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Abstract
In this paper we investigate admissibility of the control operator B in a Hilbert space
state-delayed dynamical system setting of the form ż(t) = Az(t−τ)+Bu(t), where A
generates a diagonal semigroup and u is a scalar input function. Our approach is based
on the Laplace embedding between L2 and the Hardy space. The sufficient conditions
for infinite-time admissibility are stated in terms of eigenvalues of the generator and
in terms of the control operator itself.

Keywords Admissibility · State delay · Diagonal system · Reciprocal system

1 Introduction

In this article we analyse dynamical system with delay in the state variable from the
perspective of admissibility of the control operator. Thus the object of our interest is
an abstract dynamical system

{
ż(t) = Az(t − τ) + Bu(t)

z(0) = z0,
(1)
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where, in general, A : D(A) ⊂ X → X is the infinitesimal generator of a C0-
semigroup (T (t))t≥0 on X . The Hilbert space X possesses a sequence of normalized
eigenvectors (φk)k∈N forming a Riesz basis, with associated eigenvalues (λk)k∈N. The
input function is u ∈ L2(0,∞;C), B is the control operator and 0 < τ < ∞ is a
delay.

Infinite-time admissibility of B in the undelayed case of (1) is well analysed and
the necessary and sufficient conditions for it were given using e.g. Carleson measures.
In particular, the link between Carleson measures and infinite-time admissibility was
studied in [10,11,23]. Those results were extended to normal semigroups [24], then
generalized to the casewhen u ∈ L2(0,∞; tαdt) forα ∈ (−1, 0) in [25] and further to
the case u ∈ L2(0,∞;w(t)dt) in [13,14]. For a thorough presentation of admissibility
results, not restricted to diagonal systems, for the undelayed case we refer the reader
to [12] and a rich list of references therein.

The results in [9] and [5] form a basis for considerations in [2] in terms of developing
a correct setting in which we conduct the admissibility analysis for state-delayed
diagonal systems. The same setting is used by us for the admissibility analysis in a
more general case when (1) takes a form of the so-called retarded equation, where we
assume only a contraction property of the undelayed semigroup (T (t))t≥0 (full details
will be published elsewhere [26])

Section 2 contains the necessary background results, leading to the main results in
Sect. 3. An example is given in Sect. 4, and some conclusions are given in Sect. 5.

2 Preliminaries

Apart from definitions introduced in the previous section throughout this paper we use
the following Sobolev spaces (see [17] for vector valued functions or [7, Chapter 5] for
functionals): W 1,2(J , X) := { f ∈ L2(J , X) : d

dt f (t) ∈ L2(J , X)}, W 1,2
c (J , X) :=

{ f ∈ W 1,2(J , X) : f has compact support} and W 1,2
0 (J , X) := { f ∈ W 1,2(J , X) :

f (∂ J ) = 0}, where J is an interval.
For any α ∈ R we denote Cα := {s ∈ C : Res > α} with an exception for two

special cases, namely C+ := {s ∈ C : Re s > 0} and C− := {s ∈ C : Res < 0}.
The Hardy space H2(C+) consists of all analytic functions f : C+ → C for which

sup
α>0

∫ ∞

−∞
| f (α + iω)|2 dω < ∞. (2)

If f ∈ H2(C+) then for almost every ω ∈ R the limit

f ∗(iω) = lim
α↓0 f (α + iω) (3)

exists and defines a function f ∗ ∈ L2(iR) called the boundary trace of f . Using
boundary traces H2(C+) is made into a Hilbert space with the inner product defined
as



Admissibility of Diagonal State-Delayed Systems with a… 2465

〈 f , g〉H2(C+) := 〈 f ∗, g∗〉L2(iR) := 1

2π

∫ +∞

−∞
f ∗(iω)ḡ∗(iω) dω (4)

for every f , g ∈ H2(C+). For more information about Hardy spaces see [8,18] or
[16]. We also make use of the following

Theorem 2.1 (Paley–Wiener) Let Y be a Hilbert space. Then the Laplace transform
L : L2(0,∞; Y ) → H2(C+; Y ) is an isometric isomorphism.

For a detailed proof of Theorem 2.1 see [20, Chapter 19] for the scalar version or [1,
Theorem 1.8.3] for the vector-valued one.

2.1 The Delayed Equation Setting

For details of the setting in which we consider a state-delayed diagonal system see [6,
Chapter VI.6] and [2, Chapter 3.1]. Consider a function z : [−τ,∞) → X . For each
t ≥ 0 we call the function zt : [−τ, 0] → X , zt (σ ) := z(t + σ), a history segment
with respect to t ≥ 0. With history segments we consider a function called the history
function of z, that is hz : [0,∞) → L2(−τ, 0; X), hz(t) := zt . In [2, Lemma 3.4] we
find the following

Proposition 2.2 Let 1 ≤ p < ∞ and z : [−τ,∞) → X be a function which belongs
to W 1,p

loc (−τ,∞; X). Then the history function hz : t → zt of z is continuously
differentiable from R+ into L p(−τ, 0; X) with derivative ∂

∂t hz(t) = ∂
∂σ

zt .

Define the Cartesian product X := X × L2(−τ, 0; X) with an inner product〈(
x

f

)
,

(
y

g

)〉
X

:= 〈x, y〉X + 〈 f , g〉L2(−τ,0;C). (5)

ThenX becomes a Hilbert space (X , ‖·‖X )with the norm ‖(xf )‖2X = ‖x‖2X +‖ f ‖2
L2 .

Consider a linear, autonomous delay differential equation of the form⎧⎨
⎩
ż(t) = Az(t) + 
zt
z(0) = x,
z0 = f ,

(6)

where 
 ∈ L(W 1,2(−τ, 0; X), X) is a delay operator, the pair x ∈ D(A) and f ∈
L2(−τ, 0; X) forms an initial condition. Due to Proposition 2.2 equation (6) may be
written as an abstract Cauchy problem

{
v̇(t) = Av(t)
v(0) = (xf ), (7)

where v : t → (z(t)
zt

) ∈ X and A is an operator on X defined as

A :=
(
A 


0 d
dσ

)
, (8)
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with domain

D(A) :=
{(

x

f

)
∈ D(A) × W 1,2(−τ, 0; X) : f (0) = x

}
. (9)

The operator (A, D(A)) is closed and densely defined on X [2, Lemma 3.6]. Let
A = A0 + A
 , where

A0 :=
(
A 0
0 d

dσ

)
, D(A0) = D(A), (10)

and

A
 :=
(
0 


0 0

)
∈ L

(
X × W 1,2(−τ, 0; X),X

)
. (11)

We will need the following for the Miyadera–Voigt Perturbation Theorem and a
description of admissibility.

Definition 2.3 Let β ∈ ρ(A) and denote (X1, ‖·‖1) := (D(A), ‖·‖1) with ‖·‖1 :=
‖(β I − A)x‖ (x ∈ D(A)).

Similarly, we set ‖x‖−1 := ‖(β I − A)−1x‖ (x ∈ X). Then the space (X−1, ‖·‖−1)

denotes the completion of X under the norm ‖·‖−1. For t ≥ 0 we define T−1(t) as the
continuous extension of T (t) to the space (X−1, ‖·‖−1).

In the sequel, much of our reasoning is justified by the following Proposition, to which
we do not refer directly but include here for the reader’s convenience.

Proposition 2.4 With notation of Definition 2.3 we have the following

(i) The spaces (X1, ‖·‖1) and (X−1, ‖·‖−1) are independent of the choice of β ∈
ρ(A).

(ii) (T1(t))t≥0 is a strongly continuous semigroup on the Banach space
(X1, ‖·‖1) and we have ‖T1(t)‖1 = ‖T (t)‖ for all t ≥ 0.

(iii) (T−1(t))t≥0 is a strongly continuous semigroup on the Banach space
(X−1, ‖·‖−1) and we have ‖T−1(t)‖−1 = ‖T (t)‖ for all t ≥ 0.

See [6, Chapter II.5] or [21, Chapter 2.10] for more details on these elements. A
sufficient condition for P ∈ L(X1, X) to be a perturbation of Miyadera–Voigt class,
and hence implying that A + P is a generator on X , takes the form of [6, Corollary
III.3.16]

Proposition 2.5 Let (A, D(A)) be the generator of a strongly continuous semigroup(
T (t)

)
t≥0 onaBanach space X and let P ∈ L(X1, X)beaperturbationwhich satisfies

∫ t0

0
‖PT (r)x‖ dr ≤ q‖x‖ ∀x ∈ D(A) (12)

for some t0 > 0 and 0 ≤ q < 1. Then the sum A+ P with domain D(A+ P) := D(A)

generates a strongly continuous semigroup (S(t))t≥0 on X.
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To describe the resolvent of (A, D(A)), let us introduce the notation

A0 := d

dσ
, D(A0) = {z ∈ W 1,2(−τ, 0; X) : z(0) = 0},

for the generator of the nilpotent left shift semigroup on L p(−τ, 0; X). For s ∈ C

define εs : [−τ, 0] → C, εs(σ ) := esσ . Define also 
s ∈ L(D(A), X), 
s x :=

(εs(·)x). Then [2, Proposition 3.19] provides

Proposition 2.6 For s ∈ C and for all 1 ≤ p < ∞ we have

s ∈ ρ(A) if and only if s ∈ ρ(A + 
s).

Moreover, for s ∈ ρ(A) the resolvent operator R(s,A) is given by

R(s,A) =
(
R(s, A + 
s) R(s, A + 
s)
R(s, A0)

εs R(s, A + 
s) (εs R(s, A + 
s)
 + I )R(s, A0)

)
. (13)

2.2 The Admissibility Problem

The basic object in the formulation of admissibility problem is a linear system and its
mild solution

d

dt
x(t) = Ax(t) + Bu(t); x(t) = T (t)x0 +

∫ t

0
T (t − s)Bu(s) ds, (14)

where x : [0,∞) → X , u ∈ V where V is a space of measurable functions from
[0,∞) to U and B is a control operator; x0 ∈ X is an initial state.

In many practical examples the control operator B is unbounded, hence (14) is
viewed on an extrapolation space X−1 ⊃ X where B ∈ L(U , X−1). To ensure that
the state x(t) lies in X it is sufficient that

∫ t
0 T−1(t − s)Bu(s) ds ∈ X for all inputs

u ∈ V . Put differently, we have

Definition 2.7 The control operator B ∈ L(U , X−1) is said to be finite-time admissible
for a semigroup

(
T (t)

)
t≥0 on a Hilbert space X if for each τ > 0 there is a constant

c(τ ) such that the condition

∥∥∥ ∫ τ

0
T−1(τ − s)Bu(s) ds

∥∥∥
X

≤ c(τ )‖u‖V (15)

holds for all inputs u, and an infinite-time admissible if the condition (15) holds for
all τ > 0 with c(τ ) uniformly bounded.

In the sequel, we denote the restriction (extension) of T (t) described in Defini-
tion 2.3 by the same symbol T (t), since this is unlikely to lead to confusions.
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3 Diagonal Non-autonomous Delay Systems

We begin with an analysis of (1) in a more concrete setting. Consider the system

⎧⎨
⎩
ż(t) = Az(t − τ) + Bu(t)
z(0) = x,
z0 = f ,

(16)

where the state space is X := l2(C), the control function u ∈ L2(0,∞;C) and (λk)k∈N
is a sequence in C such that

λk ∈ C− ∀k ∈ N. (17)

The semigroup generator (A, D(A)) is defined by

(Az)k := λk zk, D(A) :=
{
z ∈ l2(C) :

∑
k∈N

(1 + |λk |2)|zk |2 < ∞
}
. (18)

As the space X1 we take (D(A), ‖·‖gr ), where the graph norm is equivalent to

‖z‖21 =
∑
k∈N

(1 + |λk |2)|zk |2.

The adjoint generator A∗ is represented in the same way, with the sequence (λ̄k)k∈N in
place of (λk)k∈N. This gives D(A∗) = D(A). The space X−1 consists of all sequences
z = (zk)k∈N ∈ C

N for which

∑
k∈N

|zk |2
1 + |λk |2 < ∞,

and the square root of the above series gives an equivalent norm on X−1. The space
X−1 is the same as Xd−1, where the latter one is the equivalent of X−1 should the
construction in Definition 2.3 be based on A∗ instead of A.

Note also that the operator B ∈ L(C, X−1) is represented by the sequence
(bk)k∈N ∈ C

N, as L(C, X−1) can be identified with X−1.
The above is the standard setting for diagonal systems; we refer the reader to [21,

Chapters 2.6 and 5.3] for more details.

Remark 3.1 Although we restrict ourselves to contraction semigroups, this does not
lead to loss of generality due to the semigroup rescaling property. That is when A
does not generate a contraction semigroup, we may replace it with a shifted version
A−α I for a sufficiently large α > 0. This does not change the admissibility of control
operator for the rescaled semigroup, but may change the infinite time admissibility.
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3.1 Analysis of a Single Component

Let us now focus on the k-th component of (16), that is

⎧⎨
⎩
żk(t) = λk zk(t − τ) + bku(t)
zk(0) = xk,
z0k = fk,

(19)

where λk, bk, xk ∈ C, fk := 〈 f , lk〉L2(−τ,0;X)lk with lk being the k-th component of
the standard orthonormal basis in L2(−τ, 0; X).

For the sake of clarity of notation, let us now until the end of this subsection drop
the subscript k and rewrite (19) in the form

⎧⎨
⎩
ż(t) = 
zt + bu(t)
z(0) = x,
z0 = f ,

(20)

where the delay operator 
 ∈ L(W 1,2(−τ, 0;C),C) is defined as


( f ) := λ f (−τ) ∀ f ∈ W 1,2(−τ, 0;C). (21)

Observe that, without the input function bu ∈ L2(0,∞;C), system (20) is a simplified
form of (6). As for such, we can apply the procedure described in the Preliminaries
section and represent it as an abstract Cauchy problem of the form (7). For that purpose
note that

X := C × L2(−τ, 0;C) (22)

with an inner product

〈(
x

f

)
,

(
y

g

)〉
X

:= x ȳ + 〈 f , g〉L2(−τ,0;C) ∀
(
x

f

)
,

(
y

g

)
∈ X . (23)

What follows is the non-autonomous Cauchy problem describing the dynamics of the
k-th component {

v̇(t) = Av(t) + Bu(t)
v(0) = (xf ), (24)

where v : t → (z(t)
zt

) ∈ X and A is an operator on X defined as

A :=
(
0 


0 d
dσ

)
, (25)

with domain

D(A) :=
{(

x

f

)
∈ C × W 1,2(−τ, 0;C) : f (0) = x

}
, (26)
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and B := (b
0

) ∈ L(C,X−1).To state explicitly how the X−1 space looks like we use
again (25) and (26) as well as Proposition 3.1 from [26]. As a result,

X−1 = C × W−1,2(−τ, 0;C), (27)

where W−1,2(−τ, 0;C) is the dual to W 1,2
0 (−τ, 0;C) with respect to the pivot space

L2(−τ, 0;C). The generator A may again be represented as A = A0 + A
 , where

A0 :=
(
0 0
0 d

dσ

)
, D(A0) = D(A), (28)

and

A
 :=
(
0 


0 0

)
∈ L

(
C × W 1,2(−τ, 0;C),X

)
. (29)

We have the following

Proposition 3.2 The abstract Cauchy problem (24) is well-posed.

Proof The delay operator 
 defined in (21) is an example of a much wider class of
delay operators, with which condition (12) is satisfied and (A, D(A)) in (25) remains
a generator of a strongly continuous semigroup (T (t))t≥0 on X . See [2, Chapter 3.3
and Example 3.28] for details. ��

Due to Proposition 3.2 we can formally write theX−1-valued k-th component mild
solution of (24)

v(t) = T (t)v(0) +
∫ t

0
T (t − s)Bu(s) ds, (30)

where T (t) ∈ L(X−1) and the control operator is again B = (b
0

) ∈ L(C,X−1).
The following Proposition gives information concerning spectral properties and the
resolvent operator R(s,A).

Proposition 3.3 For s ∈ C and for all 1 ≤ p < ∞ there is

s ∈ ρ(A) if and only if s ∈ ρ(
s). (31)

Moreover, for s ∈ ρ(A) the resolvent operator R(s,A) is given by

R(s,A) =
(
R(s, 
s) R(s, 
s)
R(s, A0)

εs R(s, 
s) (εs R(s, 
s)
 + I )R(s, A0)

)
, (32)

where R(s, 
s) ∈ L(C),

R(s, 
s) = 1

s − λ e−sτ
∀s ∈ C|λ| (33)

and R(s, A0) ∈ L(L2(−τ, 0;C)),

R(s, A0) f (r) =
∫ 0

r
es(r−t) f (t) dt r ∈ [−τ, 0] ∀s ∈ C|λ|. (34)
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Proof 1. Condition (31) and the form of R(s,A) in (32) follow directly from Propo-
sition 2.6 and the form of A given in (25).

2. As is well known, for any Banach space X and operator A ∈ L(X) the condition
s ∈ σ(A) implies |s| ≤ ‖A‖.

3. According to the definitions given before Proposition 2.6 in this case there is
s ∈
L(C), 
s x := λ e−sτ x and ‖
s‖ = |λ| e−Re sτ . The equation (μ − 
s)x = y
has a unique solution x ∈ C for each y ∈ C if and only if μ �= λ e−sτ . Thus
σ(
s) = {λ e−sτ }, and so

{s ∈ C : s ∈ σ(
s)} ⊂ {s ∈ C : |s| ≤ |λ| e−Re sτ } ⊂ {s ∈ C : Re s ≤ |λ|}.

Moreover, for s �= λ e−sτ there is

R(s, 
s) = 1

s − λ e−sτ
.

4. To complete the description of R(s,A) consider now f ∈ L2(−τ, 0;C), g ∈
W 1,2(−τ, 0;C) and a formal differential equation

(s I − A0)g(r) = sg(r) − g′(r) = f (r) (35)

with an initial condition imposed on f in the form f (0) = 0. Solving firstly a
homogeneous equation and then using the method of variation of constants one
obtains

g(r) =
∫ 0

r
es(r−t) f (t) dt ∀r ∈ [−τ, 0] ∀s ∈ C|λ|

(see also [15, p. 174, (6.6)]).
Denote now Rs f (r) := g(r), r ∈ [−τ, 0]. Then, for every f ∈ L2(−τ, 0;C)

there is (s I − A0)Rs f (r) = f (r) and Rs : L2(−τ, 0;C) → D(A0) and Rs ∈
L(L2(−τ, 0;C)). Let now f ∈ D(A0). A simple check shows that Rs[(s I −
A0) f (r)] = f (r), r ∈ [−τ, 0]. This means that Rs is in fact a resolvent operator
and we may write

R(s, A0) f (r) = Rs f (r) =
∫ 0

r
es(r−t) f (t) dt ∀ f ∈ L2(−τ, 0;C).

��
Proposition 3.3 gives the formof the resolvent R(s, 
s) and assures that it is analytic

on C|λ|. The value of λ is valid for the given mode only and at this stage |λ| → ∞
is allowed. Thus, as we will later require analyticity of R(s, 
s) in C+, a different
approach is needed. For that reason we turn our attention to the complex coefficient
exponential polynomial P : C → C,

P(s) := s − λ e−sτ , (36)
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where λ ∈ C− is a complex coefficient and τ > 0.
The polynomial (36) in a more general form A(s)+ B(s) e−sτ is known and widely

studied in the theory of stability of finite dimensional dynamical systems—see e.g.
[3, Chapter 13] or [19, Chapter 6] and references therein. The main difficulty in
our case, in comparison to the references given above, is that the coefficients are
complex. Nevertheless, we can use a modified Walton–Marshall approach [22] (or
[19, Proposition 6.2.3]), as the following Proposition shows.

Remark 3.4 We take the principal argument of λ to be Arg(λ) ∈ (−π, π ].
We shall require the following subset of the complex plane, depending on τ > 0:

�τ :=
{
λ ∈ C− : Arg(λ) ∈ (−π,−π

2

)∪ (π
2

, π
]
, |λ| <

1

τ

(|Arg(λ)|− π

2

)}
. (37)

Proposition 3.5 For a given τ > 0 and λ ∈ C− the condition λ ∈ �τ is sufficient for
the polynomial P defined in (36) no to have right half-plane zeros (to be stable). In
other words, all the solutions of the characteristic equation P(s) = 0 belong to C−.

Proof 1. Consider initially the case when τ = 0. The polynomial P has one root
s0 = λ and s0 ∈ C−.

2. Using Rouché’s theorem (see e.g. [3, Theorem 12.2]) one can show that the zeros
move continuously with τ . As they start in C− it remains to establish when they
cross the imaginary axis.

3. At the crossing of the imaginary axis there is s = iω for some ω ∈ R and the
characteristic equation takes the form

s − λ e−sτ = 0. (38)

By point 2. we can treat (38) as an implicit function with s = s(τ ) and check the
direction in which zeros of it cross the imaginary axis by analysing the sgn Re ds

dτ
at s = iω. By calculating the implicit function derivative we obtain

ds

dτ
= − s2

1 + sτ
.

As s is purely imaginary and sgn Re z = sgn Re z−1 we have

sgn Re
ds

dτ
> 0

and the zeros cross from the left to the right half-plane. What remains is to find
for what τ this happens.

4. Taking the complex conjugate of (38) we obtain

−s − λ̄ esτ = 0.
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Using both of the above equations to eliminate the exponential part we obtain
s2 = −|λ|2, hence s = ±i |λ|. Choosing to work further with s = i |λ| and
substituting it into (38) we get

− i
λ

|λ| = ei |λ|τ . (39)

The corresponding equation for s = −i |λ| is

−i
|λ|
λ

= ei |λ|τ ,

which has the same form as (39), but replacing λ by λ̄.
5. Let now λ = |λ| ei Arg λ where Arg(λ) ∈ (−π,−π

2 ) ∪ (π
2 , π ]. This gives

Arg λ − π

2
∈
(

−3π

2
,−π

)
∪
(
0,

π

2

]
(40)

and from (39) we have

0 < |λ|τ = Arg λ − π

2
≤ π

2
. (41)

The above brings us to an observation that if there exist λ ∈ C− and τ > 0 such
that s = i |λ| is a solution to (38) i.e. s = λ e−sτ then π

2 < Arg(λ) ≤ π and (41)
is satisfied.
If we choose to work in point 4. with s = −i |λ| instead, then by symmetry we
obtain that if there exist λ ∈ C− and τ > 0 such that s = −i |λ| is a solution to
s = λ e−sτ then −π < Arg(λ) < π

2 and the equation |λ|τ = −Arg(λ) − π
2 is

satisfied.
6. From the discussion in point 5. we draw two conclusions:

(a) given a diagonal system, with fixed (λk)k∈N, the delay τ assuring that each
mode is stable satisfies

τ <
1

|λk |
(

|Arg λk | − π

2

)
∀k ∈ N, (42)

(b) given a delay τ , the distribution of (λk)k∈N for each mode to remain stable is

|λk | <
1

τ

(
|Arg λk | − π

2

)
∀k ∈ N. (43)

Clearly (λk)k∈N ⊂ C−.
��

In geometrical terms Proposition 3.5 states that the stability of P is preserved for
given τ provided that we choose the λ coefficients from the interior of the set that
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resembles an ellipse with apsides in 0 and − π
2τ , and which is elongated towards the

latter one.
Referring now to Definition 2.7 and the mild solution of the k-th component (30)

we introduce the forcing operator �∞ ∈ L(L2(0,∞;C),X−1),

�∞(u) :=
∫ ∞

0
T (t)Bu(t) dt, (44)

where

T (t)B =
(
T11(t) T12(t)
T21(t) T22(t)

)(
b
0

)
=
(
T11(t)b
T21(t)b

)
.

Hence the forcing operator becomes

�∞(u) =
⎛
⎝
∫∞
0 T11(t)bu(t) dt

∫∞
0 T21(t)bu(t) dt

⎞
⎠ ∈ X−1. (45)

We can represent formally a similar product with the resolvent operator R(s,A)

from (32), namely

R(s,A)B =
(
R11(s) R12(s)
R21(s) R22(s)

)(
b
0

)
= b

s − λ e−sτ

(
1
εs

)
. (46)

where the correspondence of sub-indices with elements of (32) is obvious and will be
used from now on to shorten the notation.

The connection between the semigroup T (t) and the resolvent R(s,A) is given by
the Laplace transform (see e.g. [21, Chapter 2.3]) whenever the integral converges and

R(s,A)B =
∫ ∞

0
e−sr T (r)B dr = b

⎛
⎝L(T11)(s)

L(T21)(s)

⎞
⎠ ∈ L(C,X−1). (47)

We can now state the main theorem for the k-th component of the delay system (16),
namely

Theorem 3.6 Let for the given delay τ the eigenvalue λ satisfy λ ∈ �τ . Then the
control operator B = (b

0

)
for the system (24) is infinite-time admissible for every

u ∈ L2(0,∞;C) and

‖�∞u‖2X ≤ |b|2(1 + τ)
1

π

(
2 − δ

δ|λ| + 2δ

(1 − m2)|λ|
)

‖u‖2L2(0,∞;C)
,

for some δ,m ∈ (0, 1), which can be given explicitly in terms of λ.
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Proof 1. Consider the standard inner product on L2(0,∞;C), namely

〈 f , g〉L2(0,∞;C) =
∫ ∞

0
f (t)ḡ(t) dt ∀ f , g ∈ L2(0,∞;C).

Using (45) and (27) we may write

∫ ∞

0
T11(t)bu(t) dt = b〈T11, ū〉L2(0,∞;C) (48)

assuming that T11 ∈ L2(0,∞;C). This assumption is equivalent, due to the
Paley–Wiener Theorem 2.1, toL(T11) ∈ H2(C+), where the last inclusion holds.
Indeed, using (46) and (47) we see that L(T11)(s) = bR11(s) = b

s−λ e−sτ . Now

the assumption on λ gives R11 ∈ H2(C+) and the result follows.
2. The boundary trace R∗

11 = L(T11)∗ ∈ L2(iR) is given a.e. as

L(T11)∗(iω) = 1

iω − λ e−iωτ
.

Again by Theorem 2.1 and definition of the inner product on H2(C)+ in (4) we
have

b〈T11, ū〉L2(0,∞;C) = b〈L(T11)∗,L(ū)∗〉L2(iR)

= b

2π

∫ +∞

−∞
1

iω − λ e−iωτ
L(ū)∗(iω) dω

The Cauchy–Schwarz inequality now gives

|b|
∣∣∣∣ 12π

∫ +∞

−∞
1

iω − λ e−iωτ
L(ū)∗(iω) dω

∣∣∣∣
≤ |b|

(
1

2π

∫ +∞

−∞

∣∣∣ 1

iω − λ e−iωτ

∣∣∣2 dω

) 1
2
(

1

2π

∫ +∞

−∞
∣∣L(ū)∗(iω)

∣∣2 dω

) 1
2

= |b|
(

1

2π

∫ +∞

−∞

∣∣∣ 1

iω − λ e−iωτ

∣∣∣2 dω

) 1
2 ‖u‖L2(0,∞;C),

Combining this result with point 1 we obtain

∣∣∣∣
∫ ∞

0
T11(t)bu(t) dt

∣∣∣∣
2

≤ |b|2
(

1

2π

∫ +∞

−∞

∣∣∣ 1

iω − λ e−iωτ

∣∣∣2 dω

)
‖u‖2L2(0,∞;C)

.

(49)
3. Consider now the second element of the forcing operator (45), namely

∫ ∞

0
T21(t)bu(t) dt ∈ W−1,2(−τ, 0;C).
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To shorten the notation we write W := W−1,2(−τ, 0;C). If we assume that
T21 ∈ L2(0,∞;W ) then using the vector-valued version of Theorem 2.1 this is
equivalent to L(T21) ∈ H2(C+,W ), but the last inclusion holds. Indeed, to show
it notice that

εs(σ ) := esσ , σ ∈ [−τ, 0]

is, as a function of s, analytic everywhere for every value of σ , and follow exactly
the reasoning in point 1.

4. We introduce an auxiliary function φ : [0,∞) → C. For that purpose fix T21 ∈
L2(0,∞;W ) and x0 ∈ W and define

φ(t) := 〈T21(t), x0〉W .

The Cauchy–Schwarz inequality gives

∫ ∞

0
|〈T21(t), x0〉W |2 dt ≤

∫ ∞

0
‖T21(t)‖2W dt‖x0‖2W < ∞,

hence φ ∈ L2(0,∞;C).
5. Consider now the following:

b
∫ ∞

0
φ(t)u(t) dt = b

∫ ∞

0
〈T21(t), x0〉Wu(t)dt = b

〈 ∫ ∞

0
T21(t)u(t) dt, x0

〉
W

.

We also have

b
∫ ∞

0
φ(t)u(t) dt = b〈φ, ū〉L2(0,∞;C) = b〈L(φ)∗,L(ū)∗〉L2(iR).

To obtain the boundary trace L(φ)∗ notice that

L(φ)(s) =
∫ ∞

0
e−sr 〈T21(r), x0〉W dr =

〈 ∫ ∞

0
e−sr T21(r) dr , x0

〉
W

= 〈L(T21)(s), x0〉W = 〈R21(s), x0〉W .

Using now (46) yields the result

L(φ)∗(iω) = 〈R∗
21(iω), x0〉W =

〈
εiω

iω − λ e−iωτ
, x0

〉
W

.

Finally, using the inner product on L2(iR) and the fact that L(ū)∗(iω) ∈ C for
every ω ∈ R we obtain

〈 ∫ ∞

0
T21(t)u(t) dt, x0

〉
W

=
〈
1

2π

∫ +∞

−∞
R∗
21(iω)L(ū)∗(iω) dω, x0

〉
W
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and

∫ ∞

0
T21(t)u(t) dt = 1

2π

∫ +∞

−∞
R∗
21(iω)L(ū)∗(iω) dω ∈ W . (50)

6. Using the norm on L2(−τ, 0;C) we have

‖R∗
21(iω)‖2L2(−τ,0;C)

=
∫ 0

−τ

∣∣∣∣ eiωt

iω − λ e−iωτ

∣∣∣∣
2

dt = 1

|iω−λ e−iωτ |2
∫ 0

−τ

∣∣ eiωt ∣∣2 dt
= τ

|iω − λ e−iωτ |2 .

The Cauchy–Schwarz inequality gives

|b|
∥∥∥∥ 1

2π

∫ +∞

−∞
R∗
21(iω)L(ū)∗(iω) dω

∥∥∥∥
L2(−τ,0;C)

≤ |b| 1

2π

∫ +∞

−∞
‖R∗

21(iω)‖L2(−τ,0;C)|L(ū)∗(iω)| dω

= |b| 1

2π

∫ +∞

−∞
τ

1
2

|iω − λ e−iωτ | |L(ū)∗(iω)| dω

≤ |b|
(

1

2π

∫ +∞

−∞

( τ
1
2

|iω − λ e−iωτ |
)2

dω

) 1
2
(

1

2π

∫ +∞

−∞
∣∣L(ū)∗(iω)

∣∣2 dω

) 1
2

= |b|
(

1

2π

∫ +∞

−∞
τ

|iω − λ e−iωτ |2 dω

) 1
2 ‖u‖L2(0,∞;C)

Combining this result with point 5 gives

∥∥∥∥
∫ ∞

0
T21(t)bu(t) dt

∥∥∥∥
L2(−τ,0;C)

≤ |b|
(

1

2π

∫ +∞

−∞
τ

|iω − λ e−iωτ |2 dω

) 1
2 ‖u‖L2(0,∞;C)

(51)
7. Taking now the norm ‖·‖X resulting from (23) and using (45), (49) and (51) we

arrive at

‖�∞(u)‖2X =
∣∣∣∣
∫ ∞

0
T11(t)bu(t) dt

∣∣∣∣
2

+
∥∥∥∥
∫ ∞

0
T21(t)bu(t) dt

∥∥∥∥
2

L2(−τ,0;C)

≤ |b|2(1 + τ)

(
1

2π

∫ +∞

−∞
1

|iω − λ e−iωτ |2 dω

)
‖u‖2L2(0,∞;C)

(52)

The remaining part is to deal with the integral in the above estimation. Note,
that trying to calculate it directly this problem is equivalent (up to a constant) to
calculation of the integral
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∫ +i∞

−i∞
ds

(s − λ e−sτ )(−s − λ̄ esτ )

with s and λ as complex variables. This inevitably leads to the Lambert-W func-
tion related pole placement and complications with finding a suitable contour of
integration. To avoid these difficulties we will content ourselves with estimation
only.

8. Define

∫ +∞

−∞
I (iω) dω :=

∫ +∞

−∞
1

|iω − λ e−iωτ |2 dω.

From the fact that for ω ∈ R there is

|iω − λ e−iωτ | = |−iω − λ̄ eiωτ |,

the equalities

∫ +∞

0

1

|iω − λ e−iωτ |2 dω =
∫ 0

−∞
1

|iω − λ̄ e−iωτ |2 dω,

∫ 0

−∞
1

|iω − λ e−iωτ |2 dω =
∫ +∞

0

1

|iω − λ̄ e−iωτ |2 dω

follow. They give

∫ +∞

−∞
1

|iω − λ e−iωτ |2 dω =
∫ +∞

−∞
1

|iω − λ̄ e−iωτ |2 dω,

and therefore one can consider the sole case Arg(λ) ∈ (π
2 , π ]. Using the reverse

triangle inequality we may now write

∫ +∞

−∞
I (iω) dω =

∫ 0

−∞
1

|iω − λ e−iωτ |2 dω +
∫ +∞

0

1

|iω − λ e−iωτ |2 dω

=
∫ +∞

0

1

|iω − λ̄ e−iωτ |2 dω +
∫ +∞

0

1

|iω − λ e−iωτ |2 dω

≤
∫ (1−δ)|λ̄|

0

dω(|ω| − |λ̄|)2 +
∫ +∞

(1+δ)|λ̄|
dω(|ω| − |λ̄|)2

+
∫ (1+δ)|λ̄|

(1−δ)|λ̄|
1

|iω − λ̄ e−iωτ |2 dω

+
∫ (1−δ)|λ|

0

dω(|ω| − |λ|)2 +
∫ +∞

(1+δ)|λ|
dω(|ω| − |λ|)2

+
∫ (1+δ)|λ|

(1−δ)|λ|
1

|iω − λ e−iωτ |2 dω
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= 2
∫ (1−δ)|λ|

0

dω(
ω − |λ|)2 + 2

∫ +∞

(1+δ)|λ|
dω(

ω − |λ|)2
+
∫ (1+δ)|λ̄|

(1−δ)|λ̄|
1

|iω − λ̄ e−iωτ |2 dω +
∫ (1+δ)|λ|

(1−δ)|λ|
1

|iω − λ e−iωτ |2 dω

(53)

for any δ ∈ (0, 1). The first and second integral on the right hand side give

∫ (1−δ)|λ|

0

dω(
ω − |λ|)2 = 1 − δ

δ|λ| ,

and

∫ +∞

(1+δ)|λ|
dω(

ω − |λ|)2 = 1

δ|λ| .

Taking into account the comments above we will firstly find the upper bound for
the last integral in (53) .

9. Hence, using the assumption let λ = |λ| ei Arg(λ), where Arg(λ) = π
2 + ελ,

ελ ∈ (0, π
2 ] and

0 < |λ|τ < Arg(λ) − π

2
= ελ ≤ π

2
.

Fix now δ ∈ (0, 1) such that

(1 − δ)|λ|τ < |λ|τ < (1 + δ)|λ|τ < ελ. (54)

Let η ∈ [1 − δ, 1 + δ] and consider ω = η|λ|. For such ω we have

∣∣iω − λ e−iωτ
∣∣2 = |λ|2∣∣η ei π

2 − ei(Arg(λ)−η|λ|τ)
∣∣2

= |λ|2|kη − qη|2 = |λ|2v2η
(55)

with the obvious definition of kη and qη vectors and vη := |kη − qη|. Due to (54)
and the definition of η we have

Arg(λ) − η|λ|τ = π

2
+ ελ − η|λ|τ >

π

2

and |kη −qη|2 > 0 for every η ∈ [1− δ, 1+ δ]. Define ε(η) as the angle between
kη and qη, that is

ε(η) := ελ − η|λ|τ,
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which is a linear function of η ∈ [1 − δ, 1 + δ] with values

ε(η) ∈ (ελ − (1 + δ)|λ|τ, ελ − (1 − δ)|λ|τ) ⊂
(
0,

π

2

)
. (56)

The law of cosines in the η-dependent triangle (kη, qη, vη) gives

v2η = 1 + η2 − 2η cos
(
ελ − η|λ|τ). (57)

The strict monotonicity of the cosine function on (0, π
2 ) and (56) give

m := max
{
cos
(
ελ −η|λ|τ) : η ∈ [1− δ, 1+ δ]} = cos

(
ελ − (1+ δ)|λ|τ) (58)

and m ∈ (0, 1). Hence, for every η ∈ [1 − δ, 1 + δ] we have

v2η ≥ 1 + η2 − 2ηm ≥ 1 − m2 > 0, (59)

as η2 − 2ηm + m2 = (η − m)2 ≥ 0 so that η2 − 2ηm ≥ −m2. Now (55) and
(59) give

1∣∣iω − λ e−iωτ
∣∣2 ≤ 1

(1 − m2)|λ|2 ∀ω ∈ [(1 − δ)|λ|, (1 + δ)|λ|]

and, in consequence, lead to a finite upper bound of the last integral in (53), that
is ∫ (1+δ)|λ|

(1−δ)|λ|
1

|iω − λ e−iωτ |2 dω ≤ 2δ

(1 − m2)|λ| . (60)

Noting that Arg(λ̄) = −Arg(λ) and using the same geometrical approach one
can show that for the third integral in (53) the upper bound of (60) also holds.

10. Taking together (52), (53) and (60) we arrive at

‖�∞(u)‖2X ≤ |b|2(1 + τ)
1

π

(
2 − δ

δ|λ| + 2δ

(1 − m2)|λ|
)

‖u‖2L2(0,∞;C)

��

3.2 Analysis of theWhole System

Let us return now to the diagonal non-autonomous system (16) with state space X =
l2(C) and to denoting its k-th component with the subscript. As shown in the previous
subsection, Proposition 3.2 states that the system (19) describing the k-th component
is well-posed and its mild solution is given by (30), that is vk : [0,∞) → X ,

vk(t) =
(
zk(t)

ztk

)
= Tk(t)vk(0) +

∫ t

0
Tk(t − s)Bku(s) ds. (61)
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Given the structure of the Hilbert space X in (5) the mild solution (61) has values
in the subspace of X spanned by the k-th element of its basis. Hence, defining v :
[0,∞) → X ,

v(t) :=
∑
k∈N

vk(t), (62)

we obtain a unique mild solution of (16) and this system is well-posed. Using (62)
and (5) we have

‖v(t)‖2X =
∥∥∥∥
(
z(t)

zt

)∥∥∥∥
2

X
= ‖z(t)‖2l2 + ‖zt‖2L2(−τ,0;l2)

=
∑
k∈N

|zk(t)|2 +
∑
k∈N

|〈zt , lk〉L2(−τ,0;l2)|2

=
∑
k∈N

(
|zk(t)|2 + ‖ztk‖2L2(−τ,0;C)

)

=
∑
k∈N

‖vk(t)‖2X , (63)

where we used again (22) and notation from (19). We can formally write the mild
solution (62) as a function v : [0,∞) → X−1,

v(t) = T (t)v(0) +
∫ t

0
T (t − s)Bu(s) ds. (64)

where X−1 = X−1 × W−1,2(−τ, 0; X) and the control operator B ∈ L(C,X−1) is
given by B = ((bk)k∈N0

)
. We may now state the main theorem of this article.

Theorem 3.7 Let for the given delay τ every element of the sequence (λk)k∈N satisfy
λk ∈ �τ , where �τ was defined in (37). Then the control operator B ∈ L(C,X−1)

given by B = ((bk )k∈N0

)
is infinite-time admissible if the sequence (Ck)k∈N ∈ l1, where

Ck := |bk |2(1 + τ)
1

π

(
2 − δk

δk |λk | + 2δk
(1 − m2

k)|λk |
)

and δk,mk fulfil the conditions (54) and (58).

Proof Define the forcing operator for (64) as �∞ : L2(0,∞) → X−1,

�∞(u) :=
∫ ∞

0
T (t)Bu(t) dt .

From (62) it can be represented as

�∞(u) =
∑
k∈N

�∞k (u),
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where �∞k (u) is given by (44) for every k ∈ N. Then, similarly as in (63) and using
the assumption we see that

‖�∞(u)‖2X =
∑
k∈N

‖�∞k (u)‖2X ≤
(∑

k∈N
|Ck |

)
‖u‖2L2(0,∞;C)

< ∞

��

4 Examples

In construction of an appropriate example fulfilling assumptions of Theorem 3.7 the
biggest difficulty lies in the condition imposed on the eigenvalues (λk)k∈N of the
generator (A, D(A)), defined in (18). Apart from a somewhat artificial case where
one could simply define λk := (− π

2τ + ε) 1k for some fixed τ, ε > 0 and all k ∈ N, we
provide two additional, more illustrative examples.

4.1 Multiplication Operator

Consider the multiplication operator on the space L2(�,μ), with a σ -finite measure
space (�,M, μ), as shown and described in detail in [6, Section I.4.b].More precisely,
for a measurable function (called symbol) q : � → C, we call the set

qess(�) :=
{
λ ∈ C : μ

({s ∈ � : |q(s) − λ| < ε}) �= 0 for all ε > 0
}

the essential range of q and define the associated multiplication operator Mq as

Mq f := q · f , D(Mq) := { f ∈ L2(�,μ) : q · f ∈ L2(�,μ)
}
.

The importance of this example lies in the fact that each normal operator on a Hilbert
space is unitarily equivalent to a multiplication operator on some L2 space.

From the perspective of Theorem 3.7 the multiplication operator has a useful prop-
erty, namely the spectrum of Mq is the essential range of q, that is

σ(Mq) = qess(�).

Hence, by choosing a suitable symbol it would be easy to control the eigenvalues.
However, due to the boundedness of the region of interest in Theorem 3.7, the symbol
q would have to be essentailly bounded, what is a neccessary and sufficient condi-
tion for the boundedness of the multiplication operator Mq and would limit further
considerations to uniformly bounded semigroups.
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4.2 Reciprocal System

Following [4] we introduce the notion of a state linear system �(A, B,C, D) con-
sidered on the extrapolation space X−1, where B ∈ L(U , X−1), C ∈ L(X1,Y ),
D ∈ L(U ,Y ), A generates the semigroup (T (t)) on X−1 and G is a transfer function
of this system.

Suppose that system �(A, B,C, D) is such that 0 ∈ ρ(A). Then its reciprocal
system is the state linear system �(A−1, A−1B,−CA−1,G(0)). This means that for
a diagonal generator A with eigenvalues (λk)k∈N the generator A−1 of the reciprocal
system has eigenvalues (λ−1

k )k∈N.
Note that by Theorem 5 of [4], the operator B is admissible for the semigroup

(T (t)) if and only if A−1B is admissible for the reciprocal semigroup generated by
A−1.

Consider a heat propagation model in a homogeneous rod with zero temperature
imposed on its both ends (see [21, Example 2.6.9] for more details). In terms of PDEs
this model takes the form⎧⎪⎨

⎪⎩
∂w
∂t (x, t) = ∂2w

∂x2
(x, t), x ∈ (0, π), t ≥ 0,

w(0, t) = 0, w(π, t) = 0, t ∈ [0,∞),

w(x, 0) = w0(x), x ∈ (0, π),

(65)

where the temperature profile belongs to the state space X = L2(0, π), the initial
condition (the initial temperature distribution) is w0 ∈ W 2,2(0, π) ∩ W 1,2

0 (0, π).
Define

Az := d2z

dx2
, D(A) := W 2,2(0, π) ∩ W 1,2

0 (0, π),

and reformulate (65) into an abstract setting

ż(t) = Az(t), z(0) = w0. (66)

Note also that 0 ∈ ρ(A). For k ∈ N let φk ∈ D(A), φk(x) :=
√

2
π
sin(kx) for every

x ∈ (0, π). Then (φk)k∈N is an orthornormal Riesz basis in X and

Aφk = −k2φk ∀k ∈ N.

Using standard Hilbert space methods and transforming system (66) into the l2 space
(we use the same notation for the l2 version of (66)) we see that the associated eigen-
value sequence (λk)k∈N is λk = −k2 for every k ∈ N.

Take the delay τ = 1. Then the system being the reciprocal of (66) has a generator
with a sequence of eigenvalues (− 1

k2
)k∈N fulfilling the assumption of Theorem 3.7.
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5 Conclusions

We have cast our results in the language of infinite-time admissibility, since this
allowed us to make use of Laplace transform techniques, but since for exponentially
stable systems (with supRe λk < 0) this is equivalent to finite-time admissibility,
similar conclusions hold in this situation as in our main theorem, Theorem 3.7.

The region �τ is a very natural one to find in our analysis, as may be seen by
observing that the system with transfer function 1/(s + λe−sτ ) (where τ > 0 and λ ∈
C) is H∞ stable if and only if λ ∈ �τ . Thus, paradoxically, a large negative eigenvalue
λ, although seemingly contributing to stability, actually causes destabilization, and loss
of admissibility, in the presence of delays. Thus for a system such as the heat equation,
where the set of eigenvalues is not contained in any single �τ , one cannot expect a
positive result in the presence of delay.

This is also interesting from the reciprocal systems point of view, as given in
Example 4.2, for the following reason. According to [4, Theorem 5], B is an infinite-
time admissible operator if and only if A−1B is. As our analysis shows, adding a
positive delay breaks this symmetry.

The last conclusion concerns the open question we formulated in [26], where we
looked for admissibility criteria of retarded delay systems formed by contraction
semigroups. In light of our results for diagonal state-delayed system it seems that
contraction is not a sufficient condition for admissibility of a diagonal retarded delay
system. Instead, sufficiency is reached when the sequence of eigenvalues of the unde-
layed semigroup fulfils a condition similar to λk ∈ �τ .
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