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Abstract. For the sparse signal reconstruction problem in compressive
sensing, we propose a projection-type algorithm without any backtrack-
ing line search based on a new formulation of the problem. Under suit-
able conditions, global convergence and its linear convergence of the
designed algorithm are established. The efficiency of the algorithm is
illustrated through some numerical experiments on some sparse signal
reconstruction problem.
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1. Introduction

A basic mathematical problem in compressive sensing (CS) is to recover a
sparse signal vector x ∈ Rn from an undetermined linear system y = Ax,
where A ∈ Rm×n (m � n) is the sensing matrix. A fundamental decoding
model in CS is the following basis pursuit denoising problem, which can be
mathematically formulated as

min
x∈Rn

1
2
‖Ax − y‖22 + ρ‖x‖1, (1.1)

where ρ > 0 is the regularization parameter and ‖x‖1 is the �1-norm of the
vector x, i.e., ‖x‖1 =

∑n
i=1 |xi|. For more information, see e.g.[6–8,13,18,21,

23,27,30,32,33,38,40,47,50,52–55,57,64,69–72].Throughout this paper, we
assume that the solution set of (1.1) is nonempty.

Obviously, function ‖x‖1 is convex although it is not differential. For
convex optimization problem (1.1), there are some standard methods such
as smooth Newton-type methods and interior-point methods for solving the
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problem [2,15,19,22,25,28,29,37,43,44,46,48,49,51,60,63,65]. Candès et al.
[3] developed a novel method for sparse signal recovery for more generic
�1−minimization. Yin et al. [66] proposed an efficient method for solving the
�1-minimization problem based on Bregman iterative regularization. Hale et
al. [16] presented a framework for solving the large-scale �1-regularized convex
minimization problem based on operator splitting and continuation. However,
these solvers are not tailored for large-scale cases of CS and they become
inefficient as dimension n increases. To overcome this drawback, Figueiredo
et al. [14] proposed a gradient projection-type algorithm with a backtracking
line search for box-constrained quadratic programming formulation of (1.1).
A similar algorithm based on conjugate gradient technique is proposed by
Xiao and Zhu [61]. For more detail, see [4,5,9–12,17,20,24,26,31,34,36,39,
41,42,56,58,59,62,68]. Due to the high computing cost of the line search
procedure, we propose a new type of projection algorithm for problem (1.1)
without line search at each iteration in this paper which marginally decrease
the computing cost of the algorithm.

The remainder of this paper is organized as follows. Some equivalent
reformulations of problem (1.1) are established in Sect. 2. In Sect. 3, we
propose a new projection-type algorithm without line search, and establish
the global convergence of the new algorithm and its linear convergence rate.
In Sect. 4, some numerical experiments on compressive sensing are given to
illustrate the efficiency of the proposed method. Some concluding remarks
are drawn in Sect. 5.

To end this section, some notations used in this paper are in order.
We use Rn

+ to denote the nonnegative quadrant in Rn, and use x+ to de-
note the orthogonal projection of vector x ∈ Rn onto Rn

+, that is, (x+)i :=
max{xi, 0}, 1 ≤ i ≤ n; the norm ‖ · ‖ and ‖ · ‖1 denote the Euclidean 2-norm
and 1-norm, respectively.

2. New formulation and algorithm

To propose a new projection-type algorithm for problem (1.1), we first estab-
lish a new equivalent reformulation. To this end, we define two nonnegative
auxiliary variables μi and νi (i = 1, 2, . . . , n) such that

μi + νi = |xi|, μi − νi = xi, i = 1, 2, . . . , n.

Then, problem (1.1) can be reformulated as

min
(μ;ν)∈R2n

1
2‖(A,−A)(μ; ν) − y‖22 + ρ(e�, e�)(μ; ν)

s.t. (μ; ν) ≥ 0,
(2.1)

where e ∈ Rn denotes the vector with all entries being 1, i.e., e = (1, 1, . . . , 1)�.
Based on this, the problem can be simplified as

min f(μ; ν) = 1
2 [(μ; ν)�M(μ; ν) − 2p�(μ; ν) + y�y]

s.t.(μ; ν) ∈ R2n
+ ,

(2.2)

where M = (A,−A)�(A,−A), p = (A,−A)�y − ρ(e�, e�)�.
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Obviously, the Hessian matrix M of the quadratic function f(μ; ν) is
positive semi-definite. By the optimization theory [1], we know that the sta-
tionary point of (2.2) coincides with its solution which also coincides with the
solution set of the following linear variational inequality problem of finding
(μ; ν)∗ ∈ R2n

+ satisfying

((μ; ν) − (μ; ν)∗)�(M(μ; ν)∗ − p) ≥ 0, ∀(μ; ν) ∈ R2n
+ . (2.3)

Obviously, the solution set of (2.3), denoted by Ω∗, is nonempty provided
that the solution of (1.1) is nonempty.

To proceed, we give the definition of projection operator and some re-
lated properties. For a nonempty closed convex set K ⊂ Rn and vector
x ∈ Rn, the orthogonal projection of x onto K, i.e., arg min{‖y −x‖|y ∈ K},
is denoted by PK(x).

Proposition 2.1 [1,67]. Let K be a closed convex subset of Rn. For any x, y ∈
Rn and z ∈ K, the following statements hold.

(i) 〈PK(x) − x, z − PK(x)〉 ≥ 0;
(ii) ‖PK(x) − PK(y)‖2 ≤ ‖x − y‖2 − ‖(PK(x) − x) − (PK(y) − y)‖2;
(iii) ‖PK(x) − x‖2 ≤ ‖x − z‖2 − ‖PK(x) − z‖2.

For problem (2.3) and (μ; ν) ∈ R2n, define the projection residue

r((μ; ν), β) := (μ; ν)−PR2n
+

((μ; ν)−βF (μ; ν)) = min{(μ; ν), βF (μ; ν)}, (2.4)

where β > 0 is a constant, F (μ; ν) = M(μ; ν) − p.
The projection residue is intimately related to the solution of (2.3) as

shown in the following conclusion [35].

Proposition 2.2. (μ; ν)∗ is a solution of (2.3) if and only if r((μ; ν)∗, β) = 0
with some β > 0.

Proposition 2.3. For H = {(μ; ν) ∈ R2n | α�(μ; ν) − b ≤ 0} and any z /∈ H,
it holds that

PH(z) = z − α�z − b

‖α‖2 α, (2.5)

where z, α ∈ R2n, α �= 0, b ∈ R.

Based on the discussion above, we may formally state our algorithm.
Algorithm 3.1.

Step 0. Select any 0 < β < 1
‖M‖ , t ∈ [0, 1], (μ; ν)0 ∈ R2n. Let k := 0.

Step 1. Compute

zk = {(μ; ν)k − βF ((μ; ν)k)}+. (2.6)

If ‖r((μ; ν)k, β)‖ = 0, stop. Otherwise, go to Step 2.
Step 2. Compute

(μ; ν)k+1 = PHk
((μ; ν)k − βd((μ; ν)k)), (2.7)

where
Hk := {(μ; ν) ∈ R2n | [r((μ; ν)k, β) − βF ((μ; ν)k)]�[(μ; ν) − zk] ≤ 0}, (2.8)

d((μ; ν)k) =
t

β
[r((μ; ν)k, β) − βF ((μ; ν)k)] + F (zk). (2.9)
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Step 3. Go to Step 1 by setting k := k + 1.

In the algorithm, vector (μ; ν)k+1 is updated as follows: If

[(μ; ν)k − βd((μ; ν)k) − zk]�[r((μ; ν)k, β) − βF ((μ; ν)k)] ≤ 0,

then (μ; ν)k − βd((μ; ν)k) ∈ Hk and we set

(μ; ν)k+1 = (μ; ν)k − βd((μ; ν)k); (2.10)

otherwise, r((μ; ν)k, β) − βF ((μ; ν)k) �= 0 and we set
(μ; ν)k+1 = [(μ; ν)k − βd((μ; ν)k)]

− [(μ;ν)k−βd((μ;ν)k)−zk]�[r((μ;ν)k,β)−βF ((μ;ν)k)]

‖r((μ;ν)k,β)−βF ((μ;ν)k)‖2 [r((μ; ν)k, β) − βF ((μ; ν)k)]

= [(μ; ν)k − βd((μ; ν)k)]

− [r((μ;ν)k,β)−βd((μ;ν)k)]�[r((μ;ν)k,β)−βF ((μ;ν)k)]

‖r((μ;ν)k,β)−βF ((μ;ν)k)‖2 [r((μ; ν)k, β) − βF ((μ; ν)k)].

(2.11)
For the half space Hk, we claim that R2n

+ ⊆ Hk. In fact, for any (μ; ν) ∈
R2n

+ and x = (μ; ν)k − βF ((μ; ν)k), z = (μ; ν), by Proposition 2.3, one has

[r((μ; ν)k, β) − βF ((μ; ν)k)]�[(μ; ν) − zk] = [(μ; ν)k

−βF ((μ; ν)k) − zk]�[(μ; ν) − zk] ≤ 0.

Thus, (μ; ν) ∈ Hk.

3. Convergence

To establish the convergence and convergence rate of Algorithm 3.1, we need
the following conclusions.

Lemma 3.1. For zk and d((μ; ν)k) defined in Algorithm 3.1, it holds that

〈zk − (μ; ν)∗, d((μ; ν)k)〉 ≥ 0, (3.1)

where (μ; ν)∗ ∈ Ω∗.

Proof. Since matrix M is positive semi-definite, one has

(F (zk) − F ((μ; ν)∗))�(zk − (μ; ν)∗) = (zk − (μ; ν)∗)�M(zk − (μ; ν)∗) ≥ 0.

Combining this with (2.3) yields

F (zk)�(zk − (μ; ν)∗) ≥ 0. (3.2)

Then, by Proposition 2.1 (i), a direct computation gives

〈zk − (μ; ν)∗, d((μ; ν)k)〉 = 〈zk − (μ; ν)∗, F (zk)〉

+

〈

zk − (μ; ν)∗,
t

β
[r((μ; ν)k, β) − βF ((μ; ν)k)]

〉

≥ t

β
〈zk − (μ; ν)∗, r((μ; ν)k, β) − βF ((μ; ν)k)〉

=
t

β
〈zk − (μ; ν)∗, (μ; ν)k − βF ((μ; ν)k) − zk〉 ≥ 0.

�
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Lemma 3.2. Suppose that Algorithm 3.1 generates an infinite sequence {(μ; ν)k}.
Then, for any (μ; ν)∗ ∈ Ω∗, it holds that

‖(μ; ν)k+1 − (μ; ν)∗‖2 ≤ ‖(μ; ν)k − (μ; ν)∗‖2 − (1 − β2‖M‖2)‖r((μ; ν)k, β)‖2.
(3.3)

Proof. By a direct computation, one has

‖(μ; ν)k+1 − (μ; ν)∗‖2

= ‖PHk
((μ; ν)k − βd((μ; ν)k)) − (μ; ν)∗‖2

≤ ‖(μ; ν)k − βd((μ; ν)k) − (μ; ν)∗‖2

−‖PHk
((μ; ν)k − βd((μ; ν)k)) − [(μ; ν)k − βd((μ; ν)k)]‖2

= ‖[(μ; ν)k − (μ; ν)∗] − βd((μ; ν)k)‖2

−‖[(μ; ν)k+1 − (μ; ν)k] + βd((μ; ν)k)]‖2

= ‖(μ; ν)k − (μ; ν)∗‖2 − 2β〈(μ; ν)k − (μ; ν)∗, d((μ; ν)k〉 + β2‖d((μ; ν)k‖2

−[‖(μ; ν)k − (μ; ν)k+1‖2 − 2β〈(μ; ν)k − (μ; ν)k+1, d((μ; ν)k〉 + β2‖d((μ; ν)k)‖2

= ‖(μ; ν)k − (μ; ν)∗‖2 − 2β〈(μ; ν)k+1 − (μ; ν)∗, d((μ; ν)k〉 − ‖(μ; ν)k − (μ; ν)k+1‖2

= ‖(μ; ν)k − (μ; ν)∗‖2 − ‖(μ; ν)k − (μ; ν)k+1‖2

−2β〈(μ; ν)k+1 − zk + zk − (μ; ν)∗, d((μ; ν)k〉
= ‖(μ; ν)k − (μ; ν)∗‖2 − ‖(μ; ν)k − (μ; ν)k+1‖2

−2β〈(μ; ν)k+1 − zk, d((μ; ν)k〉 − 〈zk − (μ; ν)∗, d((μ; ν)k〉
≤ ‖(μ; ν)k − (μ; ν)∗‖2 − ‖(μ; ν)k − (μ; ν)k+1‖2

−2β〈(μ; ν)k+1 − zk, d((μ; ν)k〉
= ‖(μ; ν)k − (μ; ν)∗‖2 − ‖(μ; ν)k − zk + zk − (μ; ν)k+1‖2

−2β〈(μ; ν)k+1 − zk,
t

β
[r((μ; ν)k, β) − βF ((μ; ν)k)] + F (zk)〉

= ‖(μ; ν)k − (μ; ν)∗‖2 − ‖(μ; ν)k − zk‖2 − ‖zk − (μ; ν)k+1‖2

−2〈(μ; ν)k − zk, zk − (μ; ν)k+1〉

−2β

〈

(μ; ν)k+1 − zk,
t

β
[r((μ; ν)k, β) − βF ((μ; ν)k)] + F (zk)

〉

= ‖(μ; ν)k − (μ; ν)∗‖2 − ‖(μ; ν)k − zk‖2 − ‖zk − (μ; ν)k+1‖2

−2β

〈

(μ; ν)k+1 − zk,
t

β
r((μ; ν)k, β) − tF ((μ; ν)k) + F (zk) − 1

β
r((μ; ν)k, β)

〉

= ‖(μ; ν)k − (μ; ν)∗‖2 − ‖(μ; ν)k − zk‖2 − ‖zk − (μ; ν)k+1‖2

−2(t − 1)〈(μ; ν)k+1 − zk, r((μ; ν)k, β) − βF ((μ; ν)k)〉
−2〈(μ; ν)k+1 − zk, r((μ; ν)k, β) − βF ((μ; ν)k)〉
−2〈(μ; ν)k+1 − zk, −r((μ; ν)k, β) + βF (zk)〉

≤ ‖(μ; ν)k − (μ; ν)∗‖2 − ‖(μ; ν)k − zk‖2 − ‖zk − (μ; ν)k+1‖2

+2〈zk − (μ; ν)k+1, β(F (zk) − F ((μ; ν)k))〉
≤ ‖(μ; ν)k − (μ; ν)∗‖2 − ‖(μ; ν)k − zk‖2 − ‖zk − (μ; ν)k+1‖2

+2‖zk − (μ; ν)k+1‖‖β(F (zk) − F ((μ; ν)k))‖
≤ ‖(μ; ν)k − (μ; ν)∗‖2 − ‖(μ; ν)k − zk‖2 − ‖zk − (μ; ν)k+1‖2

+‖zk − (μ; ν)k+1‖2 + (β‖F (zk) − F ((μ; ν)k)‖)2
≤ ‖(μ; ν)k − (μ; ν)∗‖2 − ‖(μ; ν)k − zk‖2 + β2‖M‖2‖zk − (μ; ν)k‖2
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= ‖(μ; ν)k − (μ; ν)∗‖2 − (1 − β2‖M‖2)‖r((μ; ν)k, β)‖2,

where the first equality follows from (2.7), the first inequality follows from
Proposition 2.1, the second inequality follows from (3.1), the third inequality
follows from the fact that (μ; ν)k+1 ∈ Hk, and the fourth inequality uses the
Cauchy–Schwarz inequality. �

Now, we are at the position to state our main results in this section.

Theorem 3.1. Suppose that Algorithm 3.1 generates an infinite sequence
{(μ; ν)k}, and the solution set of (1.1) is nonempty. Then, sequence {(μ; ν)k}
converges to a solution of (2.3).

Proof. From (3.3), one has

‖(μ; ν)k+1 − (μ; ν)∗‖2 ≤ ‖(μ; ν)k − (μ; ν)∗‖2. (3.4)

Therefore, the sequence {‖(μ; ν)k − (μ; ν)∗‖} is non-increasing and bounded.
Hence, it converges. Consequently,

lim
k→∞

‖r((μ; ν)k, β)‖2
≤ lim

k→∞
1

(1−β2‖M‖2) [‖(μ; ν)k − (μ; ν)∗‖2 − ‖(μ; ν)k+1 − (μ; ν)∗‖2] = 0.

(3.5)
Thus, the sequence {(μ; ν)k} is bounded. Therefore, there exists convergent
subsequence of {(μ; ν)k}. The subsequence is denoted by {(μ; ν)kj} and its
limit by (μ̂; ν̂). Then

‖r((μ̂; ν̂), β)‖2 = lim
j→∞

‖r((μ; ν)kj , β)‖2 = 0. (3.6)

Hence, (μ̂; ν̂) is a solution of (2.3).
Set (μ; ν)∗ = (μ̂; ν̂) in (3.3). Then, the sequence {‖(μ; ν)k − (μ̂; ν̂)‖}

converges. Since (μ̂; ν̂) is a limit point of subsequence {(μ; ν)kj}, it follows
that ‖(μ; ν)k − (μ̂; ν̂)‖ converges to zero, i.e., that {(μ; ν)k} converges to
(μ̂; ν̂) ∈ Ω∗. The desired result follows. �

Theorem 3.2. The sequence {xk} terminates in a finite number of steps at
or converges globally to a solution of (1.1).

Proof. Assume that the sequence {(μ; ν)k} terminates in a finite number of
steps at a solution of (2.3). Obviously, the sequence {xk} terminates in a
finite number of steps to a solution of (1.1).

In the following analysis, we assume that the sequence {(μ; ν)k} is an
infinite sequence. From Theorem 3.1, we know that

lim
k→∞

(μ; ν)k = (μ̂; ν̂). (3.7)

Let x̂ = μ̂ − ν̂. Then a direct computation gives

‖xk − x̂‖ = ‖(μk − νk) − (μ̂ − ν̂)‖
≤ ‖(μk − μ̂)‖ + ‖(νk − ν̂)‖
≤ ‖(μk − μ̂)‖1 + ‖(νk − ν̂)‖1
= ‖(μk − μ̂; νk − ν̂)‖1
≤ √

2n‖(μk − μ̂; νk − ν̂)‖ → 0(as k → ∞),

(3.8)
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where the second and third inequalities use the fact that

‖x‖ ≤ ‖x‖1 ≤ √
n‖x‖,∀x ∈ Rn.

Thus, the sequence {xk} converges globally to a solution of (1.1). �

For (2.3), by a similar analysis to the proof of Theorem 4.1 in [45], we
can obtain the following result.

Lemma 3.3. For any (μ; ν) ∈ R2n, Then, there exist constant η̂ > 0 and
(μ; ν)∗ ∈ Ω∗ such that

‖(μ; ν) − (μ; ν)∗‖ ≤ η̂{m(μ; ν) + m(μ; ν)
1
2 }, (3.9)

where m(μ; ν) = ‖[−(μ; ν)]+‖ + ‖[−βF (μ; ν)]+‖ + β[(μ; ν)�F (μ; ν)]+.

Theorem 3.3. Suppose that 0 < 1−β2‖M‖2

τ2 < 1 holds. Then, the sequence
{(μ; ν)k} converges to a solution of (2.3) linearly, where (μ; ν)k is generated
by Algorithm 3.1.

Proof. From Theorem 3.1, one has

lim
k→∞

(μ; ν)k = (μ̂; ν̂).

Hence, we can take (μ; ν)∗ = (μ̂; ν̂) in (3.3). Thus,

‖(μ; ν)k+1 − (μ̂; ν̂)‖2 ≤ ‖(μ; ν)k − (μ̂; ν̂)‖2 − (1 − β2‖M‖2)‖r((μ; ν)k, β)‖2.
(3.10)

(3.7) yields
‖(μ; ν)k − (μ̂; ν̂)‖ ≤ τ‖r((μ; ν), β)‖. (3.11)

Then by (3.10) and (3.11), one has

‖(μ; ν)k+1 − (μ̂; ν̂)‖2 ≤ ‖(μ; ν)k − (μ̂; ν̂)‖2 − 1−β2‖M‖2

τ2 ‖(μ; ν)k − (μ̂; ν̂)‖2
= [1 − 1−β2‖M‖2

τ2 ]‖(μ; ν)k − (μ̂; ν̂)‖2.
(3.12)

i.e.,

‖(μ; ν)k+1 − (μ̂; ν̂)‖2
‖(μ; ν)k − (μ̂; ν̂)‖2 ≤ 1 − 1 − β2‖M‖2

τ2
.

Since 0 < 1−β2‖M‖2

τ2 < 1, one has 0 < 1 − 1−β2‖M‖2

τ2 < 1. The desired result
follows. �

4. Numerical experiments

In this section, we provide some numerical tests to show the efficiency of the
proposed method. In our numerical experiment, we set ρ = 0.01, n = 211,
m = floor(n/a), k = floor(m/b), and the measurement matrix A is generated
by Matlab scripts:

[Q, R]=qr(A’,0); A=Q’.
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Table 1. Comparison of Algorithm 3.1 with CGD for σ = 0.001

a b Algorithm 3.1 CGD

Time Iter RelErr Time Iter RelErr

4 8 9.5473 416 0.0483 14.7015 220 0.0504
3 9 6.4116 292 0.0308 9.3445 136 0.0361
2 10 3.9780 189 0.0218 8.8141 133 0.0218

Table 2. Comparison of Algorithm 3.1 with CGD for σ = 0.01

a b Algorithm 3.1 CGD

Time Iter RelErr Time Iter RelErr

4 8 8.3149 403 0.0418 15.9589 228 0.0418
3 9 6.1776 288 0.0283 10.1869 155 0.0283
2 10 4.8360 195 0.0209 5.9124 97 0.0527

The original signal x̄ is thus generated by
p=randperm(n); x(p(1:k))=randn(k,1), and the observed signal y is gen-
erated by y = Ax̄ + n̄, where n̄ is generated by a standard Gaussian distri-
bution N(0, 1) and then it is normalized to the norm σ = 0.01 or 0.001. In
our numerical experiments, the stopping criterion is

‖fk − fk−1‖
‖fk−1‖ < 10−5,

where fk denotes the objective value of (1.1) at iteration xk. For Algo-
rithm 3.1, we set t = 0.4, β = 0.8/‖M‖. In addition, the initial points
μ0 = max{0, A�y}, ν0 = max{0,−A�y}. For the conjugate gradient de-
scent (denoted by CGD) method proposed recently by Xiao and Zhu in [61],
we set ξ = 10, σ = 10−4 and ρ = 0.5 in the line search (2.9) of CGD, and
the initial points μ0, ν0 are set the same as Algorithm 3.1. In each test, we
calculate the relative error

RelErr =
‖x̃ − x̄‖

‖x̄‖ ,

where x̃ denotes the recovery signal.
The numerical results are reported in Tables 1 and 2 from which we can

see that Algorithm 3.1 is much better than CGD method for all σ and (a, b).

5. Conclusion

In this paper, we proposed a new projection-type algorithm for solving the
compressive sensing (CS) without the backtracking line search. Its global
convergence and linear convergence rate were established. Some numerical
results were provided to illustrate the efficiency of the proposed method.
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