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Abstract Supramolecular assemblies (PS-b-P4VP
(AzoR)) are fabricated by hydrogen-bonding azobenzene
derivatives (AzoR) to poly(4-vinyl pyridine) blocks of
polystyrene-block-poly(4-vinyl pyridine) (PS-b-P4VP).
PS-b-P4VP(AzoR) forms phase separated nanostructures
with a period of ~75-105 nm. A second length scale
structure with a period of 2 um is fabricated on phase
separated PS-b-P4VP(AzoR) by laser interference abla-
tion. Both the concentration and the substituent of AzoR in
PS-b-P4VP(AzoR) affect the laser ablation process. The
laser ablation threshold of PS-b-P4VP(AzoR) decreases as
the concentration of AzoR increases. In PS-b-P4VP(AzoR)
with different substituents (R = CN, H, and CHs), ablation
thresholds follow the trend: PS-b-P4VP(AzoCN) < PS-b-
P4VP(AzoCH3) < PS-b-P4VP(AzoH). This result indi-
cates that the electron donor group (CHs) and the electron
acceptor group (CN) can lower the ablation threshold of
PS-b-P4VP(AzoR).

Keywords laser ablation, block copolymers, hydrogen-
bond, azobenzene derivatives, supramolecular assembly

1 Introduction

The interaction of high energy lasers with polymers can
result in ablation of polymers at irradiated areas [1-11].
Laser ablation is a quick and efficient method to fabricate
microstructures and devices on polymers because struc-
tures can be generated by a single laser pulse at a time scale
of nanosecond or even shorter [1,3-5,10,11]. Ablated
structures on polymers show many applications, such as

Received February 12, 2018; accepted April 10, 2018

E-mails: huangyouju@mpip-mainz.mpg.de (Huang Y), wusi@mpip-
mainz.mpg.de (Wu S)

superhydrophobic surfaces [6], multichip modules [7],
distributed feedback lasers [4], inkjet printer nozzles [§],
and diffractive optical elements [5].

Although laser ablation of polymers is extensively
studied and shows many applications, studies on laser
ablation of block copolymers (BCPs) are rare [9]. BCPs
can form various microphase separated nanostructures
[12]. The self-assembly of block copolymers is a
promising platform for the fabrication of nanostructured
materials and devices [13-20]. We previously reported that
BCPs can be hierarchically structured by combining phase
separation with laser interference ablation [10]. Shorter
length scale structures of the hierarchical structures are
phase separated nanostructures and longer length scale
structures are interference patterns generated by laser
ablation [10]. However, there is a lack of fundamental
understanding of laser ablation of block copolymers.
Understanding laser ablation of BCPs is helpful for the
design of BCPs which can be effectively ablated and
patterned. Additionally, lowering ablation thresholds of
BCPs is important because low thresholds can increase the
ablation rate and save energy. So, it is highly desirable to
understand laser ablation of BCPs and decrease ablation

thresholds of BCPs.
In this work, we studied the laser ablation of

polystyrene-block-poly(4-vinyl pyridine) (PS-b-P4VP)
with hydrogen-bonded azobenzene derivatives (AzoR).
We found that the ablation threshold of BCP supramole-
cular assemblies PS-b-P4VP(AzoR) decreases as the
concentration of AzoR increases. In PS-b-P4VP(AzoR)
with different substituents (R = CN, H, and CH3), ablation
thresholds follow the trend: PS-b-P4VP(AzoCN) < PS-b-
P4VP(AzoCH;) < PS-b-P4VP(AzoH). We showed how
chemical structures affect the laser ablation behavior of PS-
b-P4VP(AzoR). According to these results, we can
effectively fabricate tunable hierarchical structures on
BCPs by laser ablation.
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2 Experimental
2.1 Materials

The chemical structures of used materials are shown in
Fig. 1. PS-b-P4VP (M,, = 330-b-125 kg-mol ' and PDI=
1.18) was purchased from Polymer Source. The azoben-
zene derivatives AzoCN and AzoCHj; were synthesized
according to our previous work [10,21]. AzoH was
purchased from Aldrich.
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Fig. 1 Chemical structures of used materials. The azo com-
pounds AzoR (R= CN, H, and CHj3) are hydrogen bonded to
P4VP blocks of PS-b-P4VP

2.2 Preparation of thin films

PS-b-P4VP and AzoR were dissolved in cyclopentane
separately. Solutions of PS-b-P4VP(AzoR), were prepared
by combining the above two solutions. Here, x denotes the
molar ratio of AzoR versus repeat units of P4VP. The
mixed solutions were stirred overnight and filtered through
a 0.2 um filter before use. Thin films of PS-b-P4VP
(AzoR), were prepared by spin-coating. The films had a
typical thickness of 200—230 nm. The spin-cast films were
dried in an oven under vacuum at room temperature
overnight. To induce phase separation, thin films were
transferred to a glass container with saturated atmosphere
of 1,4-dioxane. The container was completely closed and
thin films were kept in the container for 2 days at room
temperature.

2.3 Methods

Ultraviolet-visible (UV-vis) absorption spectra were mea-
sured on a Perkin-Elmer Lambda 900 UV-vis spectrometer.
AFM images were obtained on a Dimension 3100 system
using tapping mode. The optical setup for the three-beam
interference was reported elsewhere [3,5,10,11]. In brief, a
Q-switched Nd:YAG laser at 355 nm with laser pulse
duration of 35 ns was used as the light source. The
laser beam with pulse energy 1.18 mJ and a diameter of
~1.4 mm was split into three beams with equal intensity to
overlap on the sample. The intersecting angle between the
interference beams was 5.88°. Interference patterns were

fabricated by single pulse irradiation. The intensity
distribution of the interference pattern was calculated
according to our previous work [3,5,11].

3 Results and discussion

3.1 Effects of the concentration of azobenzene derivatives
on laser ablation

It is well known that small molecules with hydrogen
bonding donors can be hydrogen-bonded to P4VP blocks
of PS-b-P4VP [22-27]. Here, the phenolic group in AzoR
is a hydrogen bonding donor (Fig. 1). AzoR can be
hydrogen-bonded to P4VP [10,28,29]. The hydrogen
bonding between AzoCN and P4VP is proved by infrared
spectroscopy (Fig. S1, cf. Electronic Supplementary
Material).

Figure 2 shows UV-vis absorption spectra of PS-b-P4VP
(AzoCN), films with different concentrations of AzoCN.
The band at 300400 nm is the 7t-7t* absorption band of
azobenzene groups. The absorption coefficient (o)
increases as the concentration of AzoCN increases.

PS-b-P4VP(AzoR), forms phase separated nanostruc-
tures (Fig. S2) [10]. The schematic model in Fig. 3(a)
shows that PS forms the continuous phase and P4VP
(AzoR), forms dispersed phases. Figure 3(c) shows the
hexagonal interference pattern of three beams, which is
calculated according to our previous work [3,5,11]. When
PS-b-P4VP(AzoR), is exposed to interference beams, the
polymers at bright interference fringes (high intensity
areas) will be ablated. Hierarchical structures with both
phase separated nanostructures and interference patterns
can be obtained by laser interference ablation (Fig. 3(b)).
We will show effects of the concentration of AzoCN on
laser ablation.

Figure 4 shows atomic force microscope (AFM) images

] x=05
4k — x=03

300 400 500 600
Wavelength/nm

Fig. 2 UV-vis absorption spectra of thin films of PS-b-P4VP
(AzoCN), (x = 0.05, 0.1, 0.3, and 0.5)
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Fig. 3 Schematic models of PS-b-P4VP(AzoR), (a) before and (b) after interference irradiation. After irradiation, periodic ablated areas
(interference patterns) appear on PS-b-P4VP(AzoR),. (c) Calculated intensity distribution (top) and profile (bottom) of three beam

interference

of PS-b-P4VP(AzoCN), (x = 0.05, 0.1, 0.3, and 0.5) after
single pulse interference irradiation. All samples form
hierarchical structures, which resemble the schematic
model in Fig. 3(b). Shorter length scale structures of the
hierarchical structures are phase separated nanostructures
and longer length scale structures are interference patterns.
AFM phase images (insets of Figs. 4(a—d)) clearly show
the phase separation between PS and PAVP(AzoCN),. The
average center-to-center distance (period) of nearby P4VP
(AzoCN), phases increases form ~75 nm (x = 0.05) to

D(,;plhf’nm

~105 nm (x = 0.5). The period of the interference patterns
is ~2 um. We compared the AFM profiles of PS-b-P4VP
(AzoCN), with different x (Fig. 4(e)). PS-b-P4VP
(AzoCN)g o5 forms volcano-like structures, indicating its
surface is swelled by laser beams. In the other samples,
deep ablated holes are observed. PS-b-P4VP(AzoCN),
forms very sharp holes. PS-b-P4VP(AzoCN), 3 and PS-b-
P4VP(AzoCN)y s form deep and wide holes. The depth
and diameter of the holes increases as the concentration of
AzoCN increases (Fig. 4(f)).
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Fig. 4 AFM height images of PS-b-P4VP(AzoCN), with different x after exposed to interference beams. (a) x =0.05, (b) x =0.1, (c) x =
0.3, and (d) x = 0.5. Insets are AFM phase images, which show that phase separated nanostructures in PS-b-P4VP(AzoCN),; (e) profiles
along the lines in (a)—(d); (f) depths and diameters of the holes generated by interference irradiation. Note: The diameters are measured at
half depths of the holes
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3.2 Effects of substituents of azobenzene derivatives on
laser ablation

We also studied effects of substituents of azobenzene
derivatives on laser interference ablation. The hydroxyl
group on the para-position of azobenzene is an electron
donor (D) [30]. The methyl group (CH;) of AzoCHj is also
an electron donor. The nitrile group (CN) of AzoCN is an
electron acceptor (A). So, AzoH is a D-1t molecule,
AzoCHj; is a D-1t-D molecule, and AzoCN is a D-wt-A
molecule. These substituents affect the absorption of azo
chromophores. Figure 5 shows UV-vis absorption spectra
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of AzoR in solutions and PS-b-P4VP(AzoR), films. The
band at 300-400 nm is the characteristic absorption band of
azobenzene groups. The bands of AzoCHj3 in solution and
thin film slightly red-shift compared with those of AzoH.
The bands of AzoCN obviously red-shift compared with
those of AzoH. These results show that the D-m-D
structure slightly affects the absorption of azo chromo-
phores, and D-mt-A structure strongly affects the absorp-
tion of azo chromophores.

Figure 6 shows AFM images of PS-b-P4VP(AzoH), s
and PS-b-P4VP(AzoCHj;), 5 after interference irradiation.
They form hierarchical structures with phase separated
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Fig. 5 UV-vis absorption spectra of (a) 10> mol-L™!" AzoR in THF and (b) thin films of PS-b-P4VP(AzoR), s
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Fig. 6 (a) AFM height images of PS-b-P4VP(AzoH), s and (b) PS-b-P4VP(AzoCHj3), 5 after exposed to interference beams. Insets are
AFM phase images of PS-b-P4VP(AzoR), s. The phase separated nanostructures are clearly visible in the AFM phase images; (c) profiles
along the lines in (a), (b), and Fig. 4(d); (d) depths and diameters of the holes generated by interference irradiation. Note: the diameters are

measured at half depths of the holes
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nanostructures and laser interference patterns. We com-
pared the profiles of PS-b-P4VP(AzoR), s (Figs. 6(c) and
6(d)). PS-b-P4VP(AzoH), 5 forms sharp holes. The hole of
PS-b-P4VP(AzoCHj;)y 5 is slightly broader than that of PS-
b-P4VP(AzoH), 5. The hole of PS-b-P4VP(AzoCN)y 5 is
much broader than that of PS-b-P4VP(AzoH)qs. These
results indicate that the substituent of AzoR plays an
important role on laser ablation.

The mechanism of laser ablation is as follows: When a
target is irradiated by a high energy laser, the target absorbs
light. Then, the target is heated or decomposed, and
subsequent vaporization occurs [1-3,32]. PS-b-P4VP
(AzoR), is different from normal targets because the
light absorber AzoR is in P4VP phases but not homo-
genously dispersed in the matrix. When PS-b-P4VP
(AzoR), is exposed to laser beams, AzoR is heated or
decomposed. The heat diffuses to hydrogen bonded P4VP
chains and nearby PS chains. The heated parts are ablated.
P4VP(AzoR) phases are heating centers and the PS phase
that does not absorb light obtains heat by thermal diffusion.
Considering that the laser pulse duration is 35 ns and
thermal diffusivity of PS is in the order of ~10 ¢cm?-s™
[33,34], the heated range of PS during an exposure time of
a single pulse is several tens of nanometers near P4VP
(AzoR) phases.

The concentration of AzoCN affects the ablation process
(Fig. 4). The reason is that AzoCN is the light absorber and
the linear absorption coefficient of PS-b-P4VP(AzoCN),
increases as x increases (Fig. 2 and Table 1). Ablation
should be more efficient with more light absorbers. We
calculated ablation thresholds of PS-b-P4VP(AzoCN), by
AFM (Fig. S3). Ablation thresholds of PS-b-P4VP
(AzoCN), decrease as x increases (Table 1). This result
explains why different morphologies are generated on PS-
b-P4VP(AzoCN), with different x (Fig. 4).

Table 1 Linear absorption coefficients (o) at 355 nm and ablation
thresholds of PS-b-P4VP(AzoR),

Sample @/10* cm™! Threshold/(mJ - cm™2)
PS-b-P4VP(Az0CN)j 05 0.57 \
PS-b-P4VP(AzoCN)g 3 3.61 81+10
PS-b-P4VP(AzoCN)g 5 5.35 47+10
PS-b-P4VP(AzoH)y 5 5.58 208410
PS-b-P4VP(AzoCH;), 5 5.75 165410

Substituents of AzoR also affect the interference
ablation (Fig. 6). As shown in Table 1, the linear
absorption coefficients of PS-b-P4VP(AzoR),s (R= H,
CN, and CHj;) are nearly the same, but their ablation
thresholds are quite different. This result indicates that not
only the linear absorption coefficient affects laser ablation.
It is well known that azo dyes show nonlinear absorption,
i.e., the absorption coefficient of an azo dye is strongly
dependent on the laser intensity [30,35,36]. D-w-D and
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D-mt-A molecules usually show better nonlinear absorption
[30,35-38]. AzoCH3; and AzoCN are D-7t-D and D-t-A
molecules, respectively, which can more efficiently absorb
light of high energy lasers. So, different ablation thresholds
of PS-b-P4VP(AzoR)y 5 (R = H, CN, and CH3) are due to
different chemical structures of AzoR.

4 Conclusions

Both the concentration and the substituent of AzoR
dominate the laser ablation of PS-b-P4VP(AzoR),. The
ablation threshold decreases as the concentration of
azobenzene derivatives increases. This result is because
the linear absorption coefficient increases as the concen-
tration of azobenzene derivatives increases. The samples
with different substituents (PS-b-P4VP(AzoR),s) have
nearly the same linear absorption coefficient, but their
ablation thresholds are quite different. Ablation thresholds
follow the trend: PS-b-P4VP(AzoCN), s < PS-b-P4VP
(AzoCHs3)g 5 < PS-b-P4VP(AzoH), 5. This trend is due to
the D-7t-A and D-mt-D structures of AzoCN and AzoCH3,
respectively. These results are helpful for the design of
BCP systems with low ablation thresholds, which can be
effectively structured at low laser intensities.

Tunable hierarchical structures can be fabricated by laser
interference ablation of BCPs. Phase separated nanostruc-
tures are tunable by changing the composition of BCPs
[10] or the concentration of azobenzene derivatives (insets
of Fig. 4). Interferences patterns are tunable by changing
interference conditions [10], concentration of azobenzene
derivatives (Fig. 4), or substituents of azobenzene
derivatives (Fig. 6). We observed that hierarchical
structures on PS-b-P4VP(AzoR), show brilliant structural
colors. The hierarchical structures show potential applica-
tions as photonic materials.

Acknowledgements This study was supported by the joint program of the
Max Planck Society and the Chinese Academy of Sciences. We thank Prof. C.
Bubeck for helpful discussions. Open access funding provided by Max
Planck Society.

Electronic Supplementary Material Supplementary material is available
in the online version of this article at https://doi.org/10.1007/s11705-018-
1735-6 and is accessible for authorized users.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduc-
tion in any medium, provided the appropriate credit is given to the original
author(s) and the source, and a link is provided to the Creative Commons
license, indicating if changes were made.

References

1. Lippert T, Dickinson J T. Chemical and spectroscopic aspects of
polymer ablation: Special features and novel directions. Chemical



I1.

12.

14.

15.

Jintang Huang et al. Laser ablation of block copolymers

Reviews, 2003, 103(2): 453-486

. Weis P, Wu S. Light-switchable azobenzene-containing macro-

molecules: From UV to near infrared. Macromolecular Rapid
Communications, 2018, 39(1): 1700220

. Huang J, Wu S, Beckemper S, Gillner A, Zhang Q, Wang K. All-

optical fabrication of ellipsoidal caps on azobenzene functional
polymers. Optics Letters, 2010, 35(16): 27112713

. Zhai T, Zhang X, Pang Z, Dou F. Direct writing of polymer lasers

using interference ablation. Advanced Materials, 2011, 23(16):
18601864

. Huang J T, Beckemper S, Gillner A, Wang K Y. Tunable surface

texturing by polarization-controlled three-beam interference. Jour-
nal of Micromechanics and Microengineering, 2010, 20(9):
095004

. Wohl C J, Belcher M A, Chen L, Connell J] W. Laser ablative

patterning of copoly(imide siloxane)s generating superhydrophobic
surfaces. Langmuir, 2010, 26(13): 11469-11478

. Patel R S, Wassick T A. Laser processes for multichip module’s

high density multilevel thin film packaging. Laser Applications in
Microelectronic and Optoelectronic Manufacturing II, 1997, 2991:
217223

. Aoki H. Laser processing method to form an ink jet nozzle plate. US

Patent, 1998

. Weis P, Tian W, Wu S. Photoinduced liquefaction of azobenzene-

containing polymers. Chemistry, 2018, 24(25): 6494-6505

. Wu S, Huang J T, Beckemper S, Gillner A, Wang K Y, Bubeck C.

Block copolymer supramolecular assemblies hierarchically struc-
tured by three-beam interference laser ablation. Journal of Materials
Chemistry, 2012, 22(11): 4989-4995

Huang J, Beckemper S, Wu S, Shen J, Zhang Q, Wang K, Gillner A.
Light driving force for surface patterning on azobenzene-containing
polymers. Physical Chemistry Chemical Physics, 2011, 13(36):
16150-16158

Bates F S, Fredrickson G H. Block copolymer thermodynamics:
theory and experiment. Annual Review of Physical Chemistry,
1990, 41(1): 525-557

. Bang J, Jeong U, Ryu Y, Russell T P, Hawker C J. Block copolymer

nanolithography: Translation of molecular level control to nanoscale
patterns. Advanced Materials, 2009, 21(47): 4769-4792

Cheng J Y, Ross C A, Smith H I, Thomas E L. Templated self-
assembly of block copolymers: Top-down helps bottom-up.
Advanced Materials, 2006, 18(19): 2505-2521

Zhou H, Xue C, Weis P, Suzuki Y, Huang S, Koynov K,
Auernhammer G K, Berger R, Butt H J, Wu S. Photoswitching of
glass transition temperatures of azobenzene-containing polymers
induces reversible solid-to-liquid transitions. Nature Chemistry,
2017, 9(2): 145-151

. Guo CH, Lee Y, Lin Y H, Strzalka J, Wang C, Hexemer A, Jaye C,

Fischer D A, Verduzco R, Wang Q, Gomez E D. Photovoltaic
performance of block copolymer devices is independent of the
crystalline texture in the active layer. Macromolecules, 2016, 49
(12): 4599-4608

. Hung CC, Chiu Y C, Wu H C, Lu C, Bouilhac C, Otsuka I, Halila S,

Borsali R, Tung S H, Chen W C. Conception of stretchable resistive
memory devices based on nanostructure-controlled carbohydrate-
block-polyisoprene block copolymers. Advanced Functional Mate-

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

455

rials, 2017, 27(13): 1606161

Mitchell V D, Gann E, Huettner S, Singh C R, Subbiah J, Thomsen
L, McNeill C R, Thelakkat M, Jones D J. Morphological and device
evaluation of an amphiphilic block copolymer for organic photo-
voltaic applications. Macromolecules, 2017, 50(13): 49424951
Yoo H G, Byun M, Jeong C K, Lee K J. Performance enhancement
of electronic and energy devices via block copolymer self-assembly.
Advanced Materials, 2015, 27(27): 3982-3998

Wang J, Wu B, Li S, Sinawang G, Wang X, He Y. Synthesis and
characterization of photoprocessable lignin-based azo bolymer.
ACS Sustainable Chemistry & Engineering, 2016, 4(7): 40364042
WuS,DuanSY,LeiZY, SuW, Zhang Z S, Wang K'Y, Zhang Q J.
Supramolecular bisazopolymers exhibiting enhanced photoinduced
birefringence and enhanced stability of birefringence for four-
dimensional optical recording. Journal of Materials Chemistry,
2010, 20(25): 5202-5209

Ikkala O, ten Brinke G. Functional materials based on self-assembly
of polymeric supramolecules. Science, 2002, 295(5564): 2407—
2409

Kuila B K, Stamm M. Block copolymer-small molecule supramo-
lecular assembly in thin film: A novel tool for surface patterning of
different functional nanomaterials. Journal of Materials Chemistry,
2011, 21(37): 14127-14134

Zhao Y, Thorkelsson K, Mastroianni A J, Schilling T, Luther J M,
Rancatore B J, Matsunaga K, Jinnai H, Wu Y, Poulsen D, Fréchet J
M, Alivisatos A P, Xu T. Small-molecule-directed nanoparticle
assembly towards stimuli-responsive nanocomposites. Nature
Materials, 2009, 8(12): 979-985

Roland S, Gaspard D, Prud’homme R E, Bazuin C G. Morphology
evolution in slowly dip-coated supramolecular PS-b-P4VP thin
films. Macromolecules, 2012, 45(13): 54635476

Soininen A J, Tanionou I, ten Brummelhuis N, Schlaad H,
Hadjichristidis N, Ikkala O, Raula J, Mezzenga R, Ruokolainen J.
Hierarchical structures in lamellar hydrogen bonded LC side chain
diblock copolymers. Macromolecules, 2012, 45(17): 7091-7097
Huang W H, Chen P Y, Tung S H. Effects of annealing solvents on
the morphology of block copolymer-based supramolecular thin
films. Macromolecules, 2012, 45(3): 1562—-1569

de Wit J, van Ekenstein G A, Polushkin E, Kvashnina K, Bras W,
Ikkala O, ten Brinke G. Self-assembled poly(4-vinylpyridine)—
surfactant systems using alkyl and alkoxy phenylazophenols.
Macromolecules, 2008, 41(12): 42004204

Priimagi A, Vapaavuori J, Rodriguez F J, Faul C F J, Heino M T,
Ikkala O, Kauranen M, Kaivola M. Hydrogen-bonded polymer-
azobenzene complexes: Enhanced photoinduced birefringence with
high temporal stability through interplay of intermolecular interac-
tions. Chemistry of Materials, 2008, 20(20): 6358-6363
LiuZY,LuGY, Mal. Tuning the absorption spectra and nonlinear
optical properties of D-pi-A azobenzene derivatives by changing the
dipole moment and conjugation length: A theoretical study. Journal
of Physical Organic Chemistry, 2011, 24(7): 568-577

Ki H, Mohanty P S, Mazumder J. Modelling of high-density laser-
material interaction using fast level set method. Journal of Physics.
D, Applied Physics, 2001, 34(3): 364372

Martukanitz R P. A critical review of laser beam welding. In:
Schriempf J T, ed. Critical Review: Industrial Lasers and



456

33.

34.

35.

36.

Front. Chem. Sci. Eng. 2018, 12(3): 450456

Applications. Bellingham: Spie-Int Soc Optical Engineering, 2005,
11-24

Hattori M. Thermal diffusivety of some linear polymers. Kolloid-
Zeitschrift and Zeitschrift Fur Polymere, 1965, 202(1): 11-14
Morikawa J, Kobayahi A, Hashimoto T. Thermal diffusivity in a
binary mixture of poly(phenylene oxide) and polystyrene. Thermo-
chimica Acta, 1995, 267: 289-296

Yesodha S K, Sadashiva Pillai C K, Tsutsumi N. Stable polymeric
materials for nonlinear optics: A review based on azobenzene
systems. Progress in Polymer Science, 2004, 29(1): 45-74

Liu R, Li Y H, Chang J, Xiao Q, Zhu H J, Sun W F. Photophysics
and nonlinear absorption of 4,4'-diethynylazobenzene derivatives

37.

38.

terminally capped with substituted aromatic rings. Journal of
Photochemistry and Photobiology A Chemistry, 2012, 239:
47-54

Tian L, HuZ J, Shi P F, Zhou HP, WuH Y, Tian Y P, Zhou Y F,
Tao X T, Jiang M H. Synthesis and two-photon optical
characterization of D-pi-D type schiff bases. Journal of Lumines-
cence, 2007, 127(2): 423430

Fitilis I, Fakis M, Polyzos I, Giannetas V, Persephonis P,
Mikroyannidis J. Strong two photon absorption and photophysical
properties of symmetrical chromophores with electron accepting
edge substituents. Journal of Physical Chemistry A, 2008, 112(21):
47424748



	Outline placeholder
	bmkcit1
	bmkcit2
	bmkcit3
	bmkcit4
	bmkcit5
	bmkcit6
	bmkcit7
	bmkcit8
	bmkcit9
	bmkcit10
	bmkcit11
	bmkcit12
	bmkcit13
	bmkcit14
	bmkcit15
	bmkcit16
	bmkcit17
	bmkcit18
	bmkcit19
	bmkcit20
	bmkcit21
	bmkcit22
	bmkcit23
	bmkcit24
	bmkcit25
	bmkcit26
	bmkcit27
	bmkcit28
	bmkcit29
	bmkcit30
	bmkcit31
	bmkcit32
	bmkcit33
	bmkcit34
	bmkcit35
	bmkcit36
	bmkcit37
	bmkcit38



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


