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Abstract The object of this paper is to consider the Fredholm equation (i.e., x −
ABx = yo) for smooth Banach spaces. In particular, we will prove that the classical
assumption of compactness of AB is redundant in some circumstances. In this paper,
we show that Coburn’s theorem holds for another classes of generally of nonnormal
operators.Moreover, as a corollary,wefind the distance fromsomeoperator to compact
operators.
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1 Preliminaries

The terminology “Fredholm operator” recognizes the pioneering work of Erik Fred-
holm. In 1903 he published a paper that, in modern language, dealt with equations of
the form

f (t) −
b∫

a

k(t, u) f (u)du = h(t), (1.1)
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Poland

http://crossmark.crossref.org/dialog/?doi=10.1007/s11785-018-0797-2&domain=pdf


738 P. Wójcik

where k(t, u) is in L2([a, b]×[a, b]) and f, h are in L2[a, b]. The Fredholm equation
and the Fredholm operator have been intensively studied in connection with integral
equations, aswell as operator theory. Let X be a real or complexBanach space.Assume
that A ∈ K(X), yo ∈ X . From our modern perspective we can think of the Fredholm
equation as

x − Ax = yo,

with a single unknown vector x ∈ X . We recall the celebrated Fredholm Alternative.
This great result has a number of applications in the theory of integral equations.

Theorem 1.1 (The Fredholm Alternative) Let X be a Banach space. If A ∈ K(X),
λ ∈ K and λ �= 0, then for every yo in X there is an x in X such that

λx − Ax = yo (1.2)

if and only if the only vector u such that λu − Au = 0 is u = 0. If this condition is
satisfied, then the solution to (1.2) is unique.

In this paper in Sect. 2 we consider a generalized Fredholm equation. Our main
result (Theorems 2.4) is an extension of the Fredholm Alternative to the setting of
possibly noncompact operators. The most important theorems of this paper will be
contained in Sects. 2 and 4. In Sect. 2 we will give a characterization for the general
idea of the Fredholm equation (i.e., x − ABx = yo) under certain assumptions. In
particular, we will prove that the assumption of compactness of AB is not needed
(in some circumstances). The second part of this work (i.e., Sects. 3, 4, 5) is devoted
to applications of Theorems 2.4 and 2.5. Our main goal in Sect. 3 is to get some
information on the spectrum of a noncompact operator on smooth space. Moreover, in
Sect. 4 we will compute the distance from some operator to the subspace K(X) (see
Theorem 4.2).

1.1 Semi-inner Product

Let (X, ‖·‖) be a normed space over K∈{R,C}. Lumer [6] and Giles [2] proved that
in a space X there always exists a mapping [·|·] : X × X →K satisfying the following
properties:

(sip1) ∀x,y,z∈X ∀α,β∈K : [αx + βy|z] = α [x |z] + β [y|z];
(sip2) ∀x,y∈X ∀α∈K : [x |αy] = α [x |y];
(sip3) ∀x,y∈X : | [x |y] | ≤ ‖x‖·‖y‖;
(sip4) ∀x∈X : [x |x] = ‖x‖2.

Such a mapping is called a semi-inner product (s.i.p.) in X (generating the norm ‖ · ‖).
There may exist infinitely many different semi-inner products in X . There is a unique
one if and only if X is smooth (i.e., there is a unique supporting hyperplane at each
point of the unit sphere). If X is an inner product space, the only s.i.p. on X is the
inner-product itself.

We quote some additional result concerning s.i.p.. Let X be a smooth, reflexive
Banach space. Then there exists a unique s.i.p. [·|·] : X×X →K. If A is a bounded



Fredholm Equation in Smooth Banach Spaces and Its… 739

linear operator from X to itself, then fz(·) := [A(·)|z] is a continuous linear functional,
and from the generalized Riesz-Fischer representation theorem it follows that there
is a unique vector A∗(z) such that [Ax |z] = [x |A∗(z)] for all x in X . Of course, in
a Hilbert space we have A∗ = A∗. In general case the mapping A∗ : X → X is not
linear but it still has some good properties:

(sip5) (AB)∗ = B∗A∗,
(sip6) (αA)∗ = αA∗,
(sip7) ∀x∈X : ‖A∗(x)‖ ≤ ‖A‖·‖x‖.For a vector x in a normed space X , we

consider the set
J (x) := {ϕ ∈ X∗ : ϕ(x) = ‖x‖, ‖ϕ‖ = 1}. (1.3)

By the Hahn-Banach Extension Theoremwe get J (x) �= ∅. In this paper, for a normed
space X , we denote by B(X) the closed unit ball in X . By extD we will denote the set
of all extremal points of a set D.

Let L(X) denote the space of all bounded linear operators on a space X , and I the
identity operator. We write K(X) for the space of all compact operators on X . For
A∈L(X), we denote the set M(A) := {x ∈B(X) : ‖Ax‖=‖A‖, ‖x‖=1}.

1.2 Geometry of Space L(X)

The main tool in our approach in the next section is a theorem due to Lima and Olsen
[5] which characterizes the extremal points of the closed unit ball in K(X).

Theorem 1.2 [5] Let X be a reflexive Banach spaces over the fieldK. The following
conditions are equivalent:

(a) f ∈ extB (K(X)∗),
(b) there exist y∗ ∈ extB(X∗) and x ∈ extB(X) such that f (T ) = y∗(T x) for every

T ∈ K(X).

It is possible that there is space X such that L(X)∗ = K(X)∗ ⊕1 K(X)⊥ where
K(X)⊥ := { f ∈ L(X)∗ : K(X) ⊂ ker f }. In this case, if ϕ = ϕ1+ϕ2 is the unique
decay of ϕ in L(X)∗, then ‖ϕ‖ = ‖ϕ1‖ + ‖ϕ2‖. This fact is referred to [4, p. 28]
(see also [3, Theorem 4]), where it was proved that L(X)∗ =K(X)∗⊕1K(X)⊥ when
X = (⊕∞

n=1 Xn
)
l p

or X = (⊕∞
n=1 Xn

)
c0
, with p ∈ (1,∞), dim Xn < ∞. In

particular, L(X)∗ = K(X)∗ ⊕1 K(X)⊥ if X = l p or X = c0, with p ∈ (1,∞).
Moreover, Lima has obtained the equalityL(L2(μ))∗ =K(L2(μ))∗⊕1K(L2(μ))⊥ for
some measure μ (see [3]). On the other hand, if p �= 2 and μ is not purely atomic,
then it is known that L(L p(μ))∗ �=K(L p(μ))∗⊕1K(L p(μ))⊥ (see [3, Theorem 11]).

If dim X < ∞, then the desired equalityL(X)∗ = K(X)∗⊕1K(X)⊥ holds trivially,
because in such a case, L(X) = K(X) and K(X)⊥ = {0}.

Recall that a smooth point x of the unit sphere of a Banach space X is defined by the
requirement that x∗(x) = 1 for a uniquely determined x∗ ∈ B(X∗), i.e., cardJ (x) = 1.
In this case the norm of X is Gâteaux differentiable at x with derivative x∗. We will
need a characterization of points of smoothness in the space of operators L(X) (cf.
[7]).
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Theorem 1.3 [7] Suppose that X = (⊕∞
n=1 Xn

)
l p

with p ∈ (1,∞), dim Xn < ∞
for some 1 < p < ∞. Then T is a smooth point of the unit sphere of L(X) if and only
if

(s1) inf{‖T + K‖ : K ∈ K(X)} < 1;
(s2) there is exactly one xo in the unit sphere of X (up to multiplication with scalars

of modulus 1) for which ‖T (xo)‖ = 1;
(s3) the point T xo is smooth.

2 Fredholm Equation

The following theorem can be considered as an extension of the Fredholm Alternative
(i.e., Theorem 1.1). We want to show that the assumption of compactness of operators
may be redundant (in some circumstances). It is more convenient to consider two
operator A, B instead of only one. We are ready to prove the main result of this
section.

Theorem 2.1 Assume that X is a reflexive smooth Banach space overK. Suppose that
L(X)∗ = K(X)∗ ⊕1 K(X)⊥. Let A, B ∈ L(X), ‖A‖·‖B‖ ≤ 1. Suppose that there is
an operator C ∈ K(X) such that ‖AB − C‖ < ‖AB‖. The following five conditions
are equivalent:

(a) I − AB is invertible;
(b) I − AB is surjective;
(c) I − AB is injective;
(d) I − AB has dense range;
(e) ‖I + AB‖ < 2.

Proof The implications (a)⇒(b)⇒(d) and (a)⇒(c) are immediate. First we prove
(e)⇒(a). We get

∥∥I− 1
2 (I − AB)

∥∥= 1
2 ‖I+AB‖ < 1, which means that 1

2 (I − AB)

is invertible. Therefore I − AB is invertible.
Now, we prove (c)⇒(e). Suppose that I − AB is injective. Assume, for a contra-

diction, that ‖I + AB‖ ≥ 2. From the inequalities 2 ≤ ‖I + AB‖ ≤ 1 + ‖AB‖ ≤
1 + ‖A‖·‖B‖ ≤ 2 we get

‖AB‖ = ‖A‖·‖B‖ and ‖I + AB‖ = 1 + ‖AB‖. (2.1)

Now, we prove that J (I + AB) ⊂ J (I ) ∩ J (AB). Let ϕ ∈ J (I + AB). This gives
ϕ ∈ L(X)∗, ϕ(I + AB) = ‖I + AB‖ and ‖ϕ‖ = 1. We will prove that ϕ(I ) = 1 and
ϕ(AB) = ‖AB‖. It follows that

1 + ‖AB‖ (2.1)= ‖I + AB‖ = ϕ(I + AB) = ϕ(I ) + ϕ(AB),

and |ϕ(I )| ≤ 1 and |ϕ(AB)| ≤ ‖AB‖. This clearly forces ϕ(I ) = 1 and ϕ(AB) =
‖AB‖ and, in consequences, the inclusion

J (I + AB) ⊂ J (I ) ∩ J (AB) (2.2)
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is true. The set J (I + AB) is convex. Furthermore, the set J (I + AB) is a nonempty
weak*-closed subset of weak*-compact unit ball B(L(X)∗). From this it follows that
J (I + AB) is weak*-compact. Applying the Krein-Milman Theoremwe see that there
exists μ ∈ extJ (I + AB). An easy computation shows that the set J (I + AB) is an
extremal subset of B(L(X)∗). Therfore

extJ (I + AB) ⊂ extB(L(X)∗),

and, in consequences, we get μ ∈ extB(L(X)∗).
Nowwe prove thatμ∈extB(K(X)∗). Recall thatL(X)∗ =K(X)∗⊕1K(X)⊥. From

this it may be concluded that

extB(L(X)∗) = extB(K(X)∗)⊕1{0} ∪ {0}⊕1extB(K(X)⊥).

Suppose that μ = μ1 + μ2 is the suitable decay of μ. Namely, we have
μ1∈K(X)∗, μ2∈K(X)⊥ and 1 = ‖μ‖=‖μ1‖+‖μ2‖. This implies that

μ = μ1 ∈ extB(K(X)∗) or μ = μ2 ∈ extB(K(X)⊥),

So it suffices to show that μ2 = 0. Assume, contrary to our claim, that μ = μ2 ∈
extB(K(X)⊥). Hence ‖μ2‖ = 1. From the assumption, we have that ‖AB − C‖ <

‖AB‖ and C ∈ K(X). It follows that

‖AB‖ = μ(AB) = μ2(AB) = μ2(AB) − 0 = μ2(AB) − μ(C) =
= μ2(AB − C) ≤ ‖AB − C‖ < ‖AB‖

and we obtain a contradiction. Thus we must have μ = μ1 ∈ extB(K(X)∗).
Therefore it follows from (2.2) and Theorem 1.2 that

μ(I+AB)= y∗(x+ABx) and μ(I )= y∗(I x)= y∗(x) and μ(AB)= y∗(ABx)

for some y∗ ∈ extB(X∗) and x ∈ extB(X).
This is summarized as follows:

y∗(x+ABx)=‖I+AB‖ and y∗(I x)=1 and y∗(ABx)=‖AB‖.

Then we have ‖I + AB‖ = y∗(x+ ABx) ≤ ‖x+ ABx‖ ≤ ‖I + AB‖ and ‖AB‖ =
y∗(ABx) ≤ ‖ABx‖ ≤ ‖AB‖. Thus we obtain the equalities:

‖x+ABx‖=‖I+AB‖ and ‖ABx‖=‖AB‖, (2.3)

whence M(AB) �= ∅.
From the above, we have ‖A‖·‖B‖=‖AB‖=‖ABx‖≤‖A‖·‖Bx‖≤‖A‖·‖B‖,

whence ‖Bx‖ = ‖B‖, and consequently x ∈ M(B), M(B) �= ∅. Furthermore, we
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obtain
∥∥∥A

(
Bx

‖Bx‖
)∥∥∥ = 1

‖Bx‖ ‖ABx‖ = 1
‖B‖ ‖AB‖ (2.1)= 1

‖B‖‖A‖·‖B‖ = ‖A‖, whence
Bx

‖Bx‖ ∈ M(A),M(A) �= ∅.
Combining (2.1) and (2.3), we immediately get

‖x + ABx‖ = ‖x‖ + ‖ABx‖. (2.4)

Using the properties of s.i.p., we obtain

‖A‖2 ·‖B‖2 = ‖AB‖2 = ‖ABx‖2 (sip4)= [ABx |ABx] =
= [Bx |A∗(ABx)]

(sip3)≤ ‖Bx‖·‖A∗(ABx)‖
(sip7)≤

≤ ‖Bx‖·‖A‖·‖ABx‖ ≤ ‖Bx‖·‖A‖·‖A‖·‖Bx‖ ≤ ‖A‖2 ·‖B‖2.

It follows from the above inequalities that

‖A∗(ABx)‖ = ‖A‖·‖A‖·‖Bx‖ (2.5)

and [Bx |A∗(ABx)]=‖Bx‖·‖A∗(ABx)‖, whence
[
Bx | A∗(ABx)‖A∗(ABx)‖

]
=‖Bx‖. There-

fore [
· | A∗(ABx)

‖A∗(ABx)‖
]

∈ J (Bx) .

On the other hand it is easy to verify that

[
· | Bx

‖Bx‖
]

∈ J (Bx) .

The Banach space X is smooth. Thus we get cardJ (Bx) = 1, whence

[
· | A∗(ABx)

‖A∗(ABx)‖
]

=
[

· | Bx

‖Bx‖
]

. (2.6)

Using again the properties of s.i.p., we obtain

‖x+ABx‖2 = [x+ABx |x+ABx] = [x |x+ABx] + [ABx |x+ABx]
(sip3)≤

≤ ‖x‖·‖x+ABx‖ + ‖ABx‖·‖x+ABx‖ =
= (‖x‖+‖ABx‖)·‖x+ABx‖ (2.4)=
=‖x+ABx‖ ·‖x+ABx‖ =‖x+ABx‖2

From the above, we have

[x |x+ABx]=‖x‖·‖x+ABx‖and [ABx |x+ABx]=‖ABx‖·‖x+ABx‖,
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whence [
x | x+ABx

‖x+ABx‖
]
=‖x‖and

[
ABx | x+ABx

‖x+ABx‖
]
=‖ABx‖.

Therefore,

[
· | x+ABx

‖x+ABx‖
]

∈ J (x) and

[
· | x+ABx

‖x+ABx‖
]

∈ J (ABx). (2.7)

On the other hand,

[ · |x] ∈ J (x) and

[
· | ABx

‖ABx‖
]

∈ J (ABx). (2.8)

Smoothness of X yields that cardJ (x) = 1 and cardJ (ABx) = 1. So, combining
(2.7) and (2.8), we immediately get

[
· | x+ABx

‖x+ABx‖
]

= [·|x] and

[
· | x+ABx

‖x+ABx‖
]

=
[
·| ABx

‖ABx‖
]

.

It follows from the above equalities that

[ · |x] =
[

· | ABx

‖ABx‖
]

. (2.9)

Fix y ∈ X . Finally, we deduce

‖B‖2 ·[Ay|x] (2.9)= ‖B‖2 ·
[
Ay| ABx

‖ABx‖
]

(2.3)= ‖B‖2 ·
[
Ay| 1

‖AB‖ ABx

]
=

(2.1)= ‖B‖2 ·
[
Ay| 1

‖A‖·‖B‖ ABx

]
(sip2)= ‖B‖

‖A‖ ·[Ay|ABx] =

= ‖B‖
‖A‖ ·[y|A∗(ABx)]

(2.6),(2.5)= ‖B‖
‖A‖ ·

[
y| ‖A‖2 ·Bx

]

and by (sip2) we have ‖B‖·[Ay|x] = ‖A‖·[y|Bx]. So we conclude that

∃x∈M(B) ∀y∈X : ‖B‖·[Ay|x] = ‖A‖·[y|Bx] . (2.10)

Putting Bx in place of y in the above equality we get

[ABx |x] (2.10)= ‖A‖
‖B‖ ·[Bx |Bx] = ‖A‖

‖B‖ ·‖Bx‖2 = ‖A‖
‖B‖ ·‖B‖2 ·‖x‖2 = [x |x] = 1

From the above, we have [ABx |x] = [x |x]. Since ‖AB‖ = ‖A‖ · ‖B‖ = 1, we
have [AB(·)|x] , [·|x] ∈ J (x). Smoothness of X yields that cardJ (x) = 1. So, we
immediately get

[AB(·)|x] = [·|x] . (2.11)
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Define Y := {y ∈ X : [y|x] = 1} ∩ B(X). By (2.11) we obtain AB(Y ) ⊂ Y . It is
known that AB : (X, weak)→ (X, weak) is continuous. It is easy to check that Y is
a closed convex subset of X . By a theorem of James, Y is a weak-compact subset. Let
us consider a function AB|Y : Y → Y . By the Schauder Fixed-Point Theorem, there
is a vector x1 in Y such that ABx1 = x1. That means 0 = (I−AB)x1 which implies
that also ker(I−AB) �={0}. Since I−AB was assumed injective, ker(I−AB) = {0},
a contradiction.

We prove (d)⇒(e). Suppose that I − AB has dense range. Assume, for a con-
tradiction, that ‖I + AB‖ ≥ 2. Using similar elementary techniques, one may prove
[AB(·)|x] = [·|x] for some x ∈ M(B), i.e., (2.11). Thus we have [(I − AB)y|x] = 0
for all y ∈ X . Since I − AB has dense range, x = 0 and we obtain a contradiction. ��

Careful reading of the proof of Theorem 2.1 (more precisely, the proof of (c)⇒(e))
shows that we can get the following.

Proposition 2.2 Let X, A, B,C be as in Theorem 2.1. Suppose that ‖A‖·‖B‖ = 1.
Then the following three statements are equivalent:

(i) ‖I + AB‖ = 2;
(ii) ∃x∈M(B) ∀y∈X : ‖B‖·[Ay|x] = ‖A‖·[y|Bx];
(iii) ∃x∈M(B) ∀y∈X : [AB(y)|x] = [y|x].
Proof In a similar way as in the proof of Theorem 2.1 (see the proof of (c)⇒(e))
we obtain the implications ‖I + AB‖ = 2 ⇒(2.10)⇒(2.11) and we may consider
(i)⇒(ii)⇒(iii) as shown. Finally, if (iii) holds, then

2 = [x |x] + [x |x] (iii)= |[x |x]+[ABx |x]| = |[x+ABx |x]| ≤
≤ ‖x+ABx‖· ‖x‖ ≤ ‖I+AB‖ ≤ 1+‖AB‖ ≤ 1+‖A‖·‖B‖ = 2

which yields ‖I + AB‖ = 1 + ‖A‖·‖B‖. Thus we get (iii)⇒(i). ��
We can add another proposition to our list.

Proposition 2.3 Let X be as in Theorem 2.1. Let E ∈ L(X), ‖E‖ ≤ 1. Suppose that
there is an operator C ∈ K(X) such that ‖E − C‖ < ‖E‖. Then the following three
statements are equivalent:

(i) ‖I + E‖ = 2;
(ii) ∃x∈M(E) ∀y∈X : [y|x] = [y|Ex];
(iii) ∃x∈B(X),‖x‖=1 ∀y∈X : [Ey|x] = [y|x].
Proof Putting I E in place of AB in the above proposition we get (i)⇔(ii). Putting
E I in place of AB in the above proposition we get (i)⇔(ii). ��

As an immediate consequence of Theorem 2.1, we have the following. Actually, it
is not necessary to assume that AB is a compact operator. In fact, it suffices to assume
reflexivity, smoothness and the two properties: L∗ =K∗⊕1K⊥, ‖A‖·‖B‖≤1.
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Theorem 2.4 Assume that X is a reflexive smooth Banach space. Suppose that
L(X)∗ =K(X)∗⊕1K(X)⊥. Let A, B ∈L(X) and ‖A‖·‖B‖ ≤ 1. Suppose that there
is an operator C ∈ K(X) such that ‖AB − C‖ < ‖AB‖. Then the following four
statements are equivalent:

(i) for every yo in X there is an unique u in X such that u − ABu = yo;
(ii) for every yo in X there is a u in X such that u − ABu = yo;
(iii) the only vector x such that x − ABx = 0 is x = 0;
(iv) ‖I + AB‖ < 2;

Proof It is clear that I − AB is invertible, [surjective, (injective)] if and only if (i)
holds , [(ii) holds, ((iii) holds)]. Now by applying Theorem 2.1 we arrive at the desired
assertion. ��

TheFredholmAlternative, togetherwithTheorem2.1, allowsus to give an extension
of Theorem 2.4.

Theorem 2.5 Let X be as in Theorem 2.1. Let A, B, D ∈ L(X). Suppose that 1 /∈
σp(AB) and ‖A‖ · ‖B‖ ≤ 1. Suppose that there is an operator C ∈ K(X) such
that ‖AB − C‖ < ‖AB‖. Suppose that AB − D ∈ K(X) Then the following three
statements are equivalent:

(i) for every yo in X there is an unique u in X such that u − Du = yo;
(ii) for every yo in X there is a w in X such that w − Dw = yo;
(iii) the only vector x such that x − Dx = 0 is x = 0.

Proof The implications (i)⇒(ii), (i)⇒(iii) are trivial, so we look first at (iii)⇒(i).
Assume that I − D is injective. Since I − AB is injective, we conclude that I − AB is
invertible (see Theorem 2.1). Suppose, for a contradiction, that I −D is not invertible.
Writing

I − D = (I − AB) + (AB − D),

we can assert that

I − D = (I − AB)
(
I + (I − AB)−1(AB − D)

)
. (2.12)

The operator I − AB is invertible and I − D is not invertible. Therefore, it follows
from (2.12) that

(
I + (I − AB)−1(AB − D)

)
is also not invertible. The operator (I −

AB)−1(AB−D) is compact. ByTheorem1.1, the operator I+(I−AB)−1(AB−D) is
not injective, and thus there is a vector c ∈ X\{0} such that c+(I−AB)−1(AB−D)c =
0. So, it is not difficult to check that c − Dc = 0. Hence ker(I − D) �= {0}, a
contradiction.

The proof of (ii)⇒(i) runs similarly, but it is presented here for the convenience.
Now suppose that I − D is surjective. Since I − AB is injective, whence (applying
again Theorem2.1) I−AB is a bijection. Suppose, for a contradiction, that I−D is not
invertible. In a similar way as in the proof of (ii)⇒(i) we obtain (2.12). The operator
I − AB is invertible and I − D is not invertible. Thus, it follows from (2.12) that I +
(I−AB)−1(AB−D) is also not invertible. Since the operator (I−AB)−1(AB−D) is
compact, this tells us that

(
I + (I − AB)−1(AB − D)

)
is not surjective (see Theorem
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1.1). Hence there exists a vector e ∈ X so that x + (I − AB)−1(AB − D)x �= e for
all x ∈ X . Now, it is easy to check that x − Dx �= e − ABe (for all x ∈ X ). Now we
have a contradiction: I − D is not surjective. The proof is complete. ��

3 An Application: Spectrum

As an application of the results in the previous section, we consider the notion of
a spectrum of an operator. Let T := {λ ∈ K : |λ| = 1}. We next explore some
consequences of Theorem 2.1.

Theorem 3.1 Let X, A, B,C be as in Theorem 2.1. Then

T ∩ σ(AB) = T ∩ σp(AB).

Proof Clearly, σp(AB) ⊂ σ(AB). Let us fix λ in T ∩ σ(AB). Then I − 1
λ
AB is not

invertible. According to Theorem 2.1 the operator I − 1
λ
AB is not injective. Thus

λ ∈ σp(AB) and so λ ∈ T ∩ σp(AB). ��
The following theorem was discovered by Weyl [8].

Theorem 3.2 [8] Suppose that H is a complex Hilbert space. If A ∈ L(H) and K is
a compact operator, then σ(A + K ) \ σp(A + K ) ⊂ σ(A).

It makes sense to replace the operator AB by AI . Some part of Theorem 3.2 can be
strengthen as follows.

Theorem 3.3 Let X be as in Theorem 2.1. Let A ∈ L(X), ‖A‖ = 1. Suppose that
there is an operator C ∈ K(X) such that ‖A − C‖ < 1. Then

T ∩ (σ (A + K ) \ σp(A + K )) ⊂ T ∩ σp(A),

for each compact operator K .

Proof Fix a number λ ∈ T. Assume that λ ∈ σ(A + K ) \ σp(A + K ). Suppose, for
a contradiction, that λ /∈ σp(A). Then I − 1

λ
A is injective. Define an operator D by

D := 1
λ
(A + K ). Since λ /∈ σp(A + K ), it follows that I − 1

λ
(A + K ) is injective;

this means that I − D is injective.
The inequality ‖A − C‖ < 1 implies

∥∥ 1
λ
A − 1

λ
C

∥∥ <
∥∥ 1

λ
A
∥∥. It is easy to see that

1
λ
A − D ∈ K(X). Moreover, we have 1 /∈ σp

( 1
λ
A
)
. Using Theorem 2.5 we see that

I − D is also invertible, so I − 1
λ
(A + K ) is invertible. Hence λ /∈ σ(A + K ). We

have our desired contradiction. ��
As a consequence of this result, we get a corollary.

Corollary 3.4 Let X, A be as in Theorem 3.3. Then

T ∩
⋃

K∈K(X)

(σ (A + K ) \ σp(A + K )) ⊂ T ∩ σp(A).
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In the following we will show how our knowledge on the smooth operators can be
used in order to characterize some points in the spectrum of bounded operator. Note
that the following applies to l p-spaces and, most particularly, to Hilbert spaces.

Proposition 3.5 Suppose that X = (⊕∞
n=1Xn

)
l p

with p ∈ (1,∞), dim Xn < ∞.

Suppose that the spaces Xn are smooth. Let A1, A2, B ∈ L(X), ‖A1‖ = ‖A2‖ =
‖B‖ = 1, ‖A1B + A2B‖ = 2. Assume that B is a smooth point of the unit sphere of
L(X). Suppose that A1, A2 are linearly independent. Then

T ∩ σ(A1B) ∩ σ(A2B) ⊂ T ∩ σp (αA1B + (1 − α)A2B)

for any α ∈ [0, 1].
Proof By assumption, X is smooth. It follows from Theorem 1.3 (condition (s1)) that,
with some K ∈ K(X), ‖B − K‖ < 1 = ‖B‖. Fix α ∈ [0, 1]. Fix λ ∈ T such that
λ ∈ σ(A1B) ∩ σ(A2B). We define A,C as follows: A := αA1 + (1 − α)A2 and
C := αA1K + (1 − α)A2K . Thus we have C ∈ K(X). We have A �= 0, because
A1, A2 are linearly independent.

Since ‖A1‖ = ‖A2‖ = ‖B‖ = 1 and
∥∥ 1
2 A1B + 1

2 A2B
∥∥ = 1 we see that ‖A1B‖ =

‖A2B‖ = 1. From this we conclude that ‖αA1B+(1−α)A2B‖ = 1. Hence ‖AB‖ =
1. We have

‖AB − C‖ = ‖αA1B + (1 − α)A2B − αA1K − (1 − α)A2K‖ ≤
≤ ‖αA1 + (1 − α)A2‖·‖B − K‖ < ‖αA1 + (1 − α)A2‖ · 1 ≤
≤ α‖A1‖ + (1 − α)‖A2‖ = 1 = ‖AB‖

so that ‖AB−C‖ < ‖AB‖. Since λ ∈ T∩σ(A1B)∩σ(A2B), it means that I− 1
λ
A1B,

I − 1
λ
A1B are not invertible.

We define C1,C2 as follows: C1 := A1K and C2 := A2K . Thus we have C1,C2 ∈
K(X). It follows easily that ‖A1B − C1‖ < 1 = ‖A1B‖ and ‖A2B − C2‖ < 1 =
‖A2B‖. Now we may apply Theorem 2.1 to conclude that

‖I + 1

λ
A1B‖ = 2, ‖I + 1

λ
A2B‖ = 2. (3.1)

Applying Theorem 1.3, we can find the unique vector xo in the unit sphere of X
(up to multiplication with scalars of modulus 1) for which ‖Bxo‖=1. In other words,
M(B) = {βxo : β ∈K, |β|=1}. Combining (3.1) with to Proposition 2.2 gives that

∀y∈X :
[
1

λ
A1B(y)|xo

]
= [y|xo] ,

[
1

λ
A2B(y)|xo

]
= [y|xo] . (3.2)

As an immediate consequence we see that

∀y∈X :
[
1

λ
(αA1B + (1 − α)A2B)(y)|xo

]
= [y|xo] . (3.3)
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Summarizing, we have proved 1
λ
C ∈K(X) and

∥∥∥∥1λ AB − 1

λ
C

∥∥∥∥ <

∥∥∥∥1λ AB

∥∥∥∥ , ∀y∈X :
[
1

λ
AB(y)|xo

]
= [y|xo] . (3.4)

Combining (3.4) and Proposition 2.2 we see that
∥∥I + 1

λ
AB

∥∥ = 2. It follows from
Theorem 2.1 ((c)⇔(e)) that I − 1

λ
AB is not injective. This means λ ∈ σp(AB) =

σp(αA1B + (1 − α)A2B), and the proof is complete. ��

4 Distance from Operator to Compact Operators

The problem of best approximation of bounded linear operators L(X) on a Banach
space X by compact operatorsK(X) has been of great interest in the twentieth century.
This section is a small sample of it.

Let L(H) be the algebra of all bounded operators on infinite-dimensional complex
Hilbert space H . An operator A ∈ L(H) is hyponormal if A∗A ≥ AA∗. Clearly every
hyponormal operator is normal. The interesting result on hyponormal operators may
be found in [1, Corollary 3.2].

Theorem 4.1 [1] If A ∈ L(H) is hyponormal and has no isolated eigenvalues of finite
multiplicity, then ‖A‖ ≤ ‖A + K‖, for each compact operator K .

As an immediate consequence of the above result, we deduce that if U ∈ L(l2) is the
unilateral shift, then dist(U,K(l2)) = 1. But, this fact can be obtained (or even more
generally) by using our next result.

Weprove somemodifications of Theorem4.1,where theHilbert space H is replaced
by a smooth Banach space X , and where the condition is satisfied for unit operator
only.

Theorem 4.2 Let X be as in Theorem 2.1. Let A ∈ L(X), ‖A‖ = 1. Suppose that

T ∩ (
σ(A) \ σp(A)

) �=∅.

Then dist(A,K(X)) = 1. In particular, ‖A‖ ≤ ‖A + K‖, for each compact operator
K ∈ L(X).

Proof Fix a number λ ∈ T ∩ (
σ(A) \ σp(A)

)
. Assume, for a contradiction, that

dist(A,K(X)) �= 1. Since λ /∈ σp(A), we see that I − 1
λ
A is injective. Since

dist(A,K(X))≤‖A−0‖=‖A‖= 1, we obtain dist(A,K(X))< ‖A‖. It follows that
dist

( 1
λ
A,K(X)

)
<

∥∥ 1
λ
A
∥∥. Hence, there is C ∈ K(X) such that

∥∥ 1
λ
A−C

∥∥ <
∥∥ 1

λ
A
∥∥.

Applying Theorem 2.1 (more precisely, (a)⇔(c)) we see that I−1
λ
A is invertible. This

is a contradiction, since λ∈σ(A). ��
Here a small application is given.

Corollary 4.3 If p ∈ (1,∞), define U ∈ L(l p) by U (x1, x2, . . .) := (0, x1, x2, . . .).
U (x1, x2, . . .) := (0, x1, x2, . . .). Then dist(U,K(l p)) = 1.
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Proof We know that σ(U ) = {λ ∈ K : |λ| ≤ 1}. It is easy to check that
σp(U ) = ∅. From this it follows that T ∩ (

σ(U ) \ σp(U )
) = T. By Theorem 4.2

we get dist(U,K(l p))=1. ��
Theorem 4.4 Let H be a (real or complex) Hilbert space. Suppose that T ∈ L(H)

is injective but not invertible. Let αβ ∈ (0,+∞) and −α
β

/∈ σ(T ). Let T satisfy

T + T ∗ ≥ 0. If Aα,β := (α I + βT )−1, then dist(Aα,β,K(H)) = 1
|α| . In particular,

Aα,β is a well-defined operator.

Proof First it must be shown that Aα,β is well defined. By assumption, −α /∈ βσ(T ).
This clearly forces 0 /∈ α+σ(βT ) = σ(α I +βT ). From this we deduce that α I +βT
is invertible. So Aα,β is a well-defined operator.

We want to show that ‖A‖ = 1
|α| . By assumption, βT is not invertible, and hence

0 ∈ σ(βT ). From this it follows that α ∈ α + σ(βT ), and thus α ∈ σ(α I + βT ) =
σ(A−1

α,β). So we conclude that 1
α

∈ σ(Aα,β) and hence 1
|α| ≤ ‖Aα,β‖.

Let x be an arbitrary unit vector in H . Thus we have

1 = ‖x‖2 = ‖A−1
α,β(Aα,βx)‖2 = ‖(α I+βT )(Aα,βx)‖2 =

= ‖αAα,βx+βT (Aα,βx)‖2= 〈
αAα,βx+βT (Aα,βx)|αAα,βx+βT (Aα,βx)

〉 =
= |α|2 ·‖Aα,βx‖2+αβ

〈
T (Aα,βx)|Aα,βx

〉+αβ
〈
Aα,βx |T (Aα,βx)

〉 +
+ ‖βT (Aα,βx)‖2 =(αβ∈(0,∞), so αβ=αβ)

= |α|2 ·‖Aα,βx‖2+αβ
〈
T (Aα,βx)|Aα,βx

〉+αβ
〈
T ∗(Aα,βx)|Aα,βx

〉 +
+ ‖βT (Aα,βx)‖2 ≥

≥ |α|2 ·‖Aα,βx‖2+αβ
〈
(T + T ∗)(Aα,βx)|Aα,βx

〉 (T+T ∗≥0)≥ |α|2 ·‖Aα,βx‖2.

We obtain ‖Aα,βx‖ ≤ 1
|α| . Passing to the supremum over ‖x‖ = 1 we get ‖Aα,β‖ ≤

1
|α| . Therefore ‖Aα,β‖ = 1

|α| .
We next show that dist(Aα,β,K(H)) = 1

|α| . It suffices to show that dist

(αAα,β,K(H)) = 1. Recalling that 1
α

∈ σ(Aα,β), we see that 1 ∈ σ(αAα,β).
We want to show that 1 /∈ σp(αAα,β). Assume, for a contradiction, that αAα,βw =

w for some w ∈ H \ {0}. Thus

αw = A−1
α,βw = (α I+βT )w = αw + βTw.

It follows that Tw = 0. As T is injective we have w = 0. This is a contradiction.
Thus 1 /∈ σp(αAα,β). Finally, we deduce that 1 ∈ σ(αAα,β) \ σp(αAα,β).

This gives T ∩ (σ (αAα,β) \ σp(αAα,β)) �= ∅. Applying Theorem 4.2, we see that
dist(αAα,β,K(H)) = 1. ��

If H is a complex Hilbert space and T ∈ L(H) such that 〈T x |x〉 = 0 for all x in
H , then T = 0. This is not true for real Hilbert spaces. For example, let U ∈ L(R2)

be the linear operator given by U (x, y) := (−y, x). Then we we have 〈Ux |x〉 = 0
for all x in H However, U �= 0. So it makes sense to consider the following result.
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Corollary 4.5 Let H be a real Hilbert space. Suppose that T ∈L(H) is injective but
not invertible. Let αβ ∈ (0,+∞) and −α

β
/∈σ(T ). Let T satisfy 〈T x |x〉 = 0 for all x

in H. If Aα,β := (α I + βT )−1, then dist(Aα,β,K(H)) = 1
|α| .

Proof Fix x ∈ H . It follows that 〈(T+T ∗)x |x〉 = 〈T x |x〉+〈x |T ∗x〉 = 〈T x |x〉+
〈T x |x〉 = 0 ≥ 0. Theorem 4.4 now leads to dist(Aα,β,K(H)) = 1

|α| . ��

5 An Application: System of Linear Equations

Systems of linear equations (such as (5.1)) arise in a number of physical problems.
In this section we will discuss solutions of such system by relating the system to a
certain noncompact operator.

Theorem 5.1 Suppose that X =(⊕∞
n=1Xn

)
l p
with p∈(1,∞), dim Xn <∞. Suppose

that the spaces Xn are smooth. Let A ∈ L(X), K ∈ K(X) be nonvanishing operators
with ‖A‖p + ‖K‖p ≤ 1, ‖A‖ < ‖K‖. Let us consider the system of linear equations:

{
x1 − Ax2 = y1,
Kx1 − x2 = y2.

(5.1)

The following three statements are equivalent:

(a) for every y1, y2 in X there is an unique solution x1, x2∈ X of (5.1);
(b) for every y1, y2 in X there is a solution x1, x2∈ X of (5.1);

(c) the only vectors x1, x2 such that

{
x1−Ax2=0
Kx1−x2=0

are x1=0= x2.

Proof We define A ⊕p K ∈ L(X ⊕p X) by the formula (A ⊕p K )(u1, u2) :=
(A(u1), K (u2)). It is not difficult to show that ‖A ⊕p K‖ = ‖K‖ ≤ 1 and 0 ⊕p K ∈
K(X ⊕p X) and

‖A ⊕p K − 0 ⊕p K‖ = ‖A ⊕p 0‖ = ‖A‖ < ‖K‖ = ‖A ⊕p K‖.

Thus we have ‖A⊕p K −0 ⊕p K‖ < ‖A⊕p K‖. Moreover, X⊕p X = (⊕∞
n=1Yn

)
l p
,

Yn ∈ {Xk : k ∈ N} andL(X⊕pX)∗ = K(X⊕pX)⊕1K(X⊕pX)⊥. Applying Theorem
2.4 again, this time to A ⊕p K , we obtain (a)⇔(b)⇔(c). ��

6 Remarks: Invertibility

Let E ∈ L(X), where X is a Banach space. It is standard that if ‖I − E‖ < 1, then
E is invertible. The converse does not hold in general. We prove that under certain
conditions it is true. We end this paper with a simple result. However, a few words
motivating the proof are appropriate. Let us consider the operator T := 1

2 (I−AB). If
‖A‖·‖B‖ < 1, then

‖I−T ‖=
∥∥∥∥I− 1

2
I+ 1

2
AB

∥∥∥∥= 1

2
‖I+AB‖≤ 1

2
(1+‖A‖·‖B‖) < 1,
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which means that T is invertible. So the assumption ‖A‖·‖B‖ ≤ 1 makes the invert-
ibility problem more interesting. In particular, the implication (b)⇒(a) (in Theorem
6.1) seem to be amazing.

Proposition 6.1 Let X, A, B,C be as in Theorem 2.1. If T := 1
2 (I −AB), then the

following three statements are equivalent:

(a) ‖I − T ‖ < 1;
(b) T is invertible.

Proof It is easy to check that ‖I + AB‖ < 2 if and only if ‖I − T ‖ < 1. It is clear
that I − AB is invertible if and only if T is invertible. Applying Theorem 2.1 we at
the desired conclusion. ��
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