Skip to main content
Log in

Bio-oil production from fast pyrolysis of furniture processing residue

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The pyrolysis characteristic of furniture processing residue (FPR), which was analyzed by thermogravimetric analysis (TGA) under nitrogen atmosphere, mainly decomposed between 230 °C and 500 °C. The FPR was submitted to fast pyrolysis in a bubbling fluidized-bed reactor (BFR) for converting into bio-oil, bio-char. The product distribution and characteristics of bio-oil depend on the operating conditions (temperature, fluidizing flow rate, particle size of sample). The bio-oil yield showed the highest value (50.68 wt%) at the pyrolysis temperature of 450 °C with a biomass particle size of 1.0 mm and a fluidization velocity of 2.0×Umf. The bio-oil had high selectivity for dioctyl phthalate, levoglucosan, and phenolic derivatives. The carbon number proportions in bio-oils of FPR were 32.74 wt% for C5–C11 fraction, 47.60 wt% for C12–C18 fraction and 19.38 wt% of C25–C38 fraction, respectively. The gas product included CO, CO2, H2, and hydrocarbons (C1–C4), and the selectivity of CO2 was the highest. The high heating value (HHV) of gas products was between 4.60 and 12.90 MJ/m3. The bio-char shows high HHV (23.87 MJ/kg) and high C content (62.47 wt%) that can be applied as a solid fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASTM:

american society for testing and materials standard method

X:

conversion of sample material

U mf :

minimum fluidization flow rate of nitrogen [L/min]

References

  1. H. W. Lee, H. Jeong, Y.-M. Ju and S. M. Lee, Korean J. Chem. Eng., 37, 1174 (2020).

    Article  CAS  Google Scholar 

  2. S. U. Lee, K. Jung, G. W. Park, C. Seo, Y. K. Hong, W. H. Hong and H. N. Chang, Korean J. Chem. Eng., 29, 831 (2012).

    Article  CAS  Google Scholar 

  3. U. Moralı, N. Yavuzel and S. Şensöz, Bioresour. Technol., 221, 682 (2016).

    Article  Google Scholar 

  4. H. V. Ly, S.-S. Kim, H. C. Woo, J. H. Choi, D. J. Suh and J. Kim, Energy, 93, 1436 (2015).

    Article  CAS  Google Scholar 

  5. Y.-M. Kim, H. W Lee, S. H. Jang, J. Jeong, S. Ryu, S.-C. Jung and Y.-K. Park, Korean J. Chem. Eng., 37, 493 (2020).

    Article  CAS  Google Scholar 

  6. R. Azargohar, K. L. Jacobson, E. E. Powell and A. K. Dalai, J. Anal. Appl. Pyrolysis, 104, 330 (2013).

    Article  CAS  Google Scholar 

  7. Q. Abbas, G. Liu, B. Yousaf, M. U. Ali, H. Ullah, M. A. M. Munir and R. Liu, J. Anal. Appl. Pyrolysis, 134, 281 (2018).

    Article  CAS  Google Scholar 

  8. S.-S. Kim, A. Shenoy and F. Agblevor, Bioresour. Technol., 156, 297 (2014).

    Article  CAS  Google Scholar 

  9. H. V. Ly, D.-H. Lim, J. W Sim, S.-S. Kim and J. Kim, Energy, 162, 564 (2018).

    Article  CAS  Google Scholar 

  10. H. V. Ly, S.-S. Kim, J. H. Choi, H. C. Woo and J. Kim, Energy Convers. Manag., 122, 526 (2016).

    Article  CAS  Google Scholar 

  11. Y. J. Bae, C. Ryu, J.-K. Jeon, J. Park, D. J. Suh, Y.-W. Suh, D. Chang and Y.-K. Park, Bioresour. Technol., 102, 3512 (2011).

    Article  CAS  Google Scholar 

  12. J. L. Carrasco, S. Gunukula, A. A. Boateng, C. A. Mullen, W. J. DeSisto and M. C. Wheeler, Fuel, 193, 477 (2017).

    Article  CAS  Google Scholar 

  13. S. Papari, K. Hawboldt and R. Helleur, Ind. Eng. Chem. Res., 56, 1920 (2017).

    Article  CAS  Google Scholar 

  14. J. Solar, I. de Marco, B. M. Caballero, A. Lopez-Urionabarrenechea, N. Rodriguez, I. Agirre and A. Adrados, Biomass Bioenergy, 95, 416 (2016).

    Article  CAS  Google Scholar 

  15. R. García, C. Pizarro, A. G. Lavín and J. L. Bueno, Bioresour. Technol., 103, 249 (2012).

    Article  Google Scholar 

  16. H. V. Ly, J. H. Choi, H. C. Woo, S.-S. Kim and J. Kim, Renew. Energy, 133, 11 (2019).

    Article  CAS  Google Scholar 

  17. S.-S. Kim and F. A. Agblevor, Bioresour. Technol., 16, 367 (2014).

    Article  Google Scholar 

  18. T. Yuzawa, C. Watanabe, R. Freeman and S. Tsuge, Anal. Sci., 25, 1057 (2009).

    Article  CAS  Google Scholar 

  19. H. Yang, R. Yan, H. Chen, C. Zheng, D. H. Lee and D. T. Liang, Energy Fuels, 20, 388 (2006).

    Article  CAS  Google Scholar 

  20. A. Heidari, R. Stahl, H. Younesi, A. Rashidi, N. Troeger and A. A. Ghoreyshi, J. Ind. Eng. Chem., 20, 2594 (2014).

    Article  CAS  Google Scholar 

  21. J. Shen, X. S. Wang, M. Garcia-Perez, D. Mourant, M. J. Rhodes and C.-Z. Li, Fuel, 88, 1810 (2009).

    Article  CAS  Google Scholar 

  22. S. A. Channiwala and P. P. Parikh, Fuel, 81, 1051 (2002).

    Article  CAS  Google Scholar 

  23. S. Wang and Z. Luo, Pyrolysis of biomass (green alternative energy resource), de Gruyter Publication, China (2016).

    Google Scholar 

  24. Y. Xue, S. Zhou, R. C. Brown, A. Kelkar and X. Bai, Fuel, 156, 40 (2015).

    Article  CAS  Google Scholar 

  25. S. Papari and K. Hawboldt, Renew. Sustain. Energy Rev., 52, 1580 (2015).

    Article  CAS  Google Scholar 

  26. V. Dhyani and T. Bhaskar, Renew. Energy, 129, 695 part B, (2018)

    Article  CAS  Google Scholar 

  27. R. Li, Z. P. Zhong, B. S. Jin and A. J. Zheng, Bioresour. Technol., 119, 324 (2012).

    Article  CAS  Google Scholar 

  28. A. Gómez-Hens and M. Aguilar-Caballos, Trends Analyt. Chem., 22, 847 (2003).

    Article  Google Scholar 

  29. N. Szczepańska, M. Rutkowska, K. Owczarek, J. Płotka-Wasylka and J. Namieśnik, Trends Analyt. Chem., 105, 173 (2018).

    Article  Google Scholar 

  30. G. Chang, Y. Huang, J. Xie, H. Yang, H. Liu, X. Yin and C. Wu, Energy Convers. Manag., 124, 587 (2016).

    Article  CAS  Google Scholar 

  31. H. S. Heo, H. J. Park, Y. K. Park, C. Ryu, D. J. Suk, Y. W. Suk, J. H. Yim and S.-S. Kim, Bioresour. Technol., 101, S91 (2010).

    Article  CAS  Google Scholar 

  32. V. A. Bridgwater, Advances in thermochemical biomass conversion, Springer Publication, Netherlands (1993).

    Book  Google Scholar 

  33. Y. Cui, X. Hou and J. Chang, Materials, 10, 668 (2017).

    Article  Google Scholar 

  34. X. Zhang, W. Yang and W. Blasiak, J. Anal. Appl. Pyrolysis, 96, 110 (2012).

    Article  CAS  Google Scholar 

  35. Y. Wang, H. Song, L. Peng, Q. Zhang and S. Yao, Biotechnol. Biotechnol. Equip., 28, 981 (2016).

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20173010092430).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinsoo Kim or Seung-Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ly, H.V., Tran, Q.K., Chun, B.H. et al. Bio-oil production from fast pyrolysis of furniture processing residue. Korean J. Chem. Eng. 38, 306–315 (2021). https://doi.org/10.1007/s11814-020-0688-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0688-x

Keywords

Navigation