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Abstract
We characterize sampling and interpolating sets with derivatives in weighted Fock
spaces on the complex plane in terms of their weighted Beurling densities.

Keywords Sampling · Fock space · Interpolation · Derivative · Bargmann–Fock
space

1 Introduction

1.1 Results and Context

Let φ : C → R be a subharmonic function with Laplacian bounded above and below
by positive constants. The weighted Fock space of entire functions is
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F2
φ :=

{
f : C → C : f holomorphic, ‖ f ‖2φ :=

∫
C

| f (z)|2e−φ(z)d A(z) < ∞
}

,

where d A denotes the Lebesgue measure on C. We study sampling and interpolation
on weighted Fock spaces, where we sample or interpolate using not only the function
values, but also the values of its derivatives. Such process is sometimes called multiple
or Hermite sampling and interpolation. While sampling and interpolation theory pro-
vides a mathematical foundation for the tasks of digitalization and encoding of analog
signals into bit-streams, the use of derivatives incorporates the trend of the signal as
well, and is well studied in Paley–Wiener spaces and shift-invariant spaces on the real
line; see, e.g., [1,2,12,21].

In this article, we characterize the sets that allow for multiple sampling and interpo-
lation in weighted Fock spaces in terms of certain densities, provided that the number
of derivatives considered at each sampling point is bounded. The precise assumptions
and definitions are given in Sect. 2.

The prime example of a Fock space is the Bargmann–Fock space, where φ(z) =
α|z|2, and α > 0 [26]. For this weight, the Heisenberg group acts irreducibly on
F2

φ , which results in a important homogeneity property called translation invariance

[26, Section 2.6]. More precisely, F2
φ is invariant under the so-called Bargmann–Fock

shifts [26]:

f (z) �→ e−α
2 |w|2+αzw̄ f (z − w), w ∈ C. (1.1)

Necessary and sufficient conditions for sampling and interpolation without derivatives
are fully described in terms of planar Beurling densities [23,24]. Specifically, the lower
and upper Beurling densities of a set � ⊆ C are

D−(�) := lim inf
R−→∞ inf

z∈C
# (� ∩ B(z, R))

π R2 , (1.2)

D+(�) := lim sup
R−→∞

sup
z∈C

# (� ∩ B(z, R))

π R2 , (1.3)

where B(z, R) denotes the Euclidean ball with center z and radius R. For φ(z) = α|z|2
and a separated set �, the existence of two sampling constants A, B > 0 leading to
a sampling inequality

A‖ f ‖2φ ≤
∑
λ∈�

| f (λ)|2 e−φ(λ) ≤ B‖ f ‖2φ, f ∈ F2
φ, (1.4)

is completely characterized by the density condition D−(�) > α
π
. Similarly, the

density condition D+(�) < α
π
completely characterizes the validity of the following

interpolation property: given a sequence {cλ : λ ∈ �} ⊂ C satisfying the growth
condition

∑
λ∈� |cλ|2e−φ(λ) < ∞ there exists (at least) one function f ∈ F2

φ such
that

f (λ) = cλ, λ ∈ �. (1.5)
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Slightly more technical formulations of these density characterizations apply to arbi-
trary, possibly non-separated sets [23,24]. These results parallel Beurling’s sampling
and interpolation theorems for the Paley–Wiener space of square integrable functions
on the real line having Fourier transforms supported on the unit interval, with the
difference that the latter results do not provide a complete characterization in terms
of densities, as the necessary density condition involves a non-strict inequality while
the sufficient involves a strict one [6,7].1 Translation invariance plays a key role in
[23,24], and the arguments do not seem to extend easily to more general weights.

For the classical weight φ(z) = α|z|2, sampling and interpolation with bounded
multiplicities are studied in [9], while unbounded multiplicities are treated in [8]. In
this setting the sampling (1.4) and interpolation equations (1.5) involve not only the
function f but also its translation covariant derivative

f (z) �→ αz̄ f (z) − ∂ f (z) (1.6)

applied iteratively. The operator (1.6) is called covariant, because it commutes with
the Bargmann–Fock shifts (1.1).When considering multiplicities, the characterization
of sampling and interpolation is in terms of weighted variants of the planar Beurling
densities (1.2), (1.3), where each point λ is counted multiply, according to the number
of derivatives that are evaluated at λ [9] (see Sect. 2.5 for more details.).

Sampling and interpolation on Fock spaces with general weights has been studied
in [5] and [19]. The characterization is in terms of variants of the Beurling densities
(1.2), (1.3), where the factor π R2 is replaced by the weighted measure

∫
B(z,R)

�φ d A =
∫

B(z,R)

∂∂̄φ d A. (1.7)

As ∂∂̄
[
α|z|2] = α, Beurling densities defined using (1.7) extend the classical ones

(1.2), (1.3) up to normalization. For general weights, the lack of translation invari-
ance demands new techniques, such as the introduction of approximate translation
operators [19], and ∂̄-surgery together with Riesz decompositions [5] (see Sect. 3).

In this article we simultaneously extend the results from [5,9,19] to study sampling
and interpolation with multiplicities on Fock spaces with general weights. Our starting
point is the observation that, for the classical weight φ(z) = α|z|2, the covariant
derivative (1.6) is the formal adjoint of the ∂̄-operator with respect to the scalar product
that induces the norm of F2

φ . Explicitly,

∂̄∗
φ f := −eφ∂

(
e−φ f

)
. (1.8)

We consider this operator for general weights φ, and study sampling and interpolation
involving iterated applications of ∂̄∗

φ . We derive a characterization of these properties
in terms of a suitable variant of the Beurling densities (1.2), (1.3), that counts points
multiply according to the number of concerned derivatives as in [9], and weights balls
with the Laplacian factor (1.7) as in [5,19].

1 See also [17] for necessary density conditions for sampling and interpolation in Paley–Wiener spaces
with arbitrary spectra.
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1.2 Motivation

One main motivation for our results is validating the differential operator (1.8) as an
adequate replacement for the covariant derivative (1.6), by showing that it leads to
similar sampling and interpolation properties. Other candidates for this role are the
differential operators defined as ordinary differentiation at the origin, conjugated with
the approximate translation operators from [19]. This second choice is however unnat-
ural, as it arbitrarily distinguishes the origin, and leads to complicated compatibility
issues (stemming from the fact that approximate translation operators are not associ-
ated with a group representation). On the other hand, although they lack the simplicity
of (1.8), differential operators associated with approximate translations would allow
a more straightforward generalization of the proofs of [5,19]. In any case, one can use
our present results to show a posteriori that both differential operators - (1.8) and the
ones defined in terms of approximate translations - do lead to similar sampling and
interpolation theorems.

Fock spaces find important applications in the simultaneous time-frequency anal-
ysis of real variable functions. The most successful applications concern the classical
weights and Gabor systems, which are structured functional dictionaries for L2(R),

G(g,�) = {e2π ib·g(· − a) : λ = (a, b) ∈ �
}

(1.9)

generated by the Gaussian function g(t) = e−π t2 , t ∈ R, and their time-frequency
shifts along a given set of nodes � ⊆ R

2. By means of the Bargmann transform,
the spanning properties of (1.9) can be reformulated as sampling and interpolation
properties of � on the Fock space with weight φ(z) = π |z|2 [10], and thus character-
ized in terms of Beurling densities [18,23,24]. Multiple sampling and interpolation on
F2

φ concerns in turn the spanning properties of multi-window Gabor systems, where
the Gaussian function is supplemented with additional Hermite functions [9, Remark
1]. Other weights φ(z) = απ |z|2 allow a similar analysis for the general Gaussian
function g(t) = e−at2 . Applications of more general weighted Fock spaces to time-
frequency analysis are more recent, and mainly connected to non-linear properties
of the so-called short-time Fourier transform, where for example weights are chosen
in a signal dependent fashion, see e.g., [13]. We expect our current results to find
applications in this direction.

1.3 Organization and Technical Overview

In Sect. 2 we present the precise definitions and assumptions as well as the main
results. Sect. 3 provides useful estimates from potential theory, which are important to
treat derivatives of functions in Fock spaces. The sufficiency of the density conditions
for sampling and interpolation is shown under additional technical assumptions in
Sect. 4, following closely the arguments from [5]. The most important task here is
showing that the operator (1.8) is suitably compatible with that line of argument,
which is based on Hörmander’s L2-estimates for ∂ [16]. The necessity of the density
conditions for multiple sampling and interpolation in the weighted case is challenging,
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as the classical approach relies on translation invariance [9], and the one in [19] on
a subtle form of approximate translation invariance. Instead of adapting the delicate
proof from [19], in Sect. 5 we develop a perturbation argument that allows us to reduce
the problem to the case of no multiplicities. This line of reasoning seems to provide
a more direct proof of the necessary density conditions for multiple sampling and
interpolation even for the classical weights [9]. The main results are finally proved
in Sect. 6, where the remaining technical assumptions are removed. Section A is an
appendix listing auxiliary results related to iterated derivatives of composite functions.

2 Definitions andMain Results

2.1 Sets with Multiplicity

A set with multiplicities is a pair (�, m�), where � ⊆ C, and m� : � → N is a
bounded function called multiplicity function. In problems concerning evaluations of
functions at �, the number m�(λ) indicates how many derivatives are involved at the
point z = λ. More precisely, m�(λ) = k indicates the interpolation or sampling of a
function and its first k − 1 derivatives at λ.

2.2 Notation

Complex disks are denoted B(z, r) := {y ∈ C : |z − y| < r}, with z ∈ C and r > 0.
We use the notation x � y if there exists a constant such that x ≤ Cy. The constant
is normally allowed to depend on supλ∈� m�(λ) and φ, while other dependencies are
noted explicitly. The precise value of unspecified constants may vary from line to line.

For a set with multiplicities (�, m�), we denote by 	2φ(�, m�) the space of

sequences a ≡ (a(λ, j)
)
λ∈�, 0≤ j≤m�(λ)−1 of complex numbers with finite norm:

‖a‖2
	2φ(�,m�)

=
∑
λ∈�

m�(λ)−1∑
j=0

|a(λ, j)|2e−φ(λ).

When m� ≡ 1 we simply write 	2φ(�).

2.3 Separated Sets

A set � ⊆ C is called relatively separated if

rel(�) := sup {# (� ∩ B(z, 1)) : z ∈ C} < ∞,

and it is called (uniformly) separated if

ρ(�) := inf
{∣∣λ − λ′∣∣ : λ �= λ′ ∈ �

}
> 0.
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Separated sets are relatively separated, and relatively separated sets are finite unions of
separated sets. For simplicity of notation, we write ρ instead of ρ(�) when no confu-
sion can arise. We say that a set with multiplicities (�, m�) is separated (respectively
relatively separated) if � is separated (respectively relatively separated).

2.4 Wirtinger Derivatives and the @̄∗Operator

We normalize the Laplacian as

� := 1

4

(
∂2x + ∂2y

)
= ∂∂̄,

where ∂ and ∂̄ denote the Wirtinger derivatives:

∂ = 1

2

(
∂x − i∂y

)
and ∂̄ = 1

2

(
∂x + i∂y

)
.

For f ∈ C1(C) we define the operator

∂̄∗
φ f := −eφ∂

(
e−φ f

)
,

which is the formal adjoint of the ∂̄-operator with respect to the weighted scalar
product

〈 f , g〉φ =
∫

f (z)g(z)e−φ(z)d A(z).

When the dependence on φ is clear from the context, we write for short ∂̄∗. For the
classical weight φ(z) = α|z|2, ∂̄∗

φ f is the covariant derivative (1.6).

2.5 Interpolating Sets and Sampling Sets

We say that (�, m�) is an interpolating set forF2
φ , if for any sequence c ∈ 	2φ(�, m�)

there exists a function f ∈ F2
φ such that ∂̄∗( j)

f (λ) = c(λ, j), for all λ ∈ � and

j ∈ {0, . . . , m�(λ) − 1}. We say that (�, m�) is a sampling set for F2
φ , if there exist

constants A, B > 0 such that

A‖ f ‖2φ ≤
∑
λ∈�

m�(λ)−1∑
j=0

∣∣∣∂̄∗( j)
f (λ)

∣∣∣2 e−φ(λ) ≤ B‖ f ‖2φ.

For the classical weight φ(z) = α|z|2, using the covariance property of ∂
∗
φ , it is easy

to see that

e− 1
2φ(λ) · ∂̄∗( j)

f (λ) = (−1) j 〈 f , Wλe j 〉φ,
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where e j (z) = (
α j+1/π

)
z j and Ww denotes the Bargmann–Fock shift by w (1.1).

Multiple sampling and interpolating sets with respect to the weight φ(z) = α|z|2
are defined in [9] in terms of Bargmann–Fock shifts of the normalized monomials
f j (z) = (α j/ j !)1/2z j . Since, as in [9], we only consider sets with bounded multiplic-
ity, for the classical weight φ(z) = α|z|2, the present notion of multiple sampling and
interpolation is equivalent to the one from [9].

2.6 Beurling Densities

Given a set with multiplicities (�, m�), n (z, r ,�, m�) is defined as the number of
points of the set � in the disk B(z, r), counted with multiplicities. That is,

n (z, r ,�, m�) = ν�1B(0,r)(z),

where

ν = ν� :=
∑
λ∈�

m�(λ) · δλ

is a weighted sum of Dirac deltas, and 1B(0,r) is the characteristic function of the disk.
The lower and upper Beurling densities of (�, m�) with respect to φ are:

D−
φ (�, m�) = lim inf

r→∞ inf
z∈C

n (z, r ,�, m�)∫
B(z,r)

�φ d A
, (2.1)

D+
φ (�, m�) = lim sup

r→∞
sup
z∈C

n (z, r ,�, m�)∫
B(z,r)

�φ d A
. (2.2)

2.7 Compatibility Assumptions

We always assume that sets with multiplicities have bounded multiplicity functions
and denote

n� := sup
λ∈�

m�(λ) − 1.

Wesay that (�, m�) andφ are compatible if the following conditions hold. For n� = 0
or n� = 1, we only require that m < �φ < M for some positive constants m, M . For
n� ≥ 2, we additionally require φ ∈ Cn�+1(C) and supz∈C |∂ j

z �φ(z)| < ∞, for all
j = 1, . . . , n� − 1.
The conditions are chosen so that there exists εr > 0 for which

∣∣∣∣∂ j
z

(∫
B(ζ,r)

log |w − z| �φ(w) d A(w)

)∣∣∣∣ ≤ Cr , (2.3)

for every ζ ∈ C, z ∈ B(ζ, εr ) and 0 ≤ j ≤ n�.
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2.8 Main Results

Our goal is to derive the following characterization of sampling and interpolating sets.

Theorem A Let (�, m�) be a set with multiplicities that is compatible with the weight
φ. Then (�, m�) is interpolating for F2

φ if and only if it is separated and satisfies

D+
φ (�, m�) < 1/π .

Theorem B Let (�, m�) be a set with multiplicities that is compatible with the weight
φ. Then (�, m�) is sampling for F2

φ if and only if it is relatively separated and �

contains a separated subset �′ satisfying D−
φ

(
�′, m�

∣∣
�′
)

> 1/π .

3 Riesz Decomposition

The Riesz decomposition, presented below, describes the structure of subharmonic
functions on bounded subdomains of the complex plane. It is an essential tool to study
weighted Fock spaces, as their very definition involves a subharmonic function.

Theorem 3.1 (Riesz decomposition) Let D be a domain in C, and let u : D → R be
a subharmonic function. If K ⊆ D is an open and relatively compact set, then there
exists a harmonic function h on K such that

u(z) = h(z) + G[�u](z), z ∈ K ,

where

G[�u](z) = 2

π

∫
K
log |w − z| �u(w) d A(w). (3.1)

The function G[�u] in (3.1) is called the logarithmic potential of�u on the domain
K . For more on Riesz decomposition, see [14,20,22].

We recall the following fact from potential theory, (see, e.g., [25, Thm. 10]).

Lemma 3.2 Let � ⊂ R
n be open and bounded. Let B1 = B (x0, R), B2 =

B (x0, 2R) ⊂ B̄2 ⊂ � be concentric balls. Suppose that u solves �u = f in B2,
and f ∈ C0(�), then u ∈ C1,α(B1) for any α ∈ (0, 1), and

‖u‖C1,α(B1)
� ‖ f ‖L∞(B2) + ‖u‖L2(B2)

.

Here,

‖u‖Ck,α(�) :=
∑

0≤|β|≤k

‖∂βu‖L∞(�) + sup
|β|=k

sup
x,y∈�
x �=y

∣∣Dβu(x) − Dβu(y)
∣∣

|x − y|α .

As an application, we have the following bounds for Riesz decomposition.
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Lemma 3.3 Let (�, m�) and φ be compatible, and let ε > 0. For each λ ∈ �, let

φ(z) = hλ(z) + G[�φ](z), z ∈ B(λ, ε),

be the Riesz decomposition of φ on B(λ, ε), where hλ is harmonic and G[�φ] is the
logarithmic potential of �φ on B(λ, ε). Write hλ = 2Re Hλ, where Hλ is holomor-
phic, and set Gλ = Hλ − Hλ(λ).

Then there exists Cε > 0, such that for z ∈ B(λ, ε),

|G[�φ](z)| ≤ Cε, (3.2)

|φ(z) − φ(λ) − 2Re Gλ(z)| ≤ Cε, (3.3)

and if z ∈ B(λ, ε/2n�) and 1 ≤ k ≤ n�,

|∂k G[�φ](z)| ≤ Cε, (3.4)∣∣∣∂k(Gλ − φ)(z)
∣∣∣ ≤ Cε. (3.5)

The constant Cε depends on ε but not on λ.

Proof Let z ∈ B(λ, ε). We first note that

∣∣G[�u](z)∣∣ ≤ 2

π

∫
B(λ,ε)

∣∣ log |w − z|∣∣ ∣∣�u(w)
∣∣ d A(w)

≤ 2

π
sup
w∈C

|�φ(w)|
∫

B(0,2ε)

∣∣ log |w|∣∣ d A(w) =: C (1)
ε .

Note also that

φ(z) − φ(λ) − 2Re Gλ(z) = G[�φ](z) − G[�φ](λ). (3.6)

Consequently,

|φ(z) − φ(λ) − 2Re Gλ(z)| = |G[�φ](z) − G[�φ](λ)| < 2C (1)
ε . (3.7)

We now show similar bounds for the derivatives of the logarithmic potential of�φ.
Suppose n� ≥ 1. As shown in [11, Lemma 4.1], since �φ is bounded and integrable
in B(λ, ε/2), G[�φ] ∈ C1(λ, ε/2). Moreover, as consequence of [11, Eq. 4.8] for
any z ∈ B(λ, ε/2),

|∂G[�φ](z)| ≤ 2

π
sup
w∈C

|�φ(w)|
∫

B(0,2ε)
|w|−1 d A(w) = C (2)

ε . (3.8)

Suppose now that n� ≥ 2. Recall that in this case, φ is assumed to be Cn�+1, thus
the Laplacian is Cn�−1. By Theorem 3.1,

�(G[�φ]) = �φ, (3.9)
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on B(λ, ε). Taking derivatives in (3.9) we obtain �∂G[�φ] = ∂�φ. On account of
Lemma 3.2, since ∂�φ ∈ C(B(λ, ε)), we obtain that ∂G[�φ] ∈ C1(B(λ, ε/4)) and
that there exists a constant C̃2 > 0 for which

‖∂2G[�φ]‖L∞(B(λ,ε/4)) ≤ C̃2
(‖∂�φ‖L∞(B(λ,ε/2)) + ‖∂G[�φ]‖L2(B(λ,ε/2))

)
,

where the right-hand of the last inequality is uniformly bounded as a consequence of
(3.8) and the assumption that ∂�φ is uniformly bounded. Iterating this argument, we
obtain that

‖∂k G[�φ]‖L∞(B(λ,ε/2k ))

≤ C̃k

(
‖∂k−1�φ‖L∞(B(λ,ε/2k−1)) + ‖∂k−1G[�φ]‖L2(B(λ,ε/2k−1))

)
,

where the right-hand is uniformly bounded. This proves (3.4).
Finally, since G is holomorphic, repeated differentiation of (3.6) yields,

∂k Gλ(z) − ∂kφ(z) = ∂k[2Re Gλ](z) − ∂kφ(z) = −∂k G[�φ](z). (3.10)

Thus (3.4), gives (3.5). ��

The following lemma helps profit from Riesz decomposition in estimates involving
derivatives.

Lemma 3.4 Let (�, m�) and φ be compatible, D ⊆ C a domain, K ⊆ D open and
relatively compact, and f , H : D −→ C analytic functions. Let G[�φ] be as in
Theorem 3.1. Then there exist a constant C = Cφ,K , such that for every λ ∈ � ∩ K ,
and 0 ≤ j ≤ n�, the following estimates hold:

(i) |∂ j ( f e−H )(λ)|2 ≤ C
j∑

k=0

|∂k( f e−H−G[�φ])(λ)|2,

(ii) |∂ j ( f e−H−G[�φ])(λ)|2 ≤ C
j∑

k=0

|∂k( f e−H )(λ)|2.

Proof By Leibniz rule:

∂ j ( f e−H ) = ∂ j ( f e−H−G[�φ]+G[�φ]) =
j∑

k=0

(
j

k

)
∂k( f e−H−G[�φ])∂ j−k(eG[�φ]).

By Lemma 3.3, ∂ j−k(eG[�φ]) is bounded for 0 ≤ k ≤ j . This yields (i); (ii) follows
similarly. ��

Finally, we note that Cauchy bounds extend to weighted derivatives.
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Lemma 3.5 Let (�, m�) be a separated set with multiplicities that is compatible with
φ. Then for each λ ∈ � and j ≤ n�,

∣∣∣∂̄∗( j)
f (λ)

∣∣∣2 e−φ(λ) �
∫

B(λ,1)
| f (w)|2e−φ(w) d A(z).

Proof For each λ ∈ � we write φ(z) = hλ(z) + G[�φ](z) as in Theorem 3.1 where
the decomposition is taken on the set B(λ, 1). We apply Lemma 3.4, together with
Cauchy’s bound to obtain

∣∣∣∂̄∗( j)
f (λ)

∣∣∣2 e−φ(λ)

=
∣∣∣∂ j ( f e−φ

)
(λ)eφ(λ)

∣∣∣2 e−φ(λ) =
∣∣∣∂ j
(

f e−Hλ−Hλ−G[�φ]) (λ)

∣∣∣2 eφ(λ)

=
∣∣∣∂ j
(

f e−Hλ−G[�φ]) (λ)

∣∣∣2 ∣∣∣e−Hλ

∣∣∣2 eφ(λ) =
∣∣∣∂ j
(

f e−Hλ−G[�φ]) (λ)

∣∣∣2 eφ(λ)−hλ(λ)

�
j∑

k=0

∣∣∣∂k( f e−Hλ)(λ)

∣∣∣2 �
∫

B(λ,1)
| f (w)|2e−φ(w) d A(z).

��

4 Sufficient Conditions for Interpolation and Sampling

Throughout this section we assume that (�, m�) is a separated set with multiplicities
that is compatible with φ.

4.1 Interpolation

We start by showing that interpolation can be solved locally.

Lemma 4.1 Let ε > 0, λ ∈ � and {cl : l = 0, . . . , m�(λ) − 1} ⊆ C. Then there
exists fλ : B(λ, ε) −→ C analytic such that

∂̄∗( j)
fλ(λ) = c j , 0 ≤ j ≤ m�(λ) − 1,

and

| fλ(z)|2 e−φ(z) ≤ Cε

m�(λ)−1∑
l=0

|cl |2e−φ(λ),

for all z ∈ B(λ, ε).
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Proof We consider Gλ as in the Lemma 3.3 on the set B(λ, ε). We define

fλ(z) := pλ(z)e
Gλ(z), (4.1)

where

pλ(z) :=
m�(λ)−1∑

j=0

k j

j ! (z − λ) j , (4.2)

and k j are real coefficients to be chosen so that

∂̄∗( j)
fλ (λ) = c j , (4.3)

for all j ∈ {0, . . . , m�(λ) − 1}.
To obtain an explicit formula of k j we proceed as follows,

∂̄∗( j)
fλ(w) = (−1) j eφ(w)∂ j ( fλe−φ

)
(w) = (−1) j eφ(w)∂ j

(
pλeGλ−φ

)
(w),

= (−1) j eφ(w)

⎡
⎣ j∑

l=0

(
j

l

)
∂ l pλ(w)∂ j−l

(
eGλ−φ

)
(w)

⎤
⎦. (4.4)

The n-th derivative of two composite functions can be computed by means of Faà di
Bruno’s formula and the Bell polynomials (see Eq. (A.6) and Section A for definitions
and suitable references). More precisely,

∂keGλ−φ(w) = eGλ(w)−φ(w) Bk

(
∂(Gλ − φ)(w), . . . , ∂k(Gλ − φ)(w)

)
, (4.5)

where Bk is the k−th complete Bell polynomial. We write Bg
k (w) := Bk(

∂g(w), . . . , ∂k g(w)
)
to shorten notation.

Since Gλ(λ) = 0, substituting (4.5) into (4.4), and evaluating at w = λ, it follows
that

∂̄∗( j)
fλ(λ) = (−1) j

⎛
⎝k j +

j−1∑
l=0

(
j

l

)
kl BGλ−φ

j−l (λ)

⎞
⎠ .

Therefore, (4.3) is equivalent to:

k j = (−1) j c j −
j−1∑
l=0

(
j

l

)
kl BGλ−φ

j−l (λ), (4.6)
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for all j ∈ {0, . . . , m�(λ) − 1}. Solving the recursion yields:

k j =
j∑

l=0

(−1)l
(

j

l

)
cl Bφ−Gλ

j−l (λ), (4.7)

for all j ∈ {0, . . . , m�(λ) − 1}; see Appendix A.3 for a proof.

Remark 4.1 By Lemma 3.3,
∣∣∂ j (φ − Gλ)(λ)

∣∣ ≤ Cε for each j ∈ {1, . . . , m�(λ)−1}.
Since Bφ−Gλ

j (λ) is a polynomial evaluated at
(
∂(φ − Gλ)(λ), . . . , ∂ j (φ − Gλ)(λ)

)
,

we have
∣∣∣Bφ−Gλ

j (λ)

∣∣∣ � Cε.

On account of the above remark we conclude that

|k j |2 � Cε

j∑
l=0

|cl |2.

By Lemma 3.3, we finally obtain

| fλ(z)|2 e−φ(z) = |pλ(z)|2 e2Re Gλ(z)−φ(z) � Cε

⎛
⎝m�(λ)−1∑

l=0

|cl |2
⎞
⎠ e−φ(λ).

��
For technical reasons we now study the interpolation problem on F2

φ with respect

to the operator ∂̄∗
φ̃
associated with a second weight φ̃. Provided that both weights are

sufficiently smooth, powers of both operators are formally related by

∂̄∗( j)

φ̃
f (z) =

j∑
l=0

(
j

l

)
∂̄∗(l)

φ f (z) (−1) j−l ∂ j−l
(

eφ−φ̃
)

(z) eφ̃(z)−φ(z), f ∈ F2
φ.

(4.8)

Proposition 4.2 Let (�, m�) be a separated set with multiplicities that is compatible
with φ. Assume additionally that �φ is continuous. Let χr = 1

πr2
1B(0,r) and ν :=∑

λ∈� m�(λ) · δλ. Suppose that there exists δ > 0 and r > 0 such that

πν�χr (z) < �φ(z) − δ, (4.9)

for all z ∈ C. Let φ̃ : C → R satisfy

‖∂ j (φ − φ̃)‖∞ < ∞, 0 ≤ j ≤ n� (4.10)

0 < inf
z∈C�φ̃(z) ≤ sup

z∈C
�φ̃(z) < ∞. (4.11)
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Then (�, m�) solves the following interpolation problem with respect to φ̃: given
c ∈ 	2φ(�, m�) there exists a function f ∈ F2

φ such that ∂̄∗
φ̃

( j) f (λ) = c(λ, j), for all

λ ∈ � and j ∈ {0, . . . , m�(λ) − 1}.
(Note that, by (4.10) and (4.11), 	2φ(�, m�) = 	2

φ̃
(�, m�) and F2

φ = F2
φ̃

, while

φ̃ : C → R is also compatible with (�, m�). )

Proof Let c ∈ 	2φ(�, m�). As in [5] we construct a weight that has singularities on

�. Let E(z) = 1
π
log |z|2 and

v = E� (ν − ν�χr ) .

Let ψ := φ + πv. The modified weight ψ has the properties

�ψ ≥ πν + δ ≥ δ,

ψ ≤ φ,

and for each λ ∈ � the following inequality holds

|ψ(z) − m�(λ) log |z − λ|2 − φ(z)| ≤ Cρ, (4.12)

when z ∈ B(λ, ρ/2), for some constant Cρ that depends on ρ(�) and r , although this
second dependency is not stressed in the notation. (Notice the factor m�(λ) in front
of the logarithm.)

The first step is to construct the non-analytic interpolant. Fix λ ∈ �. Note first
that, by (4.10) and (4.11), (�, m�) is compatible with φ̃. By Lemma 4.1 applied to
the weight φ̃, there is an analytic function fλ : B(λ, ρ/2) −→ C such that for each
j ∈ {0, . . . , m�(λ) − 1},

∂̄∗
φ̃

( j) fλ(λ) = c(λ, j),

and, due to (4.10), for all z ∈ B(λ, ρ/2)

| fλ(z)|2 e−φ(z) ≤ Cρ

m�(λ)−1∑
j=0

|c(λ, j)|2e−φ(λ), (4.13)

where the constant Cρ is independent of λ.
Now we patch these functions together. We let g ∈ C∞

0 be 1 on B(0, ρ/4) and 0
outside B(0, ρ/2), satisfying |∂g| < C

′
ρ . Then

f (z) =
∑
λ∈�

fλ(z)g(z − λ)

solves the interpolation problem, although this function might not be analytic.
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Weconsider the problem ∂u = ∂ f . ByHörmander’s estimate, there exists a solution
satisfying

∫
C

|u(z)|2e−φ(z)d A(z)

≤
∫
C

|u(z)|2e−ψ(z)d A(z) �
∫
C

|∂ f (z)|2e−ψ(z)d A(z)

�
∫
C

|∂ f (z)|2e−φ(z)d A(z) �
∑
λ∈�

m�(λ)−1∑
l=0

∣∣c(λ,l)
∣∣2e−φ(λ) < ∞.

For the first inequality we used that ψ ≤ φ. For the second we used that f is the
solution provided by Hörmander’s estimate2 and that �ψ > δ. For the third, we used
(4.12) and the fact that ∂ f is zero on a ρ/4 -neighborhood of �. The last inequality
follows from the separation of � and (4.13).

The function u is analytic on B(λ, ρ/4), because ∂u = ∂ f = 0 on B(λ, ρ/4). In
addition, we estimate

∫
B(λ,ρ/4)

∣∣∣∣ u(z)

(z − λ)m�(λ)

∣∣∣∣
2

d A(z) =
∫

B(λ,ρ/4)
|u(z)|2e−m�(λ) log |z−λ|2d A(z)

≤ Cρ sup
w∈B(λ,ρ/4)

eφ(w)

∫
B(λ,ρ/4)

|u(z)|2e−ψ(z)d A(z)

≤ Cρ sup
w∈B(λ,ρ/4)

eφ(w)

∫
C

|u(z)|2e−ψ(z)d A(z) < ∞,

and conclude that ∂ j u(λ) = 0, for each λ ∈ � and 0 ≤ j ≤ m�(λ) − 1. Moreover,

∂̄∗
φ̃

( j)u(λ) = (−1) j eφ̃(λ)∂ j
(

ue−φ̃
)

(λ)

= (−1) j eφ̃(λ)

⎡
⎣ j∑

l=0

(
j

l

)
∂ lu(λ)∂ j−l

(
e−φ̃
)

(λ)

⎤
⎦ = 0.

Thus, the function f − u is holomorphic, belongs to F2
φ and solves the desired inter-

polation problem with respect to ∂̄∗
φ̃
. ��

4.2 Sampling

Proposition 4.3 Let (�, m�) be a separated set with multiplicities that is compatible
with φ. Assume additionally that �φ is continuous. Let χr = 1

πr2
1B(0,r) and ν :=

2 In principle, �ψ is a distribution; Hörmander’s L2-estimate must be combined with a regularization
argument to yield the conclusion.
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∑
λ∈� m�(λ) · δλ. Suppose that there exists δ > 0 and r > 0 such that

πν�χr (z) > �φ(z) + δ,

for all z ∈ C. Then (�, m�) is a sampling set for F2
φ .

Proof Let 0 < ε < min (1, ρ/2) and 0 < t < 1. We follow again [5]. We construct
the weight exactly as they do, except that we add each point mass m�(λ) times at λ.
We write

ν̃(z) := t
∑
λ∈�

m�(λ)

πε2
1B(0,ε)(z − λ).

Since �φ is bounded, we can choose t so close to 1 that

πν̃�χr > �φ + δ/2.

We let E(z) = 1
π
log |z|2, v = E� (ν̃ − χr�ν̃) and ψ = φ + πv. Note that

E�ν̃(z) =
∑
λ∈�

t m�(λ)

(πε)2

∫
B(λ,ε)

log |z − w|2d A(w),

and for E�ν̃�χr we obtain a similar expression. Using that log |z −w|2 is harmonic on
w ∈ B(λ, ε) when d(z, λ) > r + ε and that the set is relatively separated, we obtain
that |v| ≤ Cε. Moreover,

φ − Cε ≤ ψ ≤ φ

and

∣∣∣ψ − m�(λ) t log ε2 − φ

∣∣∣ ≤ Cr

on B(λ, ε). Notice the factor m�(λ) in front of the logarithm.
Let h ∈ F2

φ . As shown in [5, Eq. 3], we have

δ/2
∫
C

|h(z)|2e−ψ(z)d A(z) ≤
∫
C

|h(z)|2e−ψ(z)d ν̃(z).

Thus,

∫
C

|h(z)|2e−φ(z)d A(z) � Cr

∑
λ∈�

m�(λ)
ε−2m�(λ)t

ε2

∫
B(λ,ε)

|h(z)|2e−φ(z)d A(z).
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Let gλ = he−Gλ , where Gλ is as in Lemma 3.3, with respect to the set B(λ, 1). Then

∫
B(λ,ε)

|h(z)|2e−φ(z)d A(z) �
∫

B(λ,ε)

|gλ(z)|2 e−φ(λ)d A(z).

We now use the (m�(λ) − 1)-th order Taylor expansion of gλ on B(λ, ε)

|gλ(z)|2 �
m�(λ)−1∑

j=0

ε2 j
∣∣∣∂ j gλ(λ)

∣∣∣2 + ε2m�(λ) sup
z∈B(λ,ε)

∣∣∣∂m�(λ)gλ(z)
∣∣∣2 . (4.14)

We estimate the m�(λ)-th term by Cauchy estimate

sup
z∈B(λ,ε)

∣∣∣∂m�(λ)gλ(z)
∣∣∣2 e−φ(λ) �

∫
B(λ,1)

|h(z)|2e−φ(z)d A(z).

The remaining terms in (4.14) are estimated observing that for any w ∈ B(λ, ε)

∂ j gλ(w) = ∂ j (he−φeφ−Gλ)(w) = eφ(w)−Gλ(w)

j∑
k=0

(
j

k

)
∂k(he−φ)(w) · Bφ−Gλ

j−k (w),

where B j is the j−th Bell polynomial. Evaluating at λ we obtain:

∂ j gλ(λ) =
j∑

k=0

(−1)k
(

j

k

)
∂̄∗(k)

h(λ) · Bφ−Gλ

j−k (λ).

Thus, for each j ≤ m�(λ) − 1, and applying Remark 4.1 we have

∣∣∣∂ j gλ(λ)

∣∣∣2 e−φ(λ) =
∣∣∣∣∣∣

j∑
k=0

(−1)k
(

j

k

)
∂̄∗(k)

h(λ) · Bφ−Gλ

j−k (λ)

∣∣∣∣∣∣
2

e−φ(λ)

�
m�(λ)−1∑

k=0

|∂̄∗(k)

h(λ)|2e−φ(λ).

Putting everything together, we obtain

∫
C

|h|2e−φd A � Cr

(∑
λ∈�

ε−2tm�(λ)

m�(λ)−1∑
j=0

|∂̄∗( j)
h(λ)|2e−φ(λ)

+
∑
λ∈�

ε2m�(λ)(1−t)
∫

B(λ,1)
|h|2e−φd A

)
. (4.15)
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Since 1 ≤ m�(λ),

ε2m�(λ)(1−t) ≤ ε2(1−t).

The relative separateness of � implies

∑
λ∈�

ε2m�(λ)(1−t)
∫

B(λ,1)
|h|2e−φd A ≤ ε2(1−t)

∑
λ∈�

∫
B(λ,1)

|h|2e−φd A

≤ ε2(1−t) rel(�)

∫
C

|h|2e−φd A.

Therefore,

∫
C

|h|2e−φd A

� Cε,r

∑
λ∈�

m�(λ)−1∑
j=0

|∂̄∗( j)
h(λ)|2e−φ(λ) + ε2(1−t) rel(�) Cr

∫
C

|h|2e−φd A.

Choosing ε small enough, the last term can be absorbed into the left-hand side, yielding
the desired sampling estimate. ��

5 Necessary Conditions for Interpolation and Sampling

In this sectionwe reduce the problemof deriving necessary conditions for interpolation
and sampling with derivatives to the corresponding problem without derivatives. We
assume throughout this section that (�, m�) is a separated set with multiplicities that
is compatible with the weight φ.

Our arguments are based on inspecting Taylor expansions. The following observa-
tion will be used repeatedly.

Remark 5.1 Let ε ∈ (0, 1/4), λ ∈ C and F : U ⊆ C −→ C be holomorphic, where
B(λ, 1) ⊆ U . The Taylor expansion of F of degree n at λ,

F(z) =
n∑

k=0

F (k)(λ)

k! (z − λ)k + En(z),

satisfies

|En(z)| � εn+1
∫

B(λ,1)
|F | d A, |z − λ| ≤ ε. (5.1)
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In particular, if λ′ is such that |λ − λ′| = ε and w ∈ C is such that

F (n)(λ) = n!
(λ′ − λ)n

(
w −

n−1∑
k=0

F (k)(λ)

k! (λ′ − λ)k

)
,

then

|F(λ′) − w|2 � ε2(n+1)
∫

B(λ,1)
|F |2d A. (5.2)

As a first step towards the necessary conditions we compute derivatives of weighted
functions.

Lemma 5.1 Let f ∈ F2
φ , λ ∈ �, and ε > 0. We write φ = hλ + G[�φ] on B(λ, ε) as

in Lemma 3.3. Hλ : B(λ, ε) −→ C is a holomorphic function such that 2Re Hλ = hλ.
Then

∂k
(

f e−Hλ

)
=

k∑
j=0

(−1) j
(

k

j

)
∂̄∗( j)

f BG[�φ]
k− j e−Hλ . (5.3)

Proof Since ∂(e−Hλ) = ∂(e−Hλ) = (∂e−Hλ
) ≡ 0,

∂k
(

f e−Hλ

)
= ∂k

(
f e−φeG[�φ]eHλ

)
= ∂k

(
f e−φeG[�φ]) eHλ

=
k∑

j=0

(
k

j

)
∂ j ( f e−φ

)
∂k− j

(
eG[�φ]) eHλ

=
k∑

j=0

(
k

j

)
∂ j ( f e−φ

)
eφ∂k− j

(
eG[�φ]) e−Hλ−G[�φ]

=
k∑

j=0

(−1) j
(

k

j

)
∂̄∗( j)

f ∂k− j
(

eG[�φ]) e−Hλ−G[�φ]

=
k∑

j=0

(−1) j
(

k

j

)
∂̄∗( j)

f eG[�φ] BG[�φ]
k− j e−Hλ−G[�φ]

=
k∑

j=0

(−1) j
(

k

j

)
∂̄∗( j)

f BG[�φ]
k− j e−Hλ .

��



35 Page 20 of 32 L. A. Escudero et al.

5.1 Interpolation

We now show that a weighted interpolating set can be modified to reduce its maximal
multiplicity while preserving its density and interpolating property.

Proposition 5.2 Let (�, m�) be a separated set with multiplicities that is compatible
with φ. Suppose that (�, m�) is interpolating for F2

φ(C), and that supλ∈� m�(λ) =
n� + 1 ≥ 2. Then there exists a separated and interpolating set (�̃, m�̃) such that
supλ∈�̃ m�̃ = n� and D±(�, m�) = D±(�̃, m�̃).

Proof Step 1. (Definition of the new set).
Let 0 < ε < min{ρ(�)/2, 1/4}. We define

�max :=
{
λ ∈ � : m�(λ) = sup

z∈�

m�(z) = n� + 1

}
.

For each λ ∈ �max we choose λ′ ∈ C such that |λ − λ′| = ε. We define �′ = {λ′ :
λ ∈ �max}. Since ε < ρ(�)/2, it is clear that the map λ �→ λ′ is injective and that
λ′ /∈ �.

Now we consider the set �̃ = � ∪ �′ and the function m�̃ : �̃ −→ N defined by

m�̃(z) =

⎧⎪⎨
⎪⎩

m�(z) if z ∈ � and m�(z) ≤ n�,

n� if z ∈ � and m�(z) = n� + 1,

1 if z ∈ �′.

Since ε < ρ(�)/2 it follows easily that �̃ is separated. It is also clear that supm�̃ =
n�.
Step 2. We show that if ã ∈ 	2φ(�̃, m�̃), then there exists f ∈ F2

φ satisfying:

(Q.1) ‖ f ‖F2
φ

≤ C�ε−n�‖ã‖	2φ(�̃, m
�̃

),

(Q.2) ∂̄∗( j)
f (λ) = ã(λ, j), for each λ ∈ � and 0 ≤ j ≤ min{n� − 1, m�(λ) − 1},

(Q.3) ‖ f − ã(·,0)‖	2φ(�′) ≤ C�εn�+1‖ f ‖F2
φ
.3

To prove the claim, for each λ ∈ � we write φ = hλ + G[�φ] on B(λ, 1) as in
Theorem 3.1. Since hλ is harmonic, there exists Hλ : B(λ, 1) −→ C analytic such
that 2 Re Hλ = hλ.

For each λ ∈ �max we let bλ be defined by

3 To unload the notation, we write ‖ f ‖
	2
φ
(�)

instead of ‖ f |�‖
	2
φ
(�)

.
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(−1)n� bλ e−Hλ(λ) = n�!
(λ′ − λ)n�

(
ã(λ′,0)e

−Hλ(λ′)

−
n�−1∑
k=0

k∑
j=0

(−1) j

(k
j

)
k! ã(λ, j) BG[�φ]

k− j (λ)e−Hλ(λ)(λ′ − λ)k
)

−
n�−1∑

j=0

(−1) j
(

n�

j

)
ã(λ, j) BG[�φ]

n�− j (λ)e−Hλ(λ). (5.4)

The sequence satisfies

|bλ|2 e−φ(λ) �
∣∣∣bλe−Hλ(λ)

∣∣∣2 � ε−2n�

⎛
⎝|ã(λ′,0)|2e−φ(λ′) +

n�−1∑
j=0

|ã(λ, j)|2e−φ(λ)

⎞
⎠ .

(5.5)

We define a new sequence a = {a(λ, j)
}
λ∈�, 0≤ j≤m�(λ)−1 ⊆ C by:

a(λ, j) :=
{

bλ if λ ∈ �max and j = n�,

ã(λ, j) otherwise.

By (5.5),

‖a‖2
	2φ(�, m�)

� ε−2n�‖ã‖2
	2φ(�̃, m

�̃
)
< ∞. (5.6)

Since (�, m�) is an interpolating set, there exists a function f ∈ F2
φ such that

• ‖ f ‖F2
φ

≤ C�‖a‖	2φ(�, m�),
4

• ∂̄∗( j)
f (λ) = ã(λ, j), if λ ∈ � and 0 ≤ j ≤ min{n� − 1, m�(λ) − 1},

• ∂̄∗(n�)
f (λ) = bλ, if λ ∈ �max.

The first two conditions, together with (5.6) yield (Q.1) and (Q.2). To check (Q.3),
we let λ ∈ �max, and note that, in terms of f , (5.4) reads:

n�∑
j=0

(−1) j
(

n�

j

)
∂̄∗( j)

f (λ)BG[�φ]
n�− j (λ)e−Hλ(λ)

= n�!
(λ′ − λ)n�

(
ã(λ′,0)e

−Hλ(λ′)

−
n�−1∑
k=0

k∑
j=0

(−1) j

(k
j

)
k! ∂̄∗( j)

f (λ)BG[�φ]
k− j (λ)e−Hλ(λ)(λ′ − λ)k

)
.

4 As in the unweighted case, and with the same argument, the interpolation problem, if solvable, can be
solved with norm control.
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Applying (5.3) to the last equation we obtain

∂n�( f e−Hλ)(λ) = n�!
(λ′ − λ)n�

(
ã(λ′,0)e

−Hλ(λ′) −
n�−1∑
k=0

∂k( f e−Hλ)(λ)

k! (λ′ − λ)k
)
.

(5.7)

We apply Remark 5.1 to F = f e−Hλ and conclude from (5.2) that

∣∣ f (λ′) − ã(λ′,0)
∣∣2 e−φ(λ′) �

∣∣∣ f (λ′)e−Hλ(λ′) − ã(λ′,0)e
−Hλ(λ′)

∣∣∣2
� ε2(n�+1)‖ f ‖2L2(B(λ′,1),e−φ)

.

Therefore,

‖ f − ã(·,0)‖2	2φ(�′) �
∑

λ′∈�′
ε2(n�+1)‖ f ‖2L2(B(λ′,1),e−φ)

� rel(�) ε2(n�+1) ‖ f ‖2F2
φ

,

which yields (Q.3).

Step 3. We show that
(
�̃, m�̃

)
is an interpolating set.

Let ã ∈ 	2φ(�̃, m�̃). We define inductively ã(k) ∈ 	2φ(�̃, m�̃) and fk ∈ F2
φ . Let

ã(1) := ã. By Step 2, there exists f1 ∈ F2
φ satisfying (Q.1), (Q.2) and (Q.3) for ã(1).

Let k ≥ 2 and suppose that ã(k−1) ∈ 	2φ(�̃, m�̃) and fk−1 ∈ F2
φ are already defined

and satisfy (Q.1), (Q.2) and (Q.3) with respect to ã(k−1). Define ã(k) ∈ 	2φ(�̃, m�̃)

by

ã(k)
(λ, j) :=

{
0 if λ ∈ � and 0 ≤ j ≤ m�̃(λ) − 1,

ã(k−1)
(λ,0) − fk−1(λ) if λ ∈ �′ and j = 0.

(5.8)

Since ‖ã(k)‖	2φ(�̃, m
�̃

) = ‖ fk−1 − ã(k−1)
(·,0) ‖	2φ(�′) ≤ C�εn�+1‖ fk−1‖F2

φ
< ∞, the

sequence is indeed well-defined, and we can apply Step 2 for ã(k). Let fk sat-
isfy (Q.1), (Q.2) and (Q.3) with respect to ã(k).

The constructed sequences satisfy

‖ fk‖F2
φ

≤ C�ε−n�‖ã(k)‖	2φ(�̃, m
�̃

) ≤ ε C
′
�‖ fk−1‖F2

φ
,

and,

‖ã(k)‖	2φ(�̃, m
�̃

) ≤ ε C
′
� ‖ã(k−1)‖	2φ(�̃, m

�̃
).

Hence, if ε C
′
� < 1, f :=∑k∈N fk converges in F2

φ .
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To see that interpolates with the right values on �
′
, we observe that for each λ ∈

�max,

∣∣∣∣∣
N∑

k=1

fk(λ
′) − ã(1)

(λ′,0)

∣∣∣∣∣
2

e−φ(λ′) =
∣∣∣ã(N+1)

(λ′,0)

∣∣∣2 e−φ(λ′)

≤ ‖ã(N+1)‖2
	2φ(�′) −−−−→

N→∞ 0.

Thus, f (λ′) = ã(1)
(λ′,0), when λ ∈ �max. For λ ∈ �\�′ we argue as follows. Since∑

k∈N fk converges in F2
φ , by Lemma 3.5, ∂̄∗( j)

f =∑k∈N ∂̄∗( j)
fk . As ∂̄∗( j)

fk(λ) = 0

for k ≥ 2, ∂̄∗( j)
f (λ) = ∂̄∗( j)

f1(λ) = ã(λ, j), if 0 ≤ j ≤ m�̃(λ) − 1.
We have thus shown that (�̃, m�̃) is an interpolating set.
Step 4. We show that D±(�, m�) = D±(�̃, m�̃).
The number of points of the set � in the disk of center z and radius r , counted

with multiplicities, satisfies n (z, r ,�, m�) ≤ n
(

z, r + ε, �̃, m�̃

)
. Since 0 <

m ≤ �φ ≤ M then for any δ > 0, there exists rδ such that if r > rδ , then

supz∈C
∣∣∣∣
∫

B(z,r+ε) �φ∫
B(z,r) �φ

− 1

∣∣∣∣ < δ. Thus,

(1 + δ)−1 · D−
φ (�, m�) ≤ lim inf

r→∞ inf
z∈C

n
(

z, r + ε, �̃, m�̃

)
∫

B(z,r+ε)
�φ d A

= D−
φ

(
�̃, m�̃

)
.

We let δ → 0. Exchanging the roles of � and �̃ we also see that D−
φ

(
�̃, m�̃

)
≤

D−
φ (�, m�). Analogously, D+

φ (�, m�) = D+
φ

(
�̃, m�̃

)
. ��

5.2 Sampling

Themodification of sampling sets to reduce their multiplicity is based on the following
perturbation lemma.

Lemma 5.3 Let λ, λ′ ∈ C and 0 < ε < 1/4. If f ∈ F2
φ and |λ′ − λ| = ε, there exists

a constant Cε such that

|∂̄∗(n�)

f (λ)|2e−φ(λ) � Cε

⎛
⎝| f (λ′)|2e−φ(λ′) +

n�−1∑
j=0

|∂̄∗( j)
f (λ)|2e−φ(λ)

⎞
⎠

+ ε‖ f ‖2L2(B(λ,1),e−φ)
.

Proof We apply Theorem 3.1 on B(λ, 1) and obtain φ(z) = hλ(z)+G[�φ](z). Since
hλ is harmonic, there exists Hλ : B(λ, 1) −→ C holomorphic such that Re Hλ =
hλ/2. Therefore,
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∣∣∣∂̄∗(n�)

f (λ)

∣∣∣2 e−φ(λ) = ∣∣(∂n�( f e−φ)eφ
)
(λ)
∣∣2 e−φ(λ)

= ∣∣(∂n�
(

f e−φ
))

(λ)
∣∣2 eφ(λ)

=
∣∣∣(∂n�

(
f e−Hλ−Hλ−G[�φ])) (λ)

∣∣∣2 eφ(λ).

Since ∂(e−Hλ) = ∂(e−Hλ) = (∂ze−Hλ
) ≡ 0,

∣∣∣∂n�

(
f e−Hλ−Hλ−G[�φ]) (λ)

∣∣∣2 eφ(λ) =
∣∣∣∂n�

(
f e−Hλ−G[�φ]) (λ)

∣∣∣2
∣∣∣e−Hλ(λ)

∣∣∣2 eφ(λ)

=
∣∣∣∂n�

(
f e−Hλ−G[�φ]) (λ)

∣∣∣2 e−hλ(λ)eφ(λ)

�
∣∣∣∂n�

(
f e−Hλ−G[�φ]) (λ)

∣∣∣2 ,

(5.9)

wherewe used that−hλ(λ)+φ(λ) = G[�φ](λ) is uniformly bounded, byLemma3.3.
In addition, by Lemma 3.4,

∣∣∣∂̄∗(n�)

f (λ)

∣∣∣2 e−φ(λ) �
∣∣∣∂n�( f e−Hλ−G[�φ])(λ)

∣∣∣2 �
n�∑
j=0

∣∣∣∂ j ( f e−Hλ)(λ)

∣∣∣2 . (5.10)

We proceed to estimate
∣∣(∂n�( f e−Hλ))(λ)

∣∣. The Taylor expansion for f e−Hλ of
order n� at λ evaluated at λ′ is

(
f e−Hλ

)
(λ′) =

n�∑
k=0

∂k( f e−Hλ)(λ)

k! (λ′ − λ)k + En�(λ′).

Hence,

∂n�

(
f e−Hλ

)
(λ)

= n�!
(λ′ − λ)n�

( f e−Hλ)(λ′) − n�!
(λ′ − λ)n�

n�−1∑
k=0

∂k( f e−Hλ)(λ)

k! (λ′ − λ)k

− n�!
(λ′ − λ)n�

En�(λ′),

and for |λ′ − λ| = ε,

∣∣∣∂n�( f e−Hλ)(λ)

∣∣∣2 � Cε,n�

(
|( f e−Hλ)(λ′)|2 +

n�−1∑
k=0

|∂k( f e−Hλ)(λ)|2
)

+|En�(λ′)|2
ε2n

.
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We use the last estimate, together with Lemma 3.4 and the fact that φ(z) − hλ(z)
is bounded, and (5.10) to obtain:

∣∣∣∂̄∗(n�)

f (λ)

∣∣∣2 e−φ(λ) �
n�∑
j=0

∣∣∣∂ j ( f e−Hλ)(λ)

∣∣∣2

� Cε,n�

∣∣∣( f e−Hλ)(λ′)
∣∣∣2 + Cε,n�

n�−1∑
j=0

∣∣∣(∂ j ( f e−Hλ))(λ)

∣∣∣2 + |En�(λ′)|2
ε2n

� Cε,n�,φ

( ∣∣∣( f e−Hλ)(λ′)
∣∣∣2 +

n�−1∑
j=0

∣∣∣∂ j
(

f e−Hλ−G[�φ]) (λ)

∣∣∣2 )+ |En�(λ′)|2
ε2n

� C
′
ε,n�,φ

( ∣∣∣( f e−Hλ)(λ′)
∣∣∣2 +

n�−1∑
j=0

∣∣∣∂ j
(

f e−Hλ−G[�φ]) (λ)

∣∣∣2 e−hλ(λ)+φ(λ)
)

+ |En�(λ′)|2
ε2n

= C
′
ε,n�,φ

( ∣∣ f (λ′)
∣∣2 e−hλ(λ′) +

n�−1∑
j=0

∣∣∣∂ j ( f e−φ
)
(λ)

∣∣∣2 eφ(λ)
)

+ |En�(λ′)|2
ε2n

≤ C
′′
ε,n�,φ

( ∣∣ f (λ′)
∣∣2 e−φ(λ′) +

n�−1∑
j=0

∣∣∣∂ j ( f e−φ
)
(λ)

∣∣∣2 eφ(λ)
)

+ |En�(λ′)|2
ε2n

= C
′′
ε,n�,φ

( ∣∣ f (λ′)
∣∣2 e−φ(λ′) +

n�−1∑
j=0

∣∣∣∂ j ( f e−φ
)
(λ)eφ(λ)

∣∣∣2 e−φ(λ)
)

+ |En�(λ′)|2
ε2n

.

Moreover, if |λ′ − λ| = ε, the remainder of the Taylor expansion satisfies (5.1) with
F = f e−Hλ , and, therefore,

∣∣∣∂̄∗(n�)

f (λ)

∣∣∣2 e−φ(λ) � Cε

(
| f (λ′)|2e−φ(λ′) +

n�−1∑
j=0

|∂̄∗( j)
f (λ)|2e−φ(λ)

)

+ ε2‖ f ‖2L2(B(λ,1),e−φ)
.

The claim follows since ε2 < ε. ��
We can now modify a sampling set to reduce its maximal multiplicity without

altering its sampling property.

Proposition 5.4 Let (�, m�) be a separated set with multiplicities that is compatible
with φ. Assume that (�, m�) is sampling for F2

φ(C), and that supλ∈� m�(λ) =
n� + 1 ≥ 2. Then there exists a separated set with multiplicities (�̃, m�̃) that is
sampling forF2

φ , and such that supλ∈�̃ m�̃(λ) = n� and D±(�, m�) = D±(�̃, m�̃).
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Proof Since (�, m�) is a sampling set for F2
φ(C),

‖ f ‖2F2
φ

�
∑
λ∈�

m�(λ)−1∑
j=0

|∂̄∗( j)
f (λ)|2e−φ(λ). (5.11)

Let 0 < ε < min{ρ(�)/2, 1/4} and consider �max, �′, �̃ and m�̃ as in the
proof of Proposition 5.2. Hence, D±(�, m�) = D±(�̃, m�̃), and �̃ is separated. As
a consequence, (�̃, m�̃) satisfies an upper sampling bound. We now show that if ε is
small enough, a lower sampling bound also holds for (�̃, m�̃).

For λ ∈ �max, we have m�̃(λ) = n� = m�(λ) − 1 and, by Lemma 5.3,

m�(λ)−1∑
j=0

|∂̄∗( j)
f (λ)|2e−φ(λ) � Cφ,n�,ε

(
| f (λ′)|2e−φ(λ′) +

m
�̃

(λ)−1∑
j=0

|∂̄∗( j)
f (λ)|2e−φ(λ)

)

+ε‖ f ‖2L2(B(λ,1),e−φ)
.

On the other hand, for λ ∈ �\�max, m�(λ) = m�̃(λ), and the same equation is
trivially true. Therefore, by (5.11),

‖ f ‖2F2
φ

�
∑
λ∈�

m�(λ)−1∑
j=0

|∂̄∗( j)
f (λ)|2e−φ(λ) � C ′

ε,φ,n�

∑
λ̃∈�̃

m
�̃

(λ̃)−1∑
j=0

|∂̄∗( j)
f (λ̃)|2e−φ(λ̃)

+ε rel(�)‖ f ‖2F2
φ

. (5.12)

Thus, taking ε small enough, the term ε rel(�)‖ f ‖2F2
φ

can be absorbed into the left-

hand side, yielding the desired lower sampling bound. ��

6 Proof of theMain Results

Proof of TheoremA Suppose that (�, m�) is set of interpolation for F2
φ . Then the

unweighted set � is also a set of interpolation for F2
φ , and therefore separated; see,

e.g., [19, Prop. 3]. Repeated application of Proposition 5.2 shows that there exists a
set of interpolation �̃ ⊆ C without multiplicity such that D+

φ (�, m�) = D+
φ (�̃). As

shown in [19, Theorem 2], �̃ must satisfy D+
φ (�̃) < 1/π . Note that in [19], the space

F2
φ is denoted F2

2φ .
Towards the sufficiency of the density conditions, let (�, m�) be a separated set

with multiplicities, satisfying D+
φ (�, m�) < 1/π . Hence, for some ε > 0 we have

D+
φ (�, m�) < 1/π − ε. Thus, for a certain R > 0 and for all z ∈ C,

n (z, r ,�, m�)

|B(z, R)| <

(
1

π
− ε

)
−
∫

B(z,R)

�φ d A,
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where the bar in the integral denotes an average (division by the total measure). Let
χR = (π R2

)−1
1B(0,R), φ̃ = φ�χR , and ν� :=∑λ∈� m�(λ) · δλ. Then

π
n (z, r ,�, m�)

|B(z, R)| = πν��χR(z) < (1 − πε) −
∫

B(z,R)

�φ d A

= (1 − πε) �φ̃(z) < �φ̃(z) − πε
2 inf

w∈C�φ(w).

We wish to apply Proposition 4.2, with the roles of the weights φ and φ̃ interchanged.
The density condition (4.9) is verified for φ̃, because of the previous equation. In
addition, �φ̃ is continuous, and �φ̃ is bounded above and below with the same
constants that bound �φ. Moreover, we claim that

‖∂ j (φ − φ̃)‖∞ < ∞, 0 ≤ j ≤ n�. (6.1)

To see this, let z0 ∈ C and let

φ(w) = h(w) + G[�φ](w), w ∈ B(z0, R + 1), (6.2)

be the Riesz decomposition of φ on B(z0, R + 1), as given by Theorem 3.1. Let
z ∈ B(z0, 1). We average (6.2) over B(z, R) and use the mean value property for
harmonic functions to conclude

φ̃(z) = h(z) + G[�φ] ∗ χR(z),

and, therefore,

φ(z) − φ̃(z) = G[�φ](z) − G[�φ] ∗ χR(z), z ∈ B1(z0).

The desired number of derivatives of each term on the right-hand side of the previous
equation is bounded independently of z0 by Lemma 3.3, (3.4) (the bound does depend
on R). Hence, (6.1) follows. We can therefore apply Proposition 4.2, with the roles of
the weights φ and φ̃ interchanged, and conclude that (�, m�) is an interpolating set
for F2

φ (indeed, F2
φ = F2

φ̃
, and the interpolation property is considered with respect

to ∂̄∗
φ .) ��

Proof of Theorem B Suppose that (�, m�) is sampling forF2
φ . Then, for some constant

B > 0,

∑
λ∈�

| f (λ)|2 e−φ(λ) ≤
∑
λ∈�

m�(λ)−1∑
k=0

∣∣∣∂̄∗(k)

f (λ)

∣∣∣2 e−φ(λ) ≤ B‖ f ‖2φ.

The upper sampling bound without multiplicities already implies that � is relatively
separated; see, e.g., [19, Prop. 1]. The existence of a separated set�′ ⊆ �which is also
sampling forF2

φ follows from standard arguments (see for instance [3, Theorem 3.7]).
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Without loss of generality we assume that� is already separated. By repeated applica-
tion of Proposition 5.4, there is a sampling set �̃ ⊆ Cwithout multiplicities, such that
D−

φ (�, m�) = D−
φ (�̃). As shown in [19, Theorem 1], �̃must satisfy D−

φ (�̃) > 1/π .
Conversely, suppose that (�, m�) is a relatively separated set with multiplicities

containing a separated subset �′, satisfying D−
φ

(
�′, m�

∣∣
�′
)

> 1/π . The upper sam-
pling bound follows from the fact that� is relatively separated and Lemma 3.5. For the
lower sampling bound we assume without loss of generality that � = �′. Proceeding
as in the proof of Theorem A, we consider φ̃ = φ�χR , for some large R > 0 and
conclude from Proposition 4.3, that (�, m�) is a sampling set for F2

φ̃
. By (6.1), F2

φ

and F2
φ̃
contain the same functions and have equivalent norms. Moreover, for each

f ∈ F2
φ , we combine (4.8) and (6.1) to conclude that

‖ f ‖2φ � ‖ f ‖2
φ̃

�
∑
λ∈�

m�(λ)−1∑
k=0

∣∣∣∂̄∗(k)

φ̃
f (λ)

∣∣∣2 e−φ̃(λ) �
∑
λ∈�

m�(λ)−1∑
k=0

∣∣∣∂̄∗(k)

φ f (λ)

∣∣∣2 e−φ(λ).

This gives the desired bound. ��
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Appendix A. Bell Polynomials and Faà di Bruno’s Formula

The Bell polynomials appear naturally when calculating the n-th derivative of a com-
posite function. For a deeper discussion of this topic we refer the reader to [15, pp.
95–98] and for the proofs [4].

A.1. Bell Polynomials

Let n, k ∈ N such that k ≤ n. The partial exponential Bell polynomials are a collection
of polynomials given by

Bn,k (x1, x2, . . . , xn−k+1) =
∑ n!

m1!m2! · · · mn−k+1!
( x1
1!
)m1

( x2
2!
)m2

· · ·
(

xn−k+1

(n − k + 1)!
)mn−k+1

http://creativecommons.org/licenses/by/4.0/
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where the sum is taken over all sequences m1, m2, m3, . . . , mn−k+1 of non-negative
integers such that the following conditions are satisfied:

m1 + m2 + · · · + mn−k+1 = k
m1 + 2m2 + 3m3 + · · · + (n − k + 1)mn−k+1 = n

.

If n ≥ 1, the sum

Bn (x1, . . . , xn) =
n∑

k=1

Bn,k (x1, x2, . . . , xn−k+1) (A.1)

is called the n−th complete exponential Bell polynomial. If n = 0, then

B0 := 1.

Remark A.1 The partial Bell polynomials Bn,k are homogeneous polynomials of
degree k, therefore it follows from (A.1) that the n−th complete Bell polynomial
Bn has no constant term as long as n ≥ 1.

The complete Bell polynomials satisfy the binomial type relation:

Bn (x1 + y1, . . . , xn + yn) =
n∑

i=0

(
n

i

)
Bn−i (x1, . . . , xn−i ) Bi (y1, . . . , yi ) . (A.2)

A.2. Chain Rule for Higher Derivatives

Suppose that f and r are n-times differentiable functions, then

dn

dxn
f (r(x)) =

n∑
k=1

f (k)(r(x)) · Bn,k

(
r ′(x), r ′′(x), . . . , r (n−k+1)(x)

)
.

In what follows, we use the abbreviation

Br
n,k(x) := Bn,k

(
r ′(x), r ′′(x), . . . , r (n−k+1)(x)

)
, (A.3)

Br
n(x) := Bn

(
r ′(x), r ′′(x), . . . , r (n)(x)

)
. (A.4)

Remark A.2 Suppose that f and r are functions both differentiable n times. With the
notation introduced in (A.3) and (A.4), (A.2) can be written as

B f +g
n =

n∑
i=0

(
n

i

)
B f

n−i Bg
i . (A.5)
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One special case of dn

dxn f (r(x)) is when f (t) = et , obtaining:

dn

dxn
er(x) =

n∑
k=1

er(x) · Br
n,k(x) = er(x)

n∑
k=1

Br
n,k(x) = er(x) Br

n(x). (A.6)

A.3. Proof of Equation 4.7

We want to prove that the coefficients k j defined by (4.7) for j ∈ {0, . . . , m�(λ) − 1}
solve the recursive equation (4.6). We proceed by induction on j . The case j = 0 is
clear. Suppose that for every 0 ≤ l < j ,

kl = (−1)l cl −
l−1∑
m=0

(
l

m

)
km BGλ−φ

l−m (λ),

or, equivalently,

(−1)l cl =
l∑

m=0

(
l

m

)
km BGλ−φ

l−m (λ).

We use the inductive hypothesis, together with fact that Bφ−Gλ

0 ≡ 1 ≡ BGλ−φ
0 , and

(A.5) to compute:

k j = (−1) j c j +
j−1∑
l=0

(−1)l
(

j

l

)
cl Bφ−Gλ

j−l (λ)

= (−1) j c j +
j−1∑
l=0

(
j

l

) ( l∑
m=0

(
l

m

)
km BGλ−φ

l−m (λ)

)
Bφ−Gλ

j−l (λ)

= (−1) j c j +
j∑

l=0

(
j

l

) ( l∑
m=0

(
l

m

)
km BGλ−φ

l−m (λ)

)
Bφ−Gλ

j−l (λ)

−
j∑

m=0

(
j

m

)
km BGλ−φ

j−m (λ)

= (−1) j c j +
j∑

m=0

(
j

m

)
km

⎛
⎝ j∑

l=m

(
j − m

j − l

)
BGλ−φ

( j−m)−( j−l)(λ) Bφ−Gλ

j−l (λ)

⎞
⎠

−
j∑

m=0

(
j

m

)
km BGλ−φ

j−m (λ)

= (−1) j c j +
j∑

m=0

(
j

m

)
km

⎛
⎝ j−m∑

l=0

(
j − m

l

)
BGλ−φ

( j−m)−l(λ) Bφ−Gλ

l (λ)

⎞
⎠
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−
j∑

m=0

(
j

m

)
km BGλ−φ

j−m (λ)

= (−1) j c j + k j +
j−1∑

m=0

(
j

m

)
km B0

j−m(λ) −
j−1∑

m=0

(
j

m

)
km BGλ−φ

j−m (λ) − k j .

Finally, by Remark (A.1), B0
j−m = 0 if j − m > 0 and we obtain:

k j = (−1) j c j −
j−1∑

m=0

(
j

m

)
km BGλ−φ

j−m (λ),

as desired.
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