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Abstract
Plants emit an extremely diverse bouquet of volatile organic compounds (VOCs) from their above-ground and below-ground 
parts. Emissions are constitutive or induced, e.g. by herbivores. VOCs can be classified as highly volatile, volatile and semi-
volatile compounds. Sesquiterpenes (SQTs) are typical semi-volatile organic compounds (sVOCs) released by plants. Simi-
larly, herbivore-induced homoterpenes and methyl salicylate also have relatively low volatility. SVOCs have a high boiling 
point (> 240 °C) and a vapour pressure below 0.005 kPa at 25 °C. Glandular trichomes on plant surfaces can store SQTs in 
mixtures with more volatile VOCs, which are released into the air by diffusion or after gland rupture. The sVOCs stored in 
glandular trichomes often have repellent effects on herbivores, while herbivore-induced sVOCs are known for their attractive-
ness to natural enemies of herbivores, i.e. they act in indirect chemical defence of plants. Due to their low volatility, sVOCs 
produced by plants may easily adhere to the surfaces of emitter and neighbouring plants during the colder temperatures that 
plants face, e.g. at night. On the foliage of neighbouring receiver plants, sVOCs may act in direct and indirect defence of 
that plant species. When the temperature rises again, sVOCs are released into the atmosphere. The semi-volatile reaction 
products of highly volatile plant monoterpenes and photochemical pollutants such as ozone could constitute further sVOCs 
on plant leaf surfaces. Here, we review recent literature of the plant surface–environment interaction of biogenic sVOCs and 
particularly evaluate potential crop protection strategies such as intercropping and companion planting using sVOC-emitting 
species. Foliage typically forms the widest surfaces on crop plants, and foliar herbivory is a major type of pest damage dur-
ing the vegetative stage of crop plants. Foliage is also a major source of herbivore-induced VOC emissions. Consequently, 
we focus on foliage-mediated sVOCs and their potential in pest management.
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Abbreviations
DMNT	� (E)-3,8-dimethyl-1,4,7-nonatriene
ELVOC	� Extremely low volatility organic compound
GLV	� Green leaf volatile
GT	� Glandular trichome
IVOC	� Intermediate volatility organic compound

LVOC	� Low volatility organic compound
MeSA	� Methyl salicylate
MT	� Monoterpene
SQT	� Sesquiterpene
sVOC	� Semi-volatile organic compound
SOA	� Secondary organic aerosol
TMTT	� (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene
VOC	� Volatile organic compound

Introduction

A better knowledge and appreciation of the ecological inter-
actions between plants and associated biota and the trophic 
cascades that take place in agroecosystems is a requirement 
for sustainable and more climate-resilient food produc-
tion and food security under changing climatic conditions 
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(Tilman et al. 2002; Francis et al. 2003; Haddad et al. 2011; 
Altieri et al. 2012; Giron et al. 2018). Comprehensive under-
standing of the agroecology of cropping systems can help to 
buffer for biotic and abiotic stressors and potentiate ecologi-
cal intensification of crop production (Altieri et al. 2012; 
Kovacs-Hostyanszki et al. 2017). Ecological intensification 
of agricultural production means producing more crop yield 
with less external and environmentally critical inputs, and 
one move towards this goal is a shift from monocultures 
to more crop-diverse agroecosystems where the important 
role of companion/secondary plants is considered, e.g. in 
biocontrol of insect pests (Parolin et al. 2012). Ecological 
intensification also involves active field ecosystem manage-
ment to increase the intensity of the ecological processes 
that support production and maintain ecosystem services 
such as nutrient cycling, biotic pest regulation, and polli-
nation (Kovacs-Hostyanszki et al. 2017). Combining these 
individual components of functional biodiversity of agroeco-
systems with understanding of their role for several ecosys-
tem services supported by modern biotechnology and infor-
mation technology is also called “ecostacking” (Hokkanen 
and Menzler-Hokkanen 2018). Traditionally, crop plants 
have been cultivated in mixtures of several species or culti-
vars of crops which stabilises yields over the long term, but 
also promotes diversity of the agroecosystem (Altieri et al. 
2012). For maintenance of pollinators and natural enemies 
of insect pests, flowering intercrops and some flowering, 
companion weeds can help to increase the diversity of field 
vegetation and positively affect crop development (Ninko-
vic et al. 2016). Designing pest-buffered cropping needs to 
combine knowledge of pest biology, including their natural 
enemies and their responsiveness to host location cues and 
crop defences. While the term “secondary plant” is mostly 
used in field associations, “companion plant” is used in 
experimental cases, when the plant is mostly considered as 
an “emitter plant”.

Volatile organic compounds (VOCs) are produced by all 
plant parts, although humans mostly sense the distinctive 
strong and pleasant floral scents of pollinator-attracting flow-
ers (Borghi et al. 2017). In flowers and roots, VOCs are pri-
marily produced in epidermal cells (Adebesin et al. 2017), 
such as flower petals (Kolosova et al. 2001) from which 
they are directly released into the atmosphere. In leaves, 

synthesis of VOCs can take place in mesophyll cells with 
release through the stomata or cuticle (Loreto and Schnitzler 
2010) or from glandular trichomes (GTs) on the leaf sur-
face. GTs (Figs. 1, 2a) are found mostly on leaves (Tissier 

Fig. 1   Glandular trichomes (GT) of a basil (Ocimum basilicum, cv. 
Dolly) and c, d Rhododendron tomentosum. a–c Scanning electron 
microscopy of air-dried samples, d light microscopy of chemically 
fixed sample. GT of basil are sunken in the epidermis (a), GT of R. 
tomentosum raised above the epidermis on a stalk (black arrows in b, 
d). Heads of GTs are divided into compartments (white rhombi in a, 
c, d) which act in storage of secondary metabolites. c Exudates (white 
asterisk) released from the head of an R. tomentosum GT. d Struc-
tures of the GT have started to deteriorate, and synthesis cells for sec-
ondary metabolites cannot be identified

▸
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et al. 2017; Niinemets 2018) but are also present on stems 
(Mofikoya et al. 2018a, b), buds (Mofikoya et al. 2018a, 
b) and flower bracts (Muravnik et al. 2016). Furthermore, 
insects from several insect families are also capable of pro-
ducing similar VOCs to those produced by plants, including 
benzenoids, monoterpenes (MTs) and sesquiterpenes (SQTs) 
mostly as aggregation, sex and alarm pheromones (Schiestl 
2010; Pickett and Khan 2016). VOCs play an important role 
in plant–plant interactions (Heil 2014; Yoneya and Taka-
bayashi 2014) and in communication with other organisms 
in the ecosystem (Blande et al. 2014; Stenberg et al. 2015). 
Volatility of VOCs is variable depending on the chemical 
properties of each compound. VOCs are normally emit-
ted in a temperature-dependent way at normal air pressure 
(760 mmHg); higher temperatures lead to a more rapid shift 
from liquid or solid phases to the gas phase. In plants, this 
involves increased rates of chemical synthesis and increased 
rates of cellular diffusion of VOCs at higher temperatures 
(Laothawornkitkul et al. 2009). Typically, semi-volatile 
organic compounds (sVOCs) are not emitted to the gas phase 
as easily as highly volatile and volatile compounds at lower 
temperatures (Pollmann et al. 2005; Schaub et al. 2010). 
Stickiness of these compounds, particularly at colder night 
temperatures, leads to adsorption/adherence on leaf surfaces 
of emitter and neighbouring plants and re-release of sVOCs 
back to the atmosphere when sunlight warms the foliage 
(Schaub et al. 2010; Himanen et al. 2010). This nocturnal 
adherence of unfamiliar sVOCs on the host plant may affect 
oviposition of herbivorous insects that lay eggs during colder 
evening dusk or early morning dawn or during total darkness 

such as many moth species (Uematsu and Yoshikawa 2002; 
Graf et al. 2015; Sambaraju et al. 2016). In theory, oviposi-
tion of insect species that prefer to lay eggs in daytime such 
as weevils (Greenberg et al. 2006) or plant bugs (Egonyu 
2013) will be less affected, because unfamiliar sVOCs will 
have already evaporated from the plant surfaces. Limited 
evidence (Himanen et al. 2015) suggests that orientation of 
natural enemies on herbivore-damaged plants is not influ-
enced by adhered compounds.

Plants may have different chemical defence strategies. In 
some plant species, several VOCs are produced in higher 
amounts only after attack by herbivores. This strategy is 
called induced defence, because there is limited invest-
ment of photosynthesised carbon into volatile compounds 
such as terpenes when plants are not under feeding stress 
(Kessler and Kalske 2018). Many plant species, such as 
aromatic herbs releasing a characteristic scent, constitu-
tively produce significant amounts of secondary chemicals, 
including VOCs. These compounds are stored in specialised 
organs such as resin and latex canals or subcuticular and 
intercellular cavities in leaves (Pichersky and Raguso 2018) 
or in the plant epidermal GTs (Tissier et al. 2017). If such 
a plant is attacked by an herbivore, these compounds are 
released from broken storage structures and will often be 
repellent to the attacker. VOCs are also released from intact 
storage structures by diffusion in a temperature-dependent 
way, i.e. higher emissions are emitted from storage under 
warmer conditions (Copolovici and Niinemets 2015). The 
constitutively emitted VOCs act as attractive cues used by 
specialised herbivores to find the right host plant species. 

Fig. 2   Details of short-stalked and long-stalked capitate glandular 
trichomes on Petunia × hybrida cv. Night sky and insects entrapped 
by trichomes. a Short-stalked and long-stalked capitate trichomes 

on stem, b dead thrips on inflorescence trichomes, c dead species 
of Diptera larvae captured by/stuck to inflorescence trichomes. Bar 
= 0.5 mm in all figures
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These chemicals are usually harmless to the digestion pro-
cesses of specialised herbivores, while species specialised 
on other plant species may not be able to cope with these 
chemicals. In addition to constitutive VOC defence, plant 
chemical defence can be induced, which usually relates to 
indirect defence, i.e. the rapid increase in herbivore-induced 
volatiles, including de novo synthesis of sVOCs such as 
homoterpenes and SQTs (Arimura et al. 2008) that attract 
predators and parasitoids of herbivores. Thus, to understand 
the ecological impact of sVOCs, one needs to acknowledge 
their potential effects on insects of multiple trophic levels, 
and their differential responsiveness to biotic and abiotic 
variations (Yuan et al. 2009).

How semi‑volatiles differ from other volatile 
compounds?

A strict definition of biogenic sVOCs and their differ-
ence from more volatile biogenic VOCs is not available. 
However, many anthropogenic semi-volatile organic com-
pounds (sVOCs) are defined by the WHO as indoor pol-
lutants that have a very high boiling point in the range 
of 240/260–360/400 °C, which differs from very volatile 
organic compounds (boiling point < 100  °C) and vola-
tile organic compounds (boiling point in the range of 
100–240 °C) (Lucattini et al. 2018). Vapour pressure is an 
indication of a liquid’s evaporation rate at a given tempera-
ture. Biogenic compounds with a vapour pressure below 
0.005  kPa at 25  °C are considered to be semi-volatile 
(Copolovici and Niinemets 2015). Physical properties of 
some of the common biogenic VOCs and semi-volatiles 
according to this classification are listed in Table 1. In aero-
sol science, the classification of VOCs is based on saturation 
vapour pressures, i.e. the pressure of a vapour, when it is in 
equilibrium with the liquid phase (Finlayson-Pitts 2017). 
Extremely low volatility organic compounds (ELVOC) and 
low volatility organic compounds (LVOC) are less volatile 
and more easily condense to form organic aerosols than the 
sVOCs and more volatile compound groups such as inter-
mediate volatility organic compounds (IVOC) and volatile 
organic compounds (VOC) (Donahue et al. 2013).

Five carbon (C5) isoprene and one-carbon methanol are 
typical very volatile biogenic VOCs. Isoprene is the most 
abundant VOC emitted to the atmosphere by vegetation, 
while methanol is third after monoterpenes (MTs) (Messina 
et al. 2016). All terpenoids contain five-carbon isoprene 
units; they include an estimated 40.000 compounds in nature 
and are the most diverse and largest class of organic com-
pounds in plants (Bohlmann and Keeling 2008). MTs (C10) 
are typical volatiles emitted by plants, and they could be 
emitted constitutively in a light dependent-way from chlo-
roplasts or a temperature dependent-way from MT stores 

(Ghirardo et al. 2010). MTs are emitted in higher amounts 
after herbivore damage, particularly from MT-storing plants 
(Heijari et al. 2011), but volatile (C6) green leaf volatiles 
(GLVs) are typically emitted from broken plant cells after 
mechanical or herbivore damage (Matsui et al. 2012). Methyl 
salicylate (MeSA) (C8) is a benzenoid and related to stress 
signalling in plants (Karl et al. 2008; Catola et al. 2018). 
MeSA production and emissions are often induced by feed-
ing of sucking herbivores such as spider mites (Pinto et al. 
2007) and aphids (Kasal-Slavik et al. 2017; Catola et al. 
2018; Coppola et al. 2018), but less so by fungal pathogens 
(Kasal-Slavik et al. 2017). MeSA is classified as volatile 
according to boiling point temperature, but it has properties 
of sVOCs due to a very low vapour pressure (Table 1).

Sesquiterpenes (SQTs) are emitted from flowers (Schiestl 
2010), leaves, stems (Wang et al. 2008; Schilmiller et al. 
2010; Mofikoya et al. 2018a, b) or roots (Rasmann et al. 
2005) and are major terpenoid sVOCs. The SQT blend emit-
ted from herbivore-damaged or phytopathogen-damaged 
plants is often more diverse than that of intact plants (Pinto 
et al. 2007; Vuorinen et al. 2007; Arimura et al. 2008; Glas 
et al. 2012; Ponzio et al. 2013) and differs from damage by 
chewing or piercing-sucking arthropod herbivores (Leitner 
et al. 2005; Pinto et al. 2007; Ponzio et al. 2013). Herbivore-
induced production of SQTs and the SQT alcohol nerolidol 
is related to production of C11 and C16 homoterpenes (E)-
3,8-dimethyl-1,4,7-nonatriene (DMNT) and (E,E)-4,8,12-
trimethyltrideca-1,3,7,11-tetraene (TMTT), respectively 
(Arimura et al. 2008). Many herbivore-induced sVOCs such 
as SQTs and homoterpenes have shorter atmospheric life-
times in polluted air (Pollmann et al. 2005; Pinto et al. 2007; 
Blande et al. 2010; Mofikoya et al. 2018a), and thus pollu-
tion reduces VOC signalling efficiency to natural enemies 
(Holopainen and Gershenzon 2010; Blande et al. 2014). Fur-
thermore, air pollutants also degrade SQTs and MTs in flo-
ral scents and increase insect foraging times (Fuentes et al. 
2016). Diterpenes (C20) are mostly non-volatile compounds 
and are important components of natural phytochemical 
mixtures along with MTs and SQTs. For example, diter-
pene resin acids are present in conifer oleoresin (Keeling 
and Bohlmann 2006), which is an important source of VOCs 
and sVOCs when exposed to air, while GTs on needle leaf 
laminas/surfaces contain bicyclic lambdane diterpenes (Xiao 
et al. 2017).

Glandular trichomes as stores of biogenic 
sVOCs

GTs on plant leaf or stem surfaces are estimated to be pre-
sent in 30% of vascular plants (Tissier et al. 2017). GTs 
are one of the most important synthesis and storage sites 
for leaf sVOCs (Wang et al. 2008; Glas et al. 2012). GTs 
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Table 1   Physical properties of some typical biogenic volatiles listed according to their tendency to vaporise

Chemical compound information was collected from the ChemSpider (http://www.chems​pider​.com), Chemeo (https​://www.cheme​o.com/) 
and The Good Scent Company (http://www.thego​odsce​ntsco​mpany​.com) databases. Classification follows the WHO classification for volatile 
organic pollutants according to their boiling points (Lucatti et al. 2018). Vapour pressure is an indication of a liquid’s evaporation rate at a given 
temperature. Biogenic compounds with a vapour pressure below 0.005 kPa at 25 °C are considered semi-volatiles (Copolovici and Niinemets 
2015)
GLV green leaf volatiles, MT monoterpene, SQT sesquiterpene, DMNT (E)-3,8-dimethyl-1,4,7-nonatriene, TMTT (E,E)-4,8,12-trimethyltrideca-
1,3,7,11-tetraene, n.a. not available
a According to their low vapour pressure value these compounds can be classified as semi-volatiles
b https​://www.guide​chem.com/
c Compound has plant hormone properties

Compound Chemical group Chemical formula Vapour pressure (kPa 
at 25 °C)

Melting point (°C at 
760 mmHg)

Boiling point (°C 
at 760 mmHg)

Very volatile 0–100
 Methanol Alcohol CH4O 13.20 − 97.6 64.7
 Acetaldehyde Aldehyde C2H4O 98.66 − 123.4 20.2
 Isoprene Isoprenoid C5H8 53.20 − 146.0 34.1

Volatile 100–240
 (Z)-3-hexenal Aldehyde (GLV) C6H10O 1.49 − 78.9 116.5
 (Z)-3-hexenol Alcohol (GLV) C6H12O 0.14 − 61.0 168.9
 (Z)-3-hexenyl acetate Acetate (GLV) C8H14O2 0.16 − 26.2 169.0
 Benzaldehyde Aldehyde C7H6O 0.17 − 26.0 178.0
 α-Pinene MT C10H16 0.63 − 62.8 156.9
 Limonene MT C10H16 0.26 − 96.0 175.0
 β-Myrcene MT C10H16 0.28 − 110.5 167.0
 β-Ocimene MT C10H16 0.21 − 110.0 174.5
 Linalool MT alcohol C10H18O 0.12 − 28.3 198.7
 Menthone Cyclic MT alcohol C10H18O 0.03 − 6.0 210.0
 Carvacrol MT phenol C10H14O 0.00399a 2.5 237.7
 Citral MT aldehyde C10H16O 0.01 − 10.0 229.0
 DMNT Homoterpene ‎‎C11H18 0.08b − 99.0 182.5
 Methyl salicylatec Methyl ester C8H8O3 0.00457a − 8.6 222.2
 (Z)-sabinyl acetate MT acetate C12H18O2 0.00879 n.a. 230.0

Semi-volatile < 0.005 > 240
 Geranyl acetate Acetate C12H20O2 0.00347 n.a. 242.0
 Geranyl acetone MT ketone C13H22O 0.00213 n.a. 247.0
 Eugenol Phenylpropene C10H12O2 0.00133 100.3 255.0
 Indole Heterocyclics C8 H7 N 0.00163 51.5 253.5
 β-Elemene SQT C15H24 0.00368 n.a. 252.0
 β-Caryophyllene SQT C15H24 0.00173 50.6 263.0
 α-Selinene SQT C15H24 0.00160 n.a. 270.0
 α-Farnesene SQT C15H24 0.00133 − 73.2 278.3
 β-Farnesene SQT C15H24 0.00133 < − 70.0 272.5
 Ledene SQT C15H24 n.a. − 73.7 269.0
 Aromadendrene SQT C15H24 0.00306 57.3 283.6
 Nerolidol SQT alcohol C15H26O 0.00013 − 75.0 275.7
 Cedrol SQT alcohol C15H26O 0.00013 86.5 277.2
 Ledol SQT alcohol C15H26O 0.00002 104.0 293.9
 Palustrol SQT alcohol C15H26O 0.00002 76.1 293.5
 β-Eudesmol SQT alcohol C15H26O 0.00001 72.0 301.5
 TMTT Homoterpene C16H26 < 0.001 − 62.0 301.1
 Methyl jasmonatec Methyl ester C13H20O3 0.00013 < 25.0 302.5
 Germacrene D SQT C15H24 0.00093 − 8.5 308.0
 Globulol SQT alcohol C15H26O 0.00002 124.1 372.2

http://www.chemspider.com
https://www.chemeo.com/
http://www.thegoodscentscompany.com
https://www.guidechem.com/
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on leaf and stem surfaces (Fig. 2) are involved in direct 
defence, with effects on the orientation and locomotion of 
herbivorous insects before they start feeding (Voigt et al. 
2007; Simmons and Gurr 2005; LoPresti 2016; Tissier et al. 
2017). There are several types of GTs, and each plant spe-
cies may have one or more types (Simmons and Gurr 2005; 
McDowell et al. 2011), but GTs may differ substantially in 
their chemical content, even between related plant species. 
The essential oil composition of GT glands is predominantly 
composed of mixtures of MTs and SQTs, particularly in spe-
cies of the family Lamiaceae (Jin et al. 2014; Xiao et al. 
2017; Yu et al. 2018). SQTs are also found in GTs of the 
plant families Asteraceae (Bezerra et al. 2018), Solanaceae 
(McDowell et al. 2011) and Geraniaceae (Kremer et al. 
2013). Oxidised SQTs can be found in GTs of the families 
Asteraceae (Piazza et al. 2018), Rosaceae (Hashidoko et al. 
1994) and Ericaceae (Mofikoya et al. 2018a). GTs in some 
species of the Solanaceae family may have, in addition to 
MTs and SQTs, a highly diverse set of non-volatile metabo-
lites including flavonoids and other phenylpropanoids, alka-
loids, fatty acids and acyl sugars (McDowell et al. 2011; 
Glas et al. 2012). Other less volatile and viscous materials 
in plant GTs include diterpenoids (Xiao et al. 2017) and trit-
erpenoids (Frenzke et al. 2016). Genomic analysis of Sola-
num spp. (McDowell et al. 2011) revealed that in addition 
to genes related to secondary metabolite production, some 
GT types express genes associated with photosynthesis and 
carbon fixation and some may have functions related to the 
synthesis of protease inhibitors. In a Mentha sp., the lack of 
photosynthetic transcripts in the GT transcriptome suggests 
that in this species energy production in GTs is dependent on 
an exogenous supply of sucrose from underlying leaf tissues 
(Jin et al. 2014).

High concentrations of MTs and SQTs in GTs are toxic 
to herbivorous insects and reduce their activity, feeding, ovi-
position and substantially increase their mortality (Simmons 
and Gurr 2005). Non-glandular trichomes, together with 
GTs, may also act in mechanical defence against herbivores 
(Simmons and Gurr 2005). MTs and SQTs are reactive with 
ozone (O3), and when stored in GTs on leaf surfaces GTs 
also give protection against phytotoxic O3, but non-glandular 
trichomes without reactive compounds do not provide O3 
protection (Li et al. 2018). A high content of unsaturated 
fatty acids in GTs of some Solanum spp. act as repellents 
of herbivorous spider mites (Murungi et al. 2016). Stalked 
GTs on Solanaceous plants can contain highly viscous and 
hydrophobic acyl sugars (Voigt et al. 2007; McDowell et al. 
2011; Weinhold and Baldwin 2011). The sticky content of 
broken GTs is a direct plant defence against herbivory that 
catches insects (Krimmel and Pearse 2013). Removal of GT 
exudates from surfaces may lead to an improved rate of para-
sitism on herbivorous insects by specific small parasitoids 
(Simmons and Gurr 2005). However, the entrapped insect 

carrion (Fig. 2) on glandular leaves has been found to con-
stitute an alternative and attractive food source for general-
ist predators, thus improving indirect defence of plants by 
increasing the number of predators on plant foliage (Voigt 
et al. 2007; Krimmel and Pearse 2013; LoPresti et al. 2018). 
This represents an additional indirect defence-strategy to 
the specialised herbivore-induced plant VOCs that lead to 
attraction of specialised parasitoids and predators of the 
herbivores.

One of the evolutionary reasons for the location of GTs 
on plant surfaces is the phytotoxicity of oily MTs in high 
concentrations (Tissier et al. 2017; Synowiec et al. 2017). 
To avoid phytotoxicity for the terpene secretory tissues, GTs 
have special compartments (Tissier et al. 2017; Mofikoya 
et al. 2018b) filled with essential oils, i.e. MTs mixed with 
SQTs and other compounds mentioned above. However, 
there are no studies of how high concentrations of MTs in 
GTs affect the fluidity and possible volatility of other less 
volatile compounds in GTs. For example, in resin canals 
of conifers high oleoresin MT concentrations maintain flu-
idity of solid resin acids (da Silva Rodrigues-Corrêa et al. 
2013). High temperature dependence of volatility of VOCs 
may lead mixtures of MTs and SQTs to escape directly to 
the atmosphere by passive diffusion through the GT cuticle 
during warmer temperatures (Niinemets et al. 2014; Tis-
sier et al. 2017). Released SQTs (Mofikoya et al. 2018b), 
SQT alcohols (Himanen et al. 2010; Mofikoya et al. 2018b) 
and monoterpenes (Mofikoya et al. 2017, 2018b) have been 
observed to deposit on neighbouring plant foliage in field 
conditions. Re-emission of these deposited SVOCs from 
neighbour foliage has been shown to be highest in the morn-
ing (Himanen et al. 2010).

Uptake of VOCs and sVOCs 
from the atmosphere by plants

The behaviour of biogenic sVOCs in ecosystems and their 
impact on ecosystem function is still poorly understood 
compared to that of sVOC indoor pollutants (Lucattini 
et al. 2018) and sVOCs in different layers of the atmosphere 
(Donahue et al. 2013). A microcosm experiment indicated 
that soil is the major sink of isoprene and the MT α-pinene 
compared to grasses growing in the microcosm (Spielmann 
et al. 2017), although vegetation significantly reduced soil 
sink, when compared to bare soil. Monitoring of anthropo-
genic sVOCs in forest ecosystems has indicated that forest 
canopies are important for sVOC deposition and accumula-
tion (Horstmann and McLachlan 1998). Results also sug-
gested that lipophilic sVOCs are taken up from the atmos-
phere by the leaf/needle cuticle and not just via the stomata 
(Horstmann and McLachlan 1998). It should be noted that 
both biogenic and anthropogenic VOCs and sVOCs may 



199Foliar behaviour of biogenic semi-volatiles: potential applications in sustainable pest…

1 3

become involved in atmospheric aerosol reactions, which 
may change their volatility to lower or even to ELVOCs or 
solid organic particles (Donahue et al. 2013; Holopainen 
et al. 2017) before deposition on plants. However, these 
reaction products are outside the scope of our review.

When comparing the proportion of biogenic sVOCs in 
the emissions from plant leaves and in the flux above the 
canopy, e.g. in orange orchards (Ciccioli et al. 1999), a con-
siderable loss in atmospheric concentrations of SQTs can 
be observed. This can be related to the atmospheric reactiv-
ity of biogenic VOCs and sVOCs (Jardine et al. 2011; Hol-
opainen and Blande 2013; Liebmann et al. 2018; Mofikoya 
et al. 2018a) or their loss to leaf surface adsorption during 
the night hours or uptake through stomata during active CO2 
uptake (Niinemets et al. 2014). Examples of specific VOCs 
and sVOCs emitted from one plant and deposited on the 
foliage of other plants, from the same or other species, are 
still limited. Deposition flux of MTs and SQTs typical of 
nearby conifer forest trees was detected in mountain grass-
land (Bamberger et al. 2011). Substantial recovery of MTs, 
SQTs and SQT alcohols typical of the understory shrub 
Rhododendron tomentosum Harmaja (Ericaceae) (Jesionek 
et al. 2017) was made from mountain birch foliage in the 
subarctic (Mofikoya et al. 2018b). Earlier, Himanen et al. 
(2010) reported recovery of R. tomentosum SQT alcohols 
from the foliage of Betula pendula Roth and B. pubescens 
Ehrh. (Betulaceae) particularly in the morning, if saplings 
were grown close to R. tomentosum shrubs. These exam-
ples show that plants can adsorb VOCs and sVOCs from 
other plant species when they grow in the same environment. 
Under experimental conditions, high atmospheric concentra-
tions of the MT limonene were taken up by individuals of 
several plant species and released back to the atmosphere 
in limonene-free air (Noe et al. 2008). Variation in uptake 
rate of this hydrophobic MT was best explained by leaf lipid 
content of the exposed plants.

An evaluation of the commonality of uptake of volatiles 
emitted by neighbouring plants is not available, but results 
of Noe et al. (2008) suggest that there is significant uptake 
of hydrophobic MTs when the density of monoterpene-
emitting plants and ambient air concentrations of MTs 

are high. Stomatal uptake of highly volatile VOCs such as 
acetaldehyde by plants is known (Niinemets et al. 2014 and 
references therein). Several sVOCs and many less volatile 
hydrophobic compounds have been described on leaf surface 
epicuticular waxes of crop plants (e.g. Szafranek et al. 2006, 
2008). However, the understanding of deposition of VOCs 
and sVOCs on target plant leaves from their neighbours is 
often masked by the emission of similar compounds from 
both plant species. For example, the MT β-myrcene and the 
SQT β-farnesene are both emitted by Betula species and R. 
tomentosum shrubs (Himanen et al. 2010), so their origin on 
Betula leaves could be from either sources, the emitter or the 
neighbour. Highly species specific sVOCs of an emitter plant 
are the best indicators of VOC deposition on neighbouring 
plants in nature (Mofikoya et al. 2018b).

Do sVOCs deposited on leaf surfaces affect 
herbivorous insects?

Kessler and Kalske (2018) suggested that adsorbing and 
reemitting VOCs from neighbouring plants could be poten-
tially a common, but rarely studied, mechanism of associa-
tional resistance in nature. If a plant is naturally covered 
by sVOCs of another plant species and releasing a strange 
scent, it represents a case of environmentally acquired chem-
ical camouflage (Kessler and Kalske 2018). So far, there 
are only a few examples of this process from laboratory 
conditions (Himanen et al. 2010, 2015), from experimental 
fields (Himanen et al. 2010) and from forest environments 
(Mofikoya et al. 2018b) and none directly from agroecosys-
tems documenting the release of adhered exogenous sVOCs 
of neighbouring plants. Under laboratory conditions, there 
is also evidence that uninfected plants downwind can uptake 
herbivore-induced volatiles from conspecific infested plants 
(Choh et al. 2004). In addition to potential effects of com-
panion plant sVOCs adsorbed on crop plant surface (Fig. 3), 
stomatal uptake of external VOCs such as MTs (Copolovici 
et al. 2005) and sVOCs such as indole (Erb 2018) may have 
positive effects on abiotic and biotic stress tolerance of crop 
plant.

Fig. 3   A schematic illustra-
tion of potential VOCs and 
sVOCs functions in companion/
secondary plant–crop plant 
interactions related to surface 
adsorption and stomatal uptake 
of companion plant emissions 
by crop plant and potential 
consequences for herbivore 
tolerance of crop
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Plant extracts or distilled essential oils, containing MTs 
or MT and SQT mixtures, have been traditionally used to 
control plant-damaging insects (Ibrahim et al. 2001; Kumar 
et al. 2011; Gahukar 2012; Yarou et al. 2017). In direct 
contact, some plant extracts and distilled essential oils 
have been found to be nearly equally as effective as syn-
thetic insecticides against certain plant-feeding and blood-
feeding arthropods (Jaenson et al. 2005; Yarou et al. 2017). 
These compounds can also accumulate on plant surfaces 
and through their smell provide repellency and protection 
against attacking insects (Ibrahim et al. 2001, 2005; Yarou 
et al. 2017). Extracts and essential oils can be sprayed on 
plants or released from various dispensers (Ibrahim et al. 
2005; Mofikoya et al. 2017; Salamanca et al. 2018). Plant 
extracts may affect orientation behaviour or host acceptance 
by the herbivorous insects, but also attract some parasitoids 
of the pest insect (Ibrahim et al. 2005; Egigu et al. 2010). 
However, in high concentrations phytotoxic MTs sprayed 
on plant surfaces may lead to substantial reduction of pho-
tosynthesis and visible damage in crop plant foliage (Ibra-
him et al. 2004). Direct spraying of plant extracts may also 
leave residues of various metabolites of the extracted plant 
on the edible crop plant and cause a potential health risk of 
humans, if containing toxic compounds in high concentra-
tions (Gahukar 2012).

Promotion of natural adsorption of VOC and sVOC com-
pounds to crop plants from an emitting secondary plant could 
be an alternative option for arthropod pest control to direct 
crop plant treatment with plant extracts or essential oils. For 
more than three decades, it has been known that plants in the 
neighbourhood of herbivore-damaged plants become better 
defended and more resistant than healthy plants that are situ-
ated further (Baldwin and Schultz 1983). It took nearly two 
more decades to demonstrate that induced-VOCs emitted 
by damaged leaves transmit the signal to activate defence in 
healthy parts of the same plant, but these VOC signals are 
also eavesdropped upon by neighbouring plants leading to 
defence activation (Arimura et al. 2000; Karban and Maron 
2002; Kost and Heil 2006; Frost et al. 2007; Heil and Silva 
Bueno 2007). The responsive plants can be conspecific or 
heterospecific healthy plants (Heil and Karban 2010). Many 
of the herbivore-induced compound are terpenes. In labora-
tory tests, emissions of the MT β-ocimene, homoterpene 
DMNT and sVOC homoterpene TMTT activated expres-
sion of genes related to phenolic and terpenoid pathways in 
receiver plants (Arimura et al. 2000). In Populus L. species 
(Salicaceae), herbivory, mechanical damage and exogenous 
methyl jasmonate application-induced germacrene D syn-
thase gene expression and emission of the SQT (Arimura 
et al. 2004).

Many aromatic plant species constitutively emit a rela-
tively large proportion of SQTs. E.g. some Mentha spp. may 
have a SQT proportion exceeding 16% (Yu et al. 2018) and 

50% (Omaya-Okubo 2012) in extracted essential oil and 
volatile emissions, respectively. In some aromatic herbs, 
SQT alcohols may represent more than 40% of total root 
essential oil (Bottini et al. 1987). In the SQT-rich shrub R. 
tomentosum, the emission of SQTs and SQT alcohols varies 
from 31% (Himanen et al. 2010) to more than 60% of total 
VOC emissions (Himanen et al. 2015). Emissions of SQTs 
are normally diurnal and peak in daytime (Schaub et al. 
2010), when the temperature is high enough for diffusion 
from storage and there is enough light for photosynthesis 
and thus carbon availability for biosynthesis (Arimura et al. 
2004). Potential high emission rates of sVOCs close to emit-
ter plants supports the idea that constitutive emissions of 
VOCs, and sVOCs could cause other plants to elicit or prime 
defences (Sukegawa et al. 2018). Also, the repellent role of 
the sVOCs may exist on the foliage of other plants, when 
SVOCs are deposited there (Himanen et al. 2010, 2015).

Depending on climatic conditions in the region, the 
diurnal adsorption–desorption cycle may be possible with 
sVOCs (Himanen et al. 2010). When the foliage of emitter 
plants becomes warmer during daytime hours, more sVOCs 
are emitted (Schaub et al. 2010). Highest emission rates of 
sVOCs from neighbouring receiver plant surfaces can also 
be detected in the cooler mornings when adsorbed mole-
cules become more volatile on warming leaves (Himanen 
et al. 2010). The proportion of oxidised sVOCs such as SQT 
alcohols could be higher in re-emitted VOCs, because they 
are less reactive with atmospheric oxidants such as ozone 
(Mofikoya et al. 2018a). In colder climates, with cooler 
night temperatures during growing seasons, more distinc-
tive adsorption of monoterpenes from neighbouring plants 
can be detected (Mofikoya et al. 2018b). However, when a 
sVOC-emitting plant and a crop plant were grown together 
for 24 h at constant + 6 °C or + 22 °C temperatures in con-
trolled laboratory conditions, adsorption of sVOCs were 
only detected at + 22 °C (Himanen et al. 2015). This sug-
gests that sVOC adsorption on neighbouring plants in nature 
should also be studied in warmer climatic conditions.

Constitutively emitted volatiles of Mentha species grown 
together with Glycine max L. (Merr.) (Fabaceae) or Bras-
sica rapa L. (Brassicaceae) activated defence genes such 
as trypsin inhibitor genes and pathogenesis-related genes 
in receiver crop plans (Sukegawa et al. 2018). These plants 
received significantly lower levels of herbivory by natural 
herbivores in the field and in a greenhouse when compared 
to control plants that were not first exposed to Mentha 
plant volatiles. Sukegawa et al. (2018) suggested that the 
activation of defence genes might be related to increased 
depolarisation of the membrane potential by high concen-
trations of typical Mentha VOCs such as menthofuran, 
pulegone, neomenthol, menthol and menthone. Binding 
of Mentha VOCs to the cell membranes of receiver plants 
possibly altered ion permeability of the plasma membrane 
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and triggered an oxidative burst. It has also been observed 
that cabbage plants (Brassica oleracea convar. capitata L., 
Brassicaceae) exposed to herbivore-damaged conspecifics in 
the field are primed for stronger emission of VOCs (Giron-
Calva et al. 2017) and are less susceptible to oviposition by 
the diamondback moth (Plutella xylostella L.; Lepidoptera, 
Plutellidae) (Giron-Calva et al. 2016). Laboratory studies 
confirmed this observation but also showed that cabbage 
plants exposed to herbivore-damaged broccoli were more 
susceptible to oviposition by P. xylostella (Giron-Calva et al. 
2016). The mechanism underpinning the latter observation 
is likely to be the adsorption of sesquiterpenes, as observed 
in mechanistic laboratory studies by Li and Blande (2015). 
Another similar adsorption mechanism related to VOC and 
sVOC effects on crop plant herbivores was described by 
Himanen et al. (2015). Parts of B. oleracea plants were first 
grown for 48 h close to R. tomentosum where they adsorbed 
the MT myrcene and SQT alcohols ledol and palustrol. In 
laboratory experiments, these plants had lower oviposition 
pressure by P. xylostella than unexposed control plants. The 
reason for the reduced herbivore pressure was suggested 
to be a masking of the crop plant scent by adsorption of 
an unfamiliar scent of the secondary plant (Himanen et al. 
2015; Kessler and Kalske 2018). In this study, the possibility 
of activation of crop plant defence genes by the constitu-
tively emitted VOCs and sVOCs was not analysed.

An advantage of improving crop plant pest resistance 
by constitutively emitted VOCs and sVOCs of the emitter 
plant is that the active compounds produced by the second-
ary plant will continuously adhere to plant surfaces when the 
crop plant is growing, and not only on the days of spraying 
treatment. Another advantage is that no significant amounts 
of residue of emitter plants accumulate on crop plants, 
because they are normally re-emitted in warmer daytime 
temperatures. A disadvantage is the strong dependence of 
adsorption on weather conditions including wind direction, 
temperature and precipitation. Furthermore, the ontogeneti-
cally varying production of VOC and sVOC production dur-
ing the growing season (Mofikoya et al. 2018b) might not 
match with the life cycle (e.g. oviposition and larval feeding 
periods of the herbivore) leading to reduced pest manage-
ment effects.

SVOC‑producing secondary plants 
in sustainable crop production systems

VOC and sVOC emissions and their induction are plant 
traits that are controlled by multiple genes. Domestication 
and plant breeding have reduced induction and emission 
capacities in many crop plants (Glas et al. 2012; Stenberg 
et al. 2015; Lee at al. 2019). Crossing back these traits into 
crop plants might take significant time and may impair other 

crop plant traits such as productivity and quality of current 
cultivars (Andersen et al. 2015; Palmgren et al. 2015). An 
alternative is to use aromatic wild plants or cultivars of crop 
plants as alternative producers (secondary plant) of volatile 
repellents from crop plants (push) or attractants to second-
ary plants (pull) to manipulate behaviour of pest species on 
crop plants (Song et al. 2014). When considering the effects 
of sVOC-emitting plants on crop plants, we should keep 
in mind that sVOC emitters also emit other, more volatile 
VOCs such as MTs (Himanen et al. 2010; Mofikoya et al. 
2018b). Thus, the potential effects on crop plants and their 
arthropod communities will be based on the interactive 
effects of these compounds, and it is often not possible to 
separate the ultimate effects of VOCs or sVOCs. It is the 
same with the use of plant extracts or essential oils released 
from dispensers, where many of the sVOCs are less com-
mon than monoterpenes (Demasi et al. 2018). Parolin et al. 
(2012) defined secondary plants used in cropping systems 
as all different types of plants or crops grown together with 
a primary crop for pest management purposes. Such plants 
can be divided into several categories including compan-
ion, repellent, barrier, indicator, trap, insectary and banker 
plants. Potential role of sVOCs of secondary plants in these 
categories is summarised in Table 2.

Intercropping (Stenberg et al. 2015) or service cropping 
(Garcia et al. 2018), growing two or more plant species 
together in space and time for part or the whole of their 
growth cycle, has been re-discovered and becoming a cen-
tral means for ecological intensification, as it potentiates 
various types of diversification benefits (Brooker et al. 
2015). Intercrop selection is often made based on yield-
ing (targeting over-yielding, biological nitrogen fixation 
to supply additional nitrogen, or desired crop quality in 
feed mixtures), while improved pest control and associated 
functional biodiversity are also advantages of intercrop-
ping (Mutisya et al. 2016). Intercropping may be targeted 
at reducing reliance on synthetic pesticides by replacing 
them with natural pest buffering strategies. An altered 
physical or chemical environment can modify the arthro-
pod community above- and below-ground when several, 
typically crop species, co-exist. Intercropping potentiates 
the disturbance of insect pest host location (through visual 
or olfactory camouflage), of spread or reproduction in the 
canopy or root environment or can have an impact via 
support of top-down control by natural enemies (reviewed 
by, e.g. Poveda et al. 2008 and; Ratnadass et al. 2012). 
Although volatile communication in soil ecosystems is 
still rather poorly known (Delory et al. 2016), the role 
of sVOCs such as SQTs in attracting entomopathogenic 
nematodes of root herbivores by volatile communication 
in moist soil airspace is well documented (Rasmann et al. 
2005; Hiltpold and Turlings 2012). One important thing 
related to using volatile-based strategies in intercropping 
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is understanding the effective distance, specificity of the 
cues to target and non-target insects, and potential linkages 
to other ecological mechanisms that can also contribute to 
the crop-herbivore-natural enemy dynamics.

When pest control is the main goal of using intercrop-
ping, selection of crops is based on desired attraction or 
repulsion properties of the yielding or associate crops to 
key pests and/or their natural enemies. The strength of the 
volatile-based attraction needs to be high enough to deliver 
the desired efficacy; thus, theoretically, specialised pest spe-
cies relying more on olfactory cues are likely to be more 
affected than various generalist species. The use of “trap” 
plants to attract pest insects away from the crop plant was 
already presented in 1860 by an English entomologist John 
Curtis (Curtis 1860; Lamy et al. 2018), but practical applica-
tions were not developed earlier than the 1960s, when Stern 
et al. (1969) used an alfalfa intercrop to effectively reduce 
Lygus spp. (Heteroptera: Miridae) bug damage on cotton. 
The most well-known examples of volatile-based intercrop-
ping systems are the various push–pull systems (Eigenbrode 
et al. 2016). Functional, i.e. providing yield securing, exam-
ples include the push–pull system designed to defend maize 
and sorghum crops from the maize stemborer (Chilo par-
tellus Swinhoe; Lepidoptera, Crambidae) and the parasitic 
weed Striga hermonthica (Delile) Benth. (Orobanchaceae). 
In the conventional system, an intercrop and a trap crop are 
used as companion crops. The intercrop is a Desmodium 
Desv. species (Fabaceae), which has multiple functions 

in the system, it is repellent to moths, inhibits successful 
parasitism by S. hermonthica, and fixes nitrogen to improve 
soil quality. The trap crop is Napier grass (Pennisetum pur-
pureum Schumach.; Poaceae), which is attractive to moths 
but unsuitable for their development. Both companion crops 
are harvested as fodder for livestock, thus optimising the 
overall yield obtained from the system (Cook et al. 2007; 
Khan et al. 2010). In broccoli—Chinese cabbage intercrop-
ping (Brassica oleracea var. italica Plenck—B. rapa; Bras-
sicaceae), a push–pull system was successfully enhanced 
against Plutella xylostella by additional dispensers releasing 
dimethyl disulfide as a push component in a broccoli crop 
and Z-3-hexenyl-acetate as a pull component in Chinese cab-
bage strips (Lamy et al. 2018).

Information on preferences of specialist herbivores 
towards different crop species or cultivars, e.g. earlier flow-
ering, preferred flower colour or scent have been used as 
the basis of various trap cropping strategies (reviewed by, 
e.g. Hokkanen 1991; Parolin et al. 2012; Sarkar et al. 2018). 
Dead-end trap crops have the benefit of fast and cost-effec-
tive reduction of pest populations (e.g. Shelton and Nault 
2004). Trap crop spatiotemporal placement can also modify 
the efficacy of the system: attraction and arrestment of the 
pest on the trap crop, and this can be variable on herbivores 
relying on olfactory and visual cues versus post-alighting 
cues (Potting et al. 2005). The trap crops seldom include 
specific sVOC-emitters, but rather resemble the main crop 
while having higher attractiveness to the attacker. One of the 

Table 2   Potential functions of sVOC-rich secondary/companion plants in sustainable crop production systems and push–pull pest control strate-
gies

Classification of secondary plant types according to Parolin et al. (2012)

Secondary plant role Potential functions of sVOC of secondary plant Outcome on crop

Repellent plant 1. Repel flying insects (push)
2. Acquired chemical camouflage on crop plant (push)
3. Potential elicitor

Reduced pest pressure (less pest arrival and arrestment to 
the field)

Lower acceptance by pests
Induced defences on crop plant and increased attraction of 

natural enemies (potentially increased parasitisation and 
predation rates)

Companion plant 1. Root exudates reduce soil pests
2. Attract pest from crop (pull)
3. Attract pollinators and natural enemies

Less damage in root system
Less damage in foliage
Potentially improved pollination, increased parasitisation 

and predation rates
Trap plant Attract and trap crop herbivores (pull)

Induced emissions attract natural enemies
Reduced pest pressure
Higher abundance and/or diversity of predators and parasi-

toids in the field
Barrier plant Attract and stop arrival of herbivorous insects (pull) Reduced insect damage
Indicator (sentinel) plant Attract key pest more efficiently than crop plant (pull) Plant monitoring-improved timing of pest control measures
Insectary plant Flower emissions attract adult predators and parasitoids 

to feed on nectar and pollen and attack crop pests
Improved natural pest control by parasitoids and predators
Higher arthropod abundance and/or diversity

Banker plant Attract adult predators and parasitoids to reproduce on 
the plant

Stimulate host herbivore nymphs and larvae to feed on 
banker plant

Sustained population of natural enemies to control pests in 
greenhouse conditions
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potential repellence strategies that relies on aromatic vola-
tiles is based on the repulsive effects of lavender (Lavan-
dula angustifolia Mill.; Lamiaceae) odour on immigrating 
pollen beetles (Brassicogethes aeneus Fab.; Coleoptera, 
Nitidulidae) (Mauchline et al. 2013). The study used MT- 
and SQT-rich lavender essential oil (Demasi et al. 2018) 
to mask Brassica odour. Using SQT and SQT alcohol-rich 
plant extracts sprayed on crop plants may act as repellents 
to the herbivore, but may at the same time even improve the 
attraction of specialist parasitoids (Egigu et al. 2010). These 
opposite responses of a herbivore and its enemy may—
where a MT is known to be repellent to a pest and SQTs 
are known to attract the parasitoid (Ibrahim et al. 2005)—
allow for application whereby the compounds are released 
in combination from dispensers in the main crop. Selecting 
natural enemy-favouring secondary plants for intercropping 
can combine enhanced attractiveness by VOCs with direct 
support by floral nectar and pollen. The strategy of com-
bining a herbivore-induced attractant methyl salicylate and 
a floral nectar reward (buckwheat Fagopyrum esculentum 
Moench; Polygonaceae) has been trialled for supporting on 
conservation biological control (Orre-Gordon et al. 2013).

In terms of field plot responses, it is noteworthy that the 
spatial configuration of intercropping can also contribute to 
the efficacy against pests and impacts on natural enemies. 
For example, in wheat intercropping systems, strip cropping 
has been reported to more often reduce pest populations and 
favour natural enemies than relay or mixed intercropping 
(Lopes et al. 2016). How the type of intercropping impacts 
on potential sVOC-based interactions needs further study. 
The risks to efficacy when using volatile-based pest control 
based on chemicals originating from plant sources relate 
to their high responsiveness to abiotic and biotic variation, 
potentially restricted efficacy (with some herbivores not rely-
ing on volatile cues), and ability of herbivores to adapt to 
the altered volatile environment and break the resistance if 
the trap crop is not a developmental dead-end for the pest 
and thus pesticidal. One major advantage in using intercrop-
ping is that both crops can usually be commercially used to 
add profitability to the use of agricultural fields. Adaptations 
of intercropping in organic farming can include trap crops, 
such as using early cultivars to attract pest insects to repro-
duce there (Cotes et al. 2018). In the attract-and kill strategy 
(Gregg et al. 2018), the pest insect species can be controlled 
with permitted natural insecticides applied to the trap crop 
to reduce chemical control on the main cultivar. Trap crops 
in this type of “push and pull” strategy have been used par-
ticularly efficiently in developing countries and sVOCs such 
as SQTs of trap crop species have important roles in pest 
attraction from the main crop (Pickett and Khan 2016).

VOC-emitting secondary plants, e.g. aromatic plants 
such as mint (Sukegawa et al. 2018), might not be suita-
ble for growing alongside crops currently grown in large 

monocultures such as cereals and leguminous crops. Devel-
opment of the system would at least need to be done in 
horticultural crops and smaller-scale agriculture (Table 3). 
However, the need for green chemistry to replace fossil 
carbon-based chemistry may in future intensify the produc-
tion of terpene-rich plants for flavour, fragrance, perfume, 
pesticide and organic solvent industries. Strip cropping 
these sVOC-rich plants with other major crops might allow 
development of some modern intercropping/trap cropping 
systems for pest control.

Side effects, risks and benefits related 
to using biogenic sVOCs in agroecosystems

One option for increasing biological pest resistance of 
crop plants in future might be through engineering plants 
with desired emission profiles. Techniques for this might 
even include genetic engineering (Schuman and Baldwin 
2018). Risk assessment of genetically modified (GM) crop 
plants has been developed in recent years to minimise the 
unintended pleiotropic effects of transgenes and the harm-
ful impact of these crops on humans and the environment 
(Houshyani et al. 2014). Efforts to intensify production of 
herbivore-induced VOCs and sVOCs in crop plants for better 
attraction of natural enemies of pests have included produc-
tion of Arabidopsis Heynh. ex Holl & Heynh. (Brassicaceae) 
lines with a mitochondrial targeted nerolidol synthase gene. 
In these transgenic plants, the variation in gene expression 
did not differ from gene expression variation occurring 
naturally in Arabidopsis (Houshyani et al. 2014). However, 
transcriptional identity of GM lines of an original isogenic 
variety in standardised environmental conditions does not 
always secure the situation in the field (Benevenuto et al. 
2017). In pathway and proteome analyses of herbicide-toler-
ant maize, it was found that environment is the major source 
of variation followed by the genetic transformation factor. 
Drought and herbicide stress led to some differences in pro-
tein relative abundance and levels of some plant sVOCs such 
as MeJA and cinnamic acid (Benevenuto et al. 2017). The 
Bacillus thuringiensis (Bt)—toxin transgene in B. napus did 
not affect production of SQTs, but herbivore-induced pro-
duction of the SQTs β-elemene and (E,E)-α-farnesene was 
reduced in Bt-transgenic plants due to more limited foliar 
damage on these resistant plants, indicating again the strong 
biotic influence on VOC-mediated ecological interactions 
(Himanen et al. 2009).

An obvious risk of success of sVOC-based biocontrol 
strategies comes from the fact that most studies assessing the 
role and function of sVOCs for herbivorous and predatory/
parasitising arthropods have been done in the laboratory: a 
functional system showing excellent results in laboratory 
and greenhouse conditions might not work in the field in 
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practical pest management situations. For example, aphids 
release the SQT (E)-β-farnesene as an alarm pheromone, 
when attacked by natural enemies. This SQT acts as a 
repellent to other aphids, which avoid the plant, while also 
attracting aphid parasitoids. When a GM wheat variety with 
transgenic (E)-β-farnesene synthase was tested in the labora-
tory, aphid repellency and parasitoid attraction was excellent 
(Pickett and Khan 2016). However, field trials did not show 
any efficient aphid repellency (Bruce et al. 2015). It was 
expected that the constitutive expression and emission (E)-
β-farnesene may not be appropriate for a pheromonal func-
tion, because aphids emit this SQT in natural conditions in 
short-term bursts when an aphid is attacked by a parasitoid 
(Pickett and Khan 2016). Another important reason for fail-
ure of field trials is the variation of natural insect densities 
that might influence the probability of parasitoids detecting 
SQT signals at low population densities (Bruce et al. 2015). 
Therefore, a proper efficiency assessment in natural field 
conditions is essential, before progressing in further inte-
gration of sVOC emitting secondary plants in ecologically 
intensified production systems such as intercropping.

In the context of VOC-based pest control strategies and 
their application in the future, climate change and variation 
in “natural conditions” globally should be considered due 
to the effects of the abiotic environment on VOC and sVOC 
production by plants. An elevating temperature has most 
consistently resulted in increased MT and SQT emission 
from plants (Peñuelas and Staudt 2010; Genard-Zielinski 
et al. 2018; Holopainen et al. 2018), while severe drought 
(Peñuelas and Staudt 2010; Saunier et al. 2017; Genard-
Zielinski et al. 2018) and elevated CO2 (Peñuelas and Staudt 
2010; Klaiber et al. 2013) have resulted in reduced VOC and 
sVOC emissions, although some crop plant growth phases 
may respond differently (Himanen et al. 2009; Nogues et al. 
2015). It is noteworthy that we have rather limited knowl-
edge of the environmental responsiveness of different VOC 
groups, while there are likely to be both synergistic and 
antagonistic effects on VOC emission and persistence by 
various biotic and abiotic stressors (Yuan et al. 2009). This 
responsiveness needs to be tested when developing VOC-
based biocontrol solutions in order to be effective and resil-
ient in future agriculture, while it is important to consider 
that regional conditions might well impact the efficacy.

Natural compounds can be as beneficial or harmful to 
human and cattle health as synthetically produced chemi-
cals. However, common existence of biogenic VOCs in our 
environment suggests that humans have adapted to most of 
these compounds acquired, e.g. from the air or from sVOC-
rich crop plants used as spices. If using a known medicinal 
plant as a crop plant companion (Gahukar 2012), some of 
the specific sVOCs appearing in high concentrations can 
be toxic to humans. For example, the odour of R. tomento-
sum with very high concentrations of ledol in the air may C
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cause headache and nausea (Dampc and Luczkiewicz 2013). 
However, recent field experiments with R. tomentosum as a 
companion plant with broccoli (Fig. 4) have shown that ledol 
cannot be recovered in daytime VOC-sampling from broc-
coli plants, although R. tomentosum volatiles may influence 
herbivore densities on crop plants (Bui et al., unpublished). 
When using a perennial plant originating from peatland/for-
est habitats (such as R. tomentosum) in agricultural fields, 
the best growth response is achieved when seedlings are pot-
ted and grown in low-pH soil. Such companion/secondary 
planting could be a safe way to avoid the secondary plant 
from becoming a weed in agricultural fields.

Other risks relevant to using reactive organic compounds 
in agricultural fields could be related to the products of their 
reactions with atmospheric oxidants. Particularly, plants 
emitting more SQTs promote secondary organic aerosol 
(SOA) formation above vegetation (Faiola et al. 2018; Hel-
len et al. 2018). Herbivore feeding (Pinto et al. 2007) or 
herbivore stress simulated with elicitors (Joutsensaari et al. 
2005) on Brassicaceous plants increased the proportion of 
SQTs in plant emissions and resulted in increased SOA for-
mation (Joutsensaari et al. 2005). However, this risk might 
be lower than the risk caused by inhalation of anthropo-
genic aerosols including, e.g. smoke released by burning of 
fuels or aerosols released by spraying of synthetic pesticides 
(Coscolla et al. 2013).

When considering the benefits of using natural plants 
and their biogenic emissions in pest control, the proposed 
system has to be compared to current conventional crop 

production strategies. The extensive use of certain chemi-
cal pesticides with limited knowledge of their behaviour in 
natural and agroecosystems may lead to more strict regula-
tions and banning of some compounds after use for several 
decades. With natural compounds, non-target effects need 
to be assessed as well, while their environmental persistence 
may be shorter. For example, synthetic neonicotinoids have 
been in common use for nearly three decades and their 
relationship with pollinator decline has been shown (e.g. 
Lämsä et al. 2018), but we have only started to understand 
plant surface and atmospheric behaviour of neonicotinoids 
in detail very recently (Finlayson-Pitts 2017). In the case 
of the neonicotinoid insecticide imidacloprid, the desnitro 
derivative formed photochemically in the biofilm on plant 
surfaces is more toxic than the parent compound (Aregahegn 
et al. 2017; Finlayson-Pitts 2017). Furthermore, degradation 
of this compound leads to formation of the important green-
house gas, nitrous oxide (N2O). Global warming potential 
of N2O is 296-fold, when compared to CO2 in a 100-year 
scale (Crutzen et al. 2008). It has been estimated that the 
release of N2O from neonicotinoids used in agriculture could 
be at the same level as the release of N2O from fertilisers 
used in agriculture (Finlayson-Pitts 2017). If we assume that 
the worldwide use of neonicotinoids could be replaced by 
using VOC-rich and sVOC-rich secondary plants and more 
intensive use of natural essential oils, it would mean a reduc-
tion in the climate warming effects of production and pho-
tochemical degradation of synthetic insecticides, and poten-
tially a climate-cooling through increased natural VOC and 
sVOC emissions from agriculture. This is possible, because 
biogenic VOCs and sVOCs often participate in atmospheric 
SOA formation at regional and local scales (Joutsensaari 
et al. 2015; Zhao et al. 2017). SOA participates in cloud for-
mation in the upper atmosphere and acts as a shield against 
warming effects of solar radiation (Paasonen et al. 2013). 
Furthermore, SOA in the lower atmosphere aids diffusion 
of solar radiation (Rap et al. 2018). Diffused solar light has 
a capacity to improve photosynthesis of plant canopies by 
reducing shaded parts within foliage and thus increase CO2 
removal from the atmosphere (Rap et al. 2018). Transition 
from the use neonicotinoids to use of biogenic VOCs in sus-
tainable pest management could be one potential effort to 
reduce the significant greenhouse gas emissions from agri-
culture and to improve natural processes to mitigate global 
warming (Reay et al. 2012).

Conclusions

The beneficial aspects of sVOCs of crop plants and sec-
ondary companion plants could have an important role in 
the development of more sustainable pest control methods 
for increasing crop production. The biogenic sVOCs in pest 

Fig. 4   Rhododendron tomentosum plants (a) grown from seeds 
planted as repellent/barrier plants in the margins of broccoli (Bras-
sica oleracea L. var. italica), (b) field plots. R. tomentosum root 
system in Sphagnum peat maintain growth during growing season. 
Released sVOCs may provide environmental chemical camouflage to 
crop plants when sVOCs will adhere on foliage during colder temper-
atures in the evening and in the night. An arrow indicates the distance 
from a barrier plant to the closest crop plant
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management may be a way to replace some synthetic pes-
ticides and help secure the ecosystem services provided by 
insects such as natural biological control and pollination 
in the future. However, the natural adsorption–desorption 
cycle of sVOCs on crop plant surfaces still needs proper 
assessment for better understanding of its functionality 
under different climatic conditions. In addition, a greater 
research effort should be made into deciphering the potential 
of sVOCs for priming and inducing the chemical defences 
of crop plants and thus providing improved crop defence 
and tolerance against arthropod pests. For designing pest-
buffering intercropping and companion cropping strategies 
relying on VOCs, it will be essential also to understand the 
trophic cascades and spatiotemporal aspects that jointly con-
tribute to yielding and biocontrol efficacy.
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