Here, the following relations must be satisfied at the

contact point, where the stress at the contact point, i.e. the

plastic-loading initiation stress is denoted by �M
0

nþ1 from

which the subloading surface changes from the contraction

to the expansion.

f ð �M0
nþ1Þ ¼ R0

nþ1FðHnÞ
�N0
nþ1 : D �M

trial

nþ1 ¼ 0

(

ð207Þ

where

�M
0

nþ1 � sD �M
trial

nþ1 þ �Mn (0
 s
 1) ð208Þ

�M0
knþ1 ¼ �Mcn � R0

nþ1
�̂Mcn ð209Þ

�M0
nþ1 � �M

0

nþ1 � �M0
knþ1 ¼ sD �M

trial

nþ1 þ ~�Mn þ R0
nþ1

�̂Mcn

ð210Þ

�N0
nþ1 �

of ð �M0
nþ1Þ

o �M
0

nþ1

=
of ð �M0

nþ1Þ
o �M

0

nþ1

�

�

�

�

�

�

�

�

�

�

ð211Þ

s(0
 s
 1) is the unknown scalar parameter which must be

determined so as to satisfy Eq. (207) at the stress �M
0

nþ1.

The two unknown variables s and R0
nþ1 are involved in

Eq. (207). In what follows, the explicit calculation proce-

dure of them will be shown for the Mises material.

Equation (207) is explicitly described for the Mises

material with f ð �M00
nþ1Þ ¼

ffiffiffiffiffiffiffiffi

3=2
p

�M00
nþ1

�

�

�

� leading to �N0
nþ1 ¼

�M00
nþ1=

�M00
nþ1

�

�

�

� as follows:
ffiffiffiffiffiffiffiffi

3=2
p

�N00
nþ1

�

�

�

� ¼ R0
nþ1FðHnÞ

�M00
nþ1 : D �M

trial

nþ1 ¼ 0

(

ð212Þ

i.e.

ffiffiffiffiffiffiffiffi

3=2
p

sD �M
trial0
nþ1 þ ~�M

0
n þ R0

nþ1
�̂M
0
cn

�

�

�

�

�

�
¼ R0

nþ1FðHnÞ

ðsD �M
trial0
nþ1 þ ~�M

0
n þ R0

nþ1
�̂M
0
cnÞ : D �M

trial

nþ1 ¼ 0

8

<

:

ð213Þ

The upper equation in Eq. (213) is expressed as

ð3=2Þ sD �M
trial0
nþ1 þ ~�M

0
n þ R0

nþ1
�̂M
0
cn

h i

: sD �M
trial0
nþ1 þ ~�M

0
n þ R0

nþ1
�̂M
0
cn

h i

¼ ðR0
nþ1FðHnÞÞ2

leading to

s2D �M
trial0
nþ1 : D �M

trial0
nþ1 þ 2sD �M

trial0
nþ1 : ~�M

0
n þ R0

nþ1
�̂M
0
cn

� 	

þ ~�M
0
n þ R0

nþ1
�̂M
0
cn

� 	

: ~�M
0
n þ R0

nþ1
�̂M
0
cn

� 	

� ð2=3Þ R0
nþ1FðHnÞ

� �2¼ 0

from which we have

s ¼



� D �M
trial0
nþ1 : ~�M

0
n þ R0

nþ1
�̂M
0
cn

� 	

:

þ D �M
trial0
nþ1 : ~�M

0
n þ R0

nþ1
�̂M
0
cn

� 	h i2

�D �M
trial0
nþ1 : D �M

trial0
nþ1

�

~�M
0
n þ R0

nþ1
�̂M
0
cn

� 	

: ~r0n þ R0
nþ1

~�M
0
n

� 	

� ð2=3Þ R0
nþ1FðHnÞ

� �2
h i

��

D �M
trial0
nþ1 : D �M

trial0
nþ1

� 	.

ð214Þ

The substitution of Eq. (214) into Eq. (213)2 leads to
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resulting in

D �M
trial0
nþ1 : ~�M

0
n þ R0

nþ1
�̂M
0
cn

� 	h i2

� D �M
trial0
nþ1 : D �M

trial0
nþ1

~�M
0
n þ R0

nþ1
�̂M
0
cn

� 	

:
h

~�M
0
n þ R0

nþ1
�̂M
0
cn

� 	

� ð2=3Þ R0
nþ1FðHnÞ

� �2
i

¼ 0

ð215Þ

which is the quadratic equation of R0
nþ1 (recognized

through the discussion with Masanori Oka and Takuya

Anjiki (Yanmar Co Ltd.), 2017). Equation (215) is

rewritten as

h

D �M
trial0
nþ1 : �̂M

0
cn

� 	2

� D �M
trial0
nþ1 : D �M

trial0
nþ1

� 	

�̂M
0
cn :

�̂M
0
cn

� 	

þð2=3ÞðFðHnÞÞ2 D �M
trial0
nþ1 : D �M

trial0
nþ1

� 	i

R02
nþ1

þ 2 D �M
trial0
nþ1 : ~�M

0
n

� 	

D �M
trial0
nþ1 : �̂M

0
cn

� 	h

� D �M
trial0
nþ1 : D �M

trial0
nþ1

� 	

~�M
0
n :

�̂M
0
cn

� 	i

R0
nþ1

þ D �M
trial0
nþ1 : ~�M

0
n

� 	2

� D �M
trial0
nþ1 : D �M

trial0
nþ1

� 	

~�M
0
n :

~�M
0
n

� 	

¼ 0

The solution of R0
nþ1 in Eq. (215) is given by

R0
nþ1 ¼

�B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 � AC
p

A
ð216Þ

where

A � S2ca � Sss �̂M
0
cn :

�̂M
0
cn � ð2=3ÞðFðHnÞÞ2

h i

B � SscSca � Sss
~�M
0
n :

�̂M
0
cn

C � S2sc � Sss
~�M
0
n :

~�M
0
n

8

>

>

>

<

>

>

>

:

ð217Þ

with

Sss � D �M
trial0
nþ1 : D �M

trial0
nþ1 ; Sca � D �M

trial0
nþ1 : �̂M

0
cn;

Ssc � D �M
trial

nþ1 :
~�M
0
n

ð218Þ

One must choose the solution satisfying 0
R0
nþ1 
 1 in

Eq. (216). Here, we must set R0
nþ1 ¼ Re if R

0
nþ1 
Re in the

calculated result. It is enough to calculate the initial nor-

mal-yield ratio R0
nþ1, while it is not necessary to calculate

the scalar number s and the stress �M
0

nþ1 for the return-

mapping calculation.

The plastic strain increment is induced during the vari-

ation of normal-yield ratio from R0
nþ1 to Rnþ1 which is

related to the plastic strain increment ep � ep0 as follows:

Rnþ1 ¼
2

p
ð1� Re)cos

�1 cos
p
2

R0
nþ1 � Re

1� Re


 �


exp �u
p
2

ep � ep0
1� Re


 ��

þ Re for R0
nþ1 �Re

ð219Þ

The plastic strain increment in the initiation of the plastic

corrector step is calculated based on the overstress

�M
trial

nþ1 � �M
0

nþ1, i.e. the difference from the elastic trial

stress �M
trial

nþ1 on the subloading surface at Rtrial
nþ1 from the

stress �M
0

nþ1 on that at R0
nþ1. However, if R0

nþ1\Re, we

must put R0
nþ1 ¼ Re in Eq. (219).

The loading criterion for the return-mapping method in

the initial subloading surface model is given by setting
�Mc ¼ �Mk in the above-mentioned formulations, referring

to Fig. 16a.

12 Subloading-Overstress Model Based
on Multiplicative Decomposition

The deformation gradient F is multiplicatively decomposed

into the elastic deformation gradient Fe and the plastic

deformation gradient Fvp instead of the plastic deformation

gradient Fp in the multiplicative elastoplasticity described

in the preceding sections. Then, we first adopt the fol-

lowing equation instead of Eq. (1).

F ¼ FeFvp ð220Þ

Further, the viscoplastic deformation gradient Fvp is

multiplicatively decomposed into the viscoplastic storage

part Fvp
ks causing the kinematic hardening and its dissipative

part Fvp
kd and into the viscoplastic storage part Fvp

cs causing

the elastic-core and its dissipative part Fvp
cd multiplicatively

as follows:

� D �M
trial0
nþ1 : ~�M

0
n þ R0

nþ1
�̂M
0
cn

� 	

þ


D �M
trial0
nþ1 : ~�M

0
n þ R0

nþ1
�̂M
0
cn

� 	h i2

�D �M
trial0
nþ1 : D �M

trial0
nþ1

~�M
0
n þ R0

nþ1
�̂M
0
cn

� 	

: ~�M
0
n þ R0

nþ1
�̂M
0
cn

� 	

� ð2=3Þ R0
nþ1FðHnÞ

� �2
h i

r

þ D �M
trial0
nþ1 : ~�M

0
n þ R0

nþ1
�̂M
0
cn

� 	

¼ 0
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Fp ¼ Fvp
ksF

vp
kd

Fvp
csF

vp
cd

�

ð221Þ

Then, the following right Cauchy-Green deformation ten-

sors for the viscoplastic deformation are introduced.

Cvp � FvpTFvp;

C
_

vp
ks � FvpT

ks Fvp
ks ; Cvp

kd � FvpT
kd Fvp

kd

C
^

vp
cs � FvpT

cs Fvp
cs ; Cvp

cd � FvpT
cd Fvp

cd

8

>

<

>

:

ð222Þ

The velocity gradient l in the current configuration is

additively decomposed into the elastic and the viscoplastic

parts:

l ¼ le þ lvp ð223Þ

where

l � _FF
�1
;

le � _F
e
Fe�1; lp � Fe _F

vp
Fvp�1Fe�1 ¼ Fe �L

vp
Fe�1

�L
vp � _F

vp
Fvp�1

8

<

:

ð224Þ

Further, the velocity gradient �L in the intermediate

configuration is additively decomposed into the elastic and

the plastic parts as follows:

�L ¼ �L
e þ �L

vp ð225Þ

where

�L � Fe�1lFe

�L
e � Fe�1leFe ¼ Fe�1 _F

e
; �L

vp � Fe�1lvpFe ¼ _F
vp
Fvp�1

�

ð226Þ

from which it follows that

�L ¼ �Dþ �W

�L
e ¼ �D

e þ �W
e
; �L

vp ¼ �D
vp þ �W

vp

(

ð227Þ

�D ¼ �D
e þ �D

vp
; �W ¼ �W

e þ �W
vp ð228Þ

where

�D ¼ sym½ �L�; �W ¼ ant½ �L�
�D
e ¼ sym½ �Le�; �W

e ¼ ant½ �Le�
�D
vp ¼ sym½ �Lvp�; �W

vp ¼ ant½ �Lvp�

8

>

<

>

:

ð229Þ

The viscoplastic velocity gradient �L
vp

is additively

decomposed for the kinematic hardening and the elastic-

core into the storage and the dissipative parts as follows:

�L
vp ¼ �L

vp

ks þ �L
vp

kd;
�L
vp ¼ �L

vp

cs þ �L
vp

cd ð230Þ

where

�L
vp

ks � _F
vp

ksF
vp�1
ks ¼ �D

vp

ks þ �W
vp

ks

�L
vp

kd � Fvp
ks L

_
vp
kdF

vp�1
ks ¼ �D

vp

kd þ �W
vp

kd

(

ð231Þ

�D
vp

ks � sym½ �Lvp

ks �; �W
vp

ks � ant½ �Lvp

ks �
�D
vp

kd � sym½ �Lvp

kd�; �W
vp

kd � ant½ �Lvp

kd�

(

ð232Þ

L
_

vp
kd ¼ _F

vp

kd F
vp�1
kd � Fvp�1

ks
�L
vp

kdF
vp
ks ð233Þ

�L
vp

cs � _F
vp

csF
vp�1
cs ¼ �D

vp

cs þ �W
vp

cs ;

�L
vp

cd � Fvp
cs L

^
vp
cdF

vp�1
cs ¼ �D

vp

cd þ �W
vp

cd

(

ð234Þ

�D
vp

cs � sym½ �Lvp

cs �; �W
vp

cs � ant½ �Lvp

cs �
�D
vp

cd � sym½ �Lvp

cd�; �W
vp

cd � ant½ �Lvp

cd�

(

ð235Þ

L
^

vp
cd ¼ _F

vp

cdF
vp�1
cd � Fvp�1

cs
�L
vp

cd
�F
vp

cs ð236Þ

The viscoplastic strain rate is given extending the

overstress model [70, 71] as follows:

�D
vp ¼ C �N ð237Þ

where

C ¼ 1

�l
hR� Rsin

Rm � R
ð238Þ

or

C ¼ 1

�l
hexp½nðR� RsÞ� � 1i

Rm � R
ð239Þ

where �N is given by Eq. (107), �l, n and Rm ([ 1) are the

material parameters, while Rm is the maximum value of R,

and

_Rs ¼
U ðRsÞ �D

vp�

�

�

� for �D
vp 6¼ O

_R ðRs ¼ R\1Þ for �D
vp ¼ O

�

ð240Þ

based on Eq. (66), leading to the smooth elastic-vis-

coplastic transition. Here, the normal-yield ratio R in

Eq. (65) is renamed as the subloading-yield ratio and

denoted by the symbol Rsð0
Rs 
 1Þ. Let the function

UðRsÞ be given by Eq. (68) with the replacement of R to

Rs, i.e.

UðRsÞ ¼ ucot
p
2

hRs � Rei
1� Re


 �

ð241Þ

Rs can be calculated analytically through the integration of

Eq. (240)1 with Eq. (241) in the viscoplastic deformation

process ð �Dvp 6¼ OÞ similarly to Eq. (69) as

Rs ¼
2

p
ð1� ReÞ cos�1 cos

p
2

Rs0 � Re

1� Re


 �


exp � p
2
u
evp � evp0
1� Re


 ��

þ Re

ð242Þ
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under the initial condition evp ¼ evp0 : Rs ¼ Rs0, defining

evp �
R

�D
vp�

�

�

�dt: Equation (237) or (239) is extended to

describe the general rate ranging from the quasi-static to

the impact loading, while the past overstress model

(Rm - R = 1) is inapplicable to deformation behavior at a

high strain rate.

The vscoplastic strain rates for the kinematic hardening

and the elastic-core are given extending Eqs. (108) and

(109) as follows:

�D
vp

kd ¼
1

bk
jj �Dvpjj �Mk ð243Þ

�D
vp

cd ¼
<c

v
jj �Dvpjj �̂Nc ð244Þ

The viscoplastic spin �W
p
, the kinematic-hardening

viscoplastic spin �W
p

kd and the elastic-core viscoplastic spin
�W
p

cd are given extending Eq. (113) as follows:

�W
vp ¼ gvpð �M �D

vp � �D
vp �MÞ

�W
vp

kd ¼ gvpk ð �M �D
vp

kd � �D
vp

kd
�MÞ

�W
vp

cd ¼ gvpc ð �M �D
vp

cd � �D
vp

cd
�MÞ

8

>

<

>

:

ð245Þ

where gvp, gvpk and gvpc are the material parameters.

The velocity gradients are given by substituting

Eqs. (237) or (239), (243) and (245) into Eqs. (227)3,

(231)2 and (234)2 as follows:

�L
vp ¼ C½ �N þ gvpð �M �N � �N �MÞ�

�L
vp

kd ¼ ð1=bkÞC½ �Mk þ gvpk ð �M �Mk � �Mk
�MÞ�

�L
vp

cd ¼ ð<c=vÞC½ �̂Nc þ gvpc ð �M �̂Nc � �̂Nc
�MÞ�

8

>

>

<

>

>

:

ð246Þ

The velocity gradient is given by Eq. (225) with

Eqs. (226) and (246) as follows:

�L ¼ Fe�1 _F
e þ C½ �N þ gvpð �M �N � �N �MÞ� ð247Þ

which is expressed in the incremental form as follows:

�Ldt ¼ Fe�1dFe þ C½ �N þ gvpð �M �N � �N �MÞ�dt ð248Þ

The rate of the viscoplastic gradient is given from

Eq. (224)3 as follows:

_F
vp ¼ �L

vp
Fvp ð249Þ

The time-integration for Fvp can be performed effectively

by the tensor exponential method as described for the

plastic deformation gradient Fp in the end of Sect. 10. The

elastic deformation gradient Fe is given by substituting the

time-integration Fvp in Eq. (188) into

Fe ¼ FFvp�1 ð250Þ

Then, �C
e
is calculated by Eq. (5) and further the stresses �S

and �M are calculated by Eqs. (27) and (28) as the hyper-

elastic relation.

Needless to say, the internal variables H; �Mk; �Mc

involved in �N and Rs evolve by the viscoplastic strain rate
�D
vp
.

13 Hyperelastic-Based Plastic Constitutive
Equation for Subloading-Friction Model

The reduction of the friction coefficient from the static to

kinetic friction coefficient and the recovery of the friction

coefficient under the reduction of sliding velocity are the

fundamental characteristics in friction phenomena, which

are recognized widely. Difference of the static and kinetic

frictions often reaches up to several tens of percent. The

formulation of friction phenomenon taken account of these

fundamental friction behavior is of importance for accurate

analyses of practical problems in engineering. The consti-

tutive equation of friction describing these behavior has

been formulated based on the subloading surface concept

[19] and thus it is called the subloading-friction model

[33, 40, 41, 44]. However, it has been formulated based on

the hypoelastic-based plasticity (e.g. [7, 33, 40, 41, 69]), in

which the elastic sliding velocity is limited to be

infinitesimal and the cumbersome time-integration of

corotational contract stress rate is required.

The subloading-friction model will be improved based

on the hyperelastic-based plasticity in this section. It is

capable of describing exactly the finite sliding behavior

under the finite rotation of contact surface without the

cumbersome time-integration of corotational contact stress

rate by formulating to relate the contact stress directly to

the elastic sliding displacement by the hyperelastic equa-

tion. Further, it is extended to be applicable to the general

case that the contact surface undergoes the rotation and the

deformation.

13.1 Sliding Displacement and Contact Traction
Vectors

The sliding displacement vector �u, which is defined as the

sliding displacement of the counter (slave) body to the

main (master) body, is orthogonally decomposed into the

normal sliding displacement vector �un and the tangential

sliding displacement vector �ut to the contact surface as

follows:

�u ¼ �un þ �ut ð251Þ

where
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�un ¼ ð�u � nÞn ¼ ðn� nÞ�u ¼ ��unn

�ut ¼ �u� �un ¼ ðI� n� nÞ�u

(

ð252Þ

n being the unit outward-normal vector of the surface of

main body and

�un � �n � �un ¼ �n � �u ð253Þ

Furthermore, �u is decomposed into the elastic sliding

displacement �ue and the plastic sliding displacement �up as

follows:

�u ¼ �ue þ �up ð254Þ

�ue ¼ �uen þ �uet
�up ¼ �upn þ �upt

(

ð255Þ

where

�uen ¼ ð�ue � nÞn ¼ ðn� nÞ�ue ¼ ��uenn

�uet ¼ �ue � �uen ¼ ðI� n� nÞ�ue

(

ð256Þ

�upn ¼ ð�up � nÞn ¼ ðn� nÞ�up

�upt ¼ �up � �upn ¼ ðI� n� nÞ�up

(

ð257Þ

setting

�uen � �n � �uen ¼ �n � �ue ð258Þ

The minus sign is added for �uen to be positive when the

counter body approaches the main body. On the other hand,

the plastic sliding flow rule will be formulated to fulfill

�upn ¼ 0 in Sect. 13.6.

The contact traction vector f acting on the main body is

additively decomposed into the normal traction vector fn
and the tangential traction vector f t as follows:

f ¼ fn þ f t ¼ �fnnþ fttf ð259Þ

where

fn � ðn � fÞn ¼ ðn� nÞf ¼ �fnn

f t � f � fn ¼ ðI� n� nÞf ¼ fttf

(

ð260Þ

fn � �n � f

ft � tf � f ¼ f tk k; tf �
f t
f tk k ðn � tf ¼ 0, tf

�

�

�

� ¼ 1)

8

<

:

ð261Þ

The minus sign is added for fn to be positive when the

compression is applied to the main body by the counter

body.

The contact traction vector f, fn and f t are calculated

from the Cauchy stress r applied to the contact surface by

virtue of the Cauchy’s fundamental theorem (cf. [33]) as

follows:

f ¼ rn

nfn ¼ ðn � rnÞn ¼ ðn� nÞrn
f t ¼ ðI� n� nÞrn

8

>

<

>

:

ð262Þ

13.2 Elastic Sliding Displacement

Let the contact traction vector f be given by the hypere-

lastic relation with the elastic sliding displacement energy

function uð�ueÞ as follows:

f ¼ ouð�ueÞ
o�ue

ð263Þ

The simplest function ouð�ueÞ is given by the quadratic

form:

ouð�ueÞ ¼ �ue � �E�ue=2 ð264Þ

where the second-order symmetric tensor �E is the elastic

contact tangent modulus tensor fulfilling the symmetry

�E ¼ �E
T
. The substitution of Eq. (264) into Eq. (263) leads to

f ¼ �E�ue ð265Þ

The inverse relation of Eq. (265) is given by

�ue ¼ �E
�1
f ð266Þ

The elastic contact tangent modulus tensor �E is given for

the isotropy on the contact surface as follows:

�E ¼ ann� nþ atðI� n� nÞ

�E
�1 ¼ 1

an
n� nþ 1

at
ðI� n� nÞ

8

<

:

ð267Þ

where an and at are the normal and tangential contact

elastic moduli, respectively. Their values are quite large

usually as 102 � 105 GPa/mm3 for metals because the

elastic sliding is caused by elastic deformations of the

surface asperities. Equations (265) and (266) with

Eq. (267) leads to

f ¼ at �u
e
t þ an �u

e
n

�ue ¼ 1

at
f t þ

1

an
fn

8

<

:

ð268Þ

Now, introduce the normalized rectangular coordinate

system ðê1; ê2; ê3Þ ¼ ðê1; ê2; nÞ fixed to the contact sur-

face, which changes with the rotation of the contact sur-

face. The elastic sliding displacement and the contact

traction are described as follows:

f ¼ f1ê1 þ f2ê2 þ fnn

�ue ¼ �ue1ê1 þ �ue2ê2 þ �uenn

(

ð269Þ

Hence, Eq. (265) is described in the simple form as

follows:

628 K. Hashiguchi

123



f1

f2

fn

8

>

<

>

:

9

>

=

>

;

¼
at 0 0

0 at 0

0 0 an

2

6

4

3

7

5

�ue1
�ue2
�uen

8

>

<

>

:

9

>

=

>

;

;

�ue1
�ue2
�uen

8

>

<

>

:

9

>

=

>

;

¼
1=at 0 0

0 1=at 0

0 0 1=an

2

6

4

3

7

5

f1

f2

fn

8

>

<

>

:

9

>

=

>

;

ð270Þ

The sliding velocity vector _�u is the objective vector,

since it is not an absolute velocity vector but the mutual

velocity vector between surface points on the master and

the counter bodies. Therefore, it is not necessary to use a

corotational velocity vector but we only have to use the

time derivative for the sliding velocity vector. Further, note

that one does not need to adopt a corotational rate but one

has only to use the time derivative for the contact traction

vector f by the fact: The contact traction f is calculated

from the hyperelastic equation with the substitution of the

elastic displacement �ue which is obtained by subtracting

the plastic displacement vector �up from the displacement

vector �u as will be explained in Sect. 13.7.

13.3 Normal Sliding-Yield and Sliding-
Subloading Surfaces

Assume the following sliding-yield surface with the iso-

tropic hardening/softening, which describes the sliding-

yield condition.

f ðfÞ ¼ l ð271Þ

l is the isotropic hardening/softening function denoting the

variation of the size of the sliding-yield surface. The fric-

tion-yield stress function f ðfÞ for the Coulomb friction law

is given by

f ðfÞ ¼ ft=fn ð272Þ

for which l specifies the coefficient of friction.

Then, in order to introduce the measure of approaching

degree to the sliding-yield surface, renamed the normal

sliding-yield surface, let the following subloading-sliding

surface passing through the current contact stress and

maintaining a similarity to the normal sliding-yield surface

be introduced, which plays the general measure of

approaching degree of the contact stress to the normal

sliding-yield surface (see Fig. 17).

f ðfÞ ¼ rl ð273Þ

where rð0
 r
 1) is the ratio of the size of the subloading

surface to that of the normal sliding-yield surface and

called the normal sliding-yield ratio, playing the role of the

measure of the approaching degree of the contact stress to

the normal sliding-yield surface.

13.4 Evolution Rule of Normal Sliding-Yield
Ratio

The evolution rule of the normal sliding-yield ratio is given

as follows [33]:

Main body

( ))( f
•

∂
∂

fn nf
r

1

1ê

2ê
3ˆ =e n

nt

/ =t nf f μ
Normal sliding-yield surface

Subloading-sliding surface
/ =t nf f rμ

f

tf

nf

( )
f

n= t
 t

( )f∂
∂

f
f

( ) ( )( )( ) )(t
f ff

•
∂ ∂∂ ≡ −∂ ∂∂

f ff n nf ff

Fig. 17 Coulomb-type normal sliding-yield and subloading-sliding surfaces
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_r ¼ �UðrÞ _�u
p�

�

�

� for _�u
p 6¼ 0; ð274Þ

where UðrÞ is the monotonically-increasing function of r

fulfilling the conditions.

�UðrÞ

! þ1 for r ¼ 0 (quasi-elastic sliding state)

[ 0 for 0\r\1 (sub-sliding yield state)

¼ 0 for r ¼ 1 ðnormal-sliding yield stateÞ
\0 for r[ 1 ðover normal-sliding yield stateÞ

8

>

>

<

>

>

:

ð275Þ

The explicit example of �UðrÞ is

�UðrÞ ¼ ~u cot
p
2
r

� 	

; ð276Þ

where ~u is a material constant. Equation (274) with

Eq. (276) can be analytically integrated for the monotonic

sliding process as follows:

r ¼ 2

p
cos�1 cos

p
2
r0

� 	

exp � 2

p
~u �up � �up0
� �


 �� �

;

�up � �up0 ¼
2

p
1

~u
1n

cos p
2
r0

� �

os p
2
r

� � ;

ð277Þ

where �upð ¼
R

_�u
p�

�

�

� dtÞ, and r0 and �up0 are the initial values

of r and �up, respectively. The adoption of the analytical

integration in Eq. (277) would be beneficial for the return-

mapping in numerical calculations.

13.5 Evolution rule of sliding-
hardening/softening function

Taking account of these facts, the evolution rule of the

isotropic hardening/softening function l is postulated as

follows [26, 33, 40]:

_l ¼ �j
l
lk

� 1


 �

_�u
p�

�

�

�

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Negative

þ n 1� l
ls


 �

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Positive

ð278Þ

where ls and lkðls � l� lkÞ are material constants des-

ignating the maximum and minimum values of l for the

static friction and the kinetic friction, respectively. j is a

material constant specifying the rate of decrease of l in the

plastic sliding process, and n is a material constant speci-

fying the rate of recovery of l as time elapses. The first and

second terms in Eq. (278) are relevant to the destruction

and reconstruction, respectively, of the adhesion between

surface asperities.

13.6 Plastic Sliding Velocity

The time derivative of Eq. (273) leads to the consistency

condition

of ðfÞ
of

� _f ¼ r _lþ _rl ð279Þ

The substitution of Eqs. (274) and (278) into Eq. (279)

leads to

of ðfÞ
of

� _f ¼ r �j
l
lk

� 1


 �

_�u
p�

�

�

�þ n 1� l
ls


 �
 �

þ �UðrÞ _�u
p�

�

�

�l

ð280Þ

Assume that the direction of plastic sliding velocity is

tangential to the contact plane and outward-normal to the

curve generated by the intersection of the subloading-

sliding surface and the constant normal traction plane

fn ¼ const., leading to the tangent associated flow rule (see

Fig. 18):

_�u
p ¼ _�knt ð _�k� 0) _�u

p�

�

�

� ¼ _�k; n � _�up ¼ 0
� 	

ð281Þ

where

nt �
of ðfÞ
of


 �

t

=
of ðfÞ
of


 �

t

�

�

�

�

�

�

�

�

ð ntk k ¼ 1; n � nt ¼ 0Þ ð282Þ

with

of ðfÞ
of


 �

t

� of ðfÞ
of

� n � of ðfÞ
of


 �

n ¼ ðI� n� nÞ of ðfÞ
of

ð283Þ

where _�k and nt are the magnitude and direction, respec-

tively, of the plastic sliding velocity.

The substitution of Eq. (281) into Eq. (280) reads:

of ðfÞ
of

� _f ¼ r �j
l
lk

� 1


 �

_�kþ n 1� l
ls


 �
 �

þ �UðrÞ _�kl

ð284Þ

i.e.
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Fig. 18 Influence of sliding velocity
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of ðfÞ
of

� _f ¼ _�kmp þ mc ð285Þ

where

mp � �j
l
lk

� 1


 �

r þ �UðrÞl; mc � n 1� l
ls


 �

r ð� 0Þ

ð286Þ

are relevant to the plastic and the creep sliding velocity,

respectively.

It is obtained from Eqs. (281) and (285) that

_�k ¼
of ðfÞ
of � _f � mc

mp
; _�u

p ¼
of ðfÞ
of � _f � mc

mp
nt ð287Þ

Substituting the rate form of Eqs. (266) and (287) into

the rate form of Eq. (254), the sliding velocity is given by

_�u ¼ �E
�1 _f þ

of ðfÞ
of � _f � mc

mp
nt ð288Þ

The plastic multiplier in terms of the sliding velocity,

denoted by the symbol _�K, is given from Eq. (288) as

_�K ¼
of ðfÞ
of

�E � _�u� mc

mp þ of ðfÞ
of

�E � nt
; _�u

p ¼
of ðfÞ
of

�E � _�u� mc

mp þ of ðfÞ
of

�E � nt
nt ð289Þ

The inverse relation Eq. (288) is given by substituting the

rate form of Eq. (254) with Eq. (289) into the rate form of

Eq. (265) as follows:

_f ¼ �E�
�Ent � of ðfÞ

of
�E

mp þ of ðfÞ
of

�E � nt

 !

_�uþ mc

mp þ of ðfÞ
of

�E � nt
�Ent

ð290Þ

The loading criterion is given as follows:

_�u
p 6¼0 for _�K[ 0
_�u
p ¼ 0 for other

�

ð291Þ

or

_�u
p 6¼0 for

of ðfÞ
of

�E � _�u�mc [ 0

_�u
p¼ 0 for other

8

<

:

ð292Þ

Some numerical experiments for the linear sliding pro-

cess for subloading-friction model formulated above are

shown in the following. The seven material constants of ls,
lk, j, n, ~u, an and at and the initial value l0 of the friction
coefficient are chosen as follows:

l0 ¼ ls ¼ 0.4, lk ¼ 0.2

j ¼ 10mm�1; n ¼ 0.01/s

~u ¼ 1000mm�1

an ¼ at ¼ 1000 kN/mm3

The influence of the sliding velocity on the relation of the

traction ratio ft=fn versus the tangential sliding displace-

ment �ut are shown in Fig. 18, where _�ut � k _�utk. Smooth

transitions from the static friction to the kinetic friction and

the decreases of the friction coefficient are depicted. Faster

decrease of friction coefficient is shown for higher sliding

velocity.

The recovery of the static friction coefficient from the

kinetic friction with the elapsed time t after the stop of

sliding is shown in Fig. 19. In the calculation, the constant

sliding velocity _�ut ¼ 0:1mm/s is given in the first stage

reaching the kinetic friction and then the tangential contact

traction is unloaded to zero. After the cessation of sliding

for several elapsed times, the same sliding velocity in the

first stage is given again. The recovery is larger for a longer

stationary time.

13.7 Calculation Procedure

The exact calculation of the contact stress can be per-

formed through the hyperelastic relation, while the cum-

bersome calculation procedure for the time-integration of

the corotational contact stress rate in the hypoelastic rela-

tion is not required. It will be shown for the sliding pro-

cesses under the rotation and under the rotation/

deformation of the contact surface in the following.

13.7.1 Sliding Process Under Rotation of Contact Surface

The sliding displacement is calculated by the time-inte-

gration of the input value of the sliding rate, i.e. �u ¼
R

_�udt.

The plastic sliding displacement is calculated by the time-

integration of the plastic sliding rate, i.e. �up ¼
R

_�u
p
dt based

on Eq. (289). The friction coefficient l is updated by

0 0.1 0.2
0.0

0.2

0.4

0.05 0.15

0.3

0.1

Stationary contact

100 s
50 s
10 s
15 s

0 s

[mm]tu

f t /
f n

Fig. 19 Influence of stationary time
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substituting the plastic sliding rate _�u
p
and the elapsed time

into Eq. (278). Further, the contact traction f is calculated

by the hyperelastic relation in Eq. (263) as

f ¼ ouð�u� �upÞ
o�u

ð293Þ

the simplest form of which is given for Eq. (265) as

follows:

f ¼ �Eð�u� �upÞ ð294Þ

Therefore, the cumbersome operation for the time-inte-

gration of the corotational rate of contact traction is not

required. Equation (294) is specialized for Eq. (267) with

the elastic modulus tensor in Eq. (267) as follows:

f ¼ anðn� n)(�u� �upÞ þ atðI� n� n)(�u� �upÞ ð295Þ

noting

�E�ue ¼ an �u
e
n þ at �u

e
t ¼ anðn� nÞ�ue þ atðI� n� nÞ�ue

Here, note that the rate form in Eq. (290) is not necessary

in the calculation procedure described in this section.

13.7.2 Sliding Process Under Rotation and Deformation
of Contact Surface

The above-mentioned calculation procedure is applicable

under the restriction that the contact plane rotates but does

not deform. In the following, the general calculation

method for the contact surface undergoing both the rotation

and/or the deformation is described below.

Let the primary bases embedded on the contact surface

in the reference and the current configurations be denoted

as fGig and fgiðtÞg, respectively, (see Fig. 20), and let

their reciprocal bases be denoted as fGig and fgiðtÞg,
while they are related through the deformation gradient

tensor F as follows (cf. [33, 46]):

giðtÞ ¼ FðtÞGi; Gi ¼ F�1ðtÞgiðtÞ
giðtÞ ¼ F�TðtÞGi; Gi ¼ FTðtÞgiðtÞ

(

ð296Þ

Let the reference primary base fGig form the normal-

ized orthogonal coordinate system in which G1 and G2 are

tangential to the contact surface and G3 is outward-normal

to the contact surface of the main body, i.e. G3 ¼ N, ful-

filling G1k k ¼ G2k k ¼ G3k k ð¼ Nk kÞ ¼ 1. Therefore,

there does not exist the difference between fGig and fGig.
Here, g3ðtÞð ¼ nðtÞÞ is neither a unit vector nor normal to

the current contact surface in the general material under-

going the deformation.

The sliding rate _�U and the plastic sliding rate _�U
p
in the

reference configuration are related to _�u and _�u
p
in the cur-

rent configuration as

_�Uð¼ _�uiGi ¼ _�uiF�1giÞ ¼ F�1 _�u

_�U
p
ð¼ _�upiGi ¼ _�upiF�1giÞ ¼ F�1 _�u

p

(

ð297Þ

where _�u is known from the nodal sliding rate in FEM and

_�u
p
is calculated from Eq. (289). The friction coefficient l is

updated by substituting the plastic sliding rate _�u
p
into

Eq. (278).
�U and �U

p
are calculated by the time-integrations of

Eq. (297), i.e.

2G

( )tF

1( )tg

2( )tg

3( ) ( ( ))=t tgn

1G

( ) ( )( )( ) ( ( ) )= = =ei
i t ttt f t −1G U F fEF ( )( )( ) ( ( ))= = e

i
i ttt f tgf Eu

1( )( )( ) ( ( ))= i
i ttt tu

• • •−=G FU u

( ) ( ( ) ( ))= i
it t tu

• • guReference configuration

Current configuration

3 (= )N G

Fig. 20 Variations of embedded base vectors for contact surface undergoing rotation/deformation
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�U ¼
Z

_�Udt ¼
Z

F�1 _�udt

�U
p ¼

Z

_�U
p
dt ¼

Z

F�1 _�u
p
dt

8

>

>

<

>

>

:

ð298Þ

The elastic sliding displacement �U
e
in the reference con-

figuration is calculated by the following equation, from

which the elastic sliding displacement �ue in the current

configurations is known.

�U
e ¼ �U� �U

p ¼ F�1 �ue; �ue ¼ F �U
e ð299Þ

The elastic modulus tensor �E in the reference configu-

ration and the elastic modulus tensor �E in the current

configuration are given noting Eq. (296) as follows:

�E ¼ atðG1 �G1 þG2 �G2Þ þ anN� N

¼ atðF�1g1 � FTg1 þ F�1g2 � FTg2Þ þ anF
�1g3 � FTg3

¼ F�1½atðg1 � g1 þ g2 � g2Þ þ ann� g3�F
¼ F�1 �EF

�E ¼ atðg1 � g1 þ g2 � g2Þ þ ann� g3 ¼ F �EF�1:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð300Þ

The contact stress F in the reference configuration is

calculated exploiting the calculated result of Eq. (299) with

Eq. (297) as follows:

F ¼ �E �U
e ð301Þ

from which the contact stress f in the current configuration

is calculated as

f ¼ �E�ue ¼ FF; F ¼ �E �U
e ¼ F�1f ð302Þ

noting

F ¼ �E �U
e ¼ ðF�1 �EFÞðF�1 �ueÞ ¼ F�1 �E�ue ð303Þ

In the above-mentioned calculation procedure, the cal-

culations of the primary and the reciprocal base vectors are

not necessary but we only have to import the deformation

gradient tensor F from the FEM analysis for the defor-

mation/rotation of the main body. The calculation proce-

dure in this subsection includes the former one in Sect. 13.1

without the deformation of the contact surface by setting

the deformation gradient to be the rigid-body rotation, i.e.

F ¼ Rr.

13.8 Subloading-overstress friction model

The subloading-friction model described in the preceding

sections will be generalized to describe the rate-depen-

dence in the following [33, 44].

The sliding displacement �u is decomposed into the

elastic sliding displacement �ue and the viscoplastic sliding

displacement �uvp as follows:

�u ¼ �ue þ �uvp ð304Þ

The evolution rule of the isotropic hardening/softening

function l in Eq. (278) is extended as follows:

_l ¼ �j
l
lk

� 1


 �

jj _�uvpjj
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Negative

þ n 1 � l
ls


 �

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Positive

ð305Þ

The viscoplastic sliding rate is given as follows:

_�u
vp ¼ �Cntð �C� 0Þ ð306Þ

where

�C ¼ 1

�l
hr � rsin

rm � r
ð307Þ

or

�C ¼ 1

�l
hexp½nðr � rsÞ� � 1i

rm � r
ð308Þ

where n and rm are the material parameters, while rm
designates the maximum value of r, rs ð0
 rs 
 1Þ is the

subloading friction-yield ratio calculated using Eq. (274)

with Eq. (275) by replacing r to rs and the plastic sliding

velocity _�u
p
to the viscoplastic sliding velocity _�u

vp
, i.e.

_rs ¼ �UðrsÞjj _�u
vpjj for _�uvp 6¼ 0 ðr[ rsÞ ð309Þ

_rs ¼ _r
¼ 0 for _�u

vp ¼ 0 and _�u
e ¼ 0

\0 for _�u
vp ¼ 0 and _�u

e 6¼ 0

(

ðrs ¼ rÞ ð310Þ

with

�UðrsÞ ¼ ~u cot
p
2
rs

� 	

: ð311Þ

Thus, the viscoplastic sliding is induced by the overstress

f ðfÞ � rsl from the subloading friction surface:

f ðfÞ ¼ rsl; i.e. r ¼ rs ð312Þ

so that a smooth elastic–viscoplastic transition is described.

The sliding rate and its inverse relation are given by

Eqs. (265), (304) and (306) as follows:

_�u ¼ �E
�1 _f þ Cnt

_f ¼ �E _�u � C �Ent

(

ð313Þ

The generalized subloading friction model proposed

above is referred to as the subloading-overstress friction

model, which is capable of describe both of the dry and the

fluid friction behaviour. The dry friction behaviour is

described by choosing the low value for the material

parameter rm as rm ¼ 1þ 0 in Eq. (307) or (308) such that

the viscoplastic sliding is induced as the contact stress

varies along the normal-friction yield surface, i.e. r ffi rs:
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The deformation behaviour described by the subloading-

overstress friction model is schematically shown in Fig. 21

in which the normalized overstress divided by the normal

contact stress fn is written simply by the term ‘‘overstress’’.

The dynamic loading friction-yield ratio r coincides with

the subloading friction-yield ratio rs, i.e. r ¼ rs in quasi-

static sliding and increases above rs with increasing sliding

velocity. However, r does not rise above rm, i.e. r
 rm,

with the equality r ¼ rm being realised only for impact

sliding.

The decrease of friction resistance with the increase of

sliding velocity is observed in the dry friction and called

the negative rate-sensitivity. Inversely, the increase of

friction resistance with the increase of sliding velocity is

observed in the fluid friction and called the positive rate-

sensitivity.

14 Concluding Remarks

The formulation of the exact multiplicative hyperelastic-

based plastic constitutive equation has been desired earn-

estly during a half century after the proposition of the

multiplicative decomposition of the deformation gradient

tensor in 1960s. Now, it would have been attained by

incorporating the rigorous plastic flow rules and the

subloading surface model in this article.

The main results in this article are summarized in the

following.

1. The exact multiplicative hyperelastic-based plastic

constitutive equations are formulated for the conven-

tional elastoplastic model with the yield surface

enclosing the purely elastic domain, the initial

subloading surface model and the extended subloading

surface model which is capable of describing not only

the monotonic but also the cyclic loading behavior

under the finite deformation and rotation. Among

various cyclic plasticity models only the subloading

surface model can be formulated based on the frame-

work of the multiplicative elastoplasticity.

2. These equations are extended to the description of the

rate-dependent deformation behavior by incorporating

the notion of the overstress. They are applicable to the

deformation behavior at the general rate ranging from

the quasi-static to the impact deformation behavior.

3. The hyperelastic-based plastic constitutive equation for

the subloading-friction model is formulated by extend-

ing the hypoelastic-based plastic one. It is applicable to

the sliding process in which the contact surface

undergoes the rotation. It is further extended to be

applicable to the sliding process in which the contact

surface undergoes not only the rotation but also the

deformation.

4. These equations possess the distinguished ability in

numerical calculations by the forward-Euler method

such that the stress is automatically pulled-back to the

yield surface when it goes out from the yield surface,

which is the inherent ability of the subloading surface

model.

5. The general loading criterion is formulated, which is

applicable not only to the monotonic loading process

but also to the reverse loading process, and further the

initial treatment in the plastic-corrector step is formu-

lated for the return-mapping method adopting the

subloading surface model.

These formulations possess the high numerical effi-

ciency in addition to the rigorous description of mechanical

behaviors up to the finite deformation/sliding and rotation.

They have been long-awaited in the history of elastoplas-

ticity theory. They will highly contribute to the steady

developments of the continuum mechanics and the

mechanical design technique in industries.
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