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Abstract
Principal component regression (PCR) is a two-stage procedure: the first stage per-
forms principal component analysis (PCA) and the second stage builds a regression
model whose explanatory variables are the principal components obtained in the first
stage. Since PCA is performed using only explanatory variables, the principal com-
ponents have no information about the response variable. To address this problem,
we present a one-stage procedure for PCR based on a singular value decomposition
approach. Our approach is based upon two loss functions, which are a regression loss
and a PCA loss from the singular value decomposition, with sparse regularization.
The proposed method enables us to obtain principal component loadings that include
information about both explanatory variables and a response variable. An estimation
algorithm is developed by using the alternating direction method of multipliers. We
conduct numerical studies to show the effectiveness of the proposed method.

Keywords ADMM · Lasso · One-stage procedure · Singular value decomposition ·
Principal component analysis

Mathematics Subject Classification 62H25 · 62J07 · 62J05

1 Introduction

Principal component regression (PCR), invented by Jolliffe (1982) and Massy (1965),
is widely used in various fields of research, including chemometrics, bioinformatics,
and psychology, and has been extensively studied (Chang and Yang 2012; Dicker

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11634-020-00435-2.

B Shuichi Kawano
skawano@ai.lab.uec.ac.jp

1 Department of Computer and Network Engineering, Graduate School of Informatics and Engineering,
The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11634-020-00435-2&domain=pdf
http://orcid.org/0000-0002-0804-0141
https://doi.org/10.1007/s11634-020-00435-2
https://doi.org/10.1007/s11634-020-00435-2


796 S. Kawano

et al. 2017; Febrero-Bande et al. 2017; Frank and Friedman 1993; Hartnett et al.
1998; Reiss and Ogden 2007; Rosipal et al. 2001; Wang and Abbott 2008). PCR is a
two-stage procedure: one first performs principal component analysis (PCA) (Jolliffe
2002; Pearson 1901), and then performs regression in which the explanatory variables
are the selected principal components. However, the principal components have no
information on the response variable. Because of this, the prediction accuracy of the
PCR could be low, if the response variable is related to principal components having
small eigenvalues.

To address this problem, a one-stage procedure for PCR was proposed in Kawano
et al. (2015). This one-stage procedure was developed by combining a regression
squared loss function with the sparse PCA (SPCA) loss function in Zou et al. (2006).
The estimate of the regression parameter and loading matrix in the PCA is obtained
as the minimizer of the combination of two loss functions with sparse regularization.
By virtue of sparse regularization, sparse estimates of the parameters can be obtained.
Kawano et al. (2015) referred to the one-stage procedure as sparse principal component
regression (SPCR). Kawano et al. (2018) also extended SPCR within the framework
of generalized linear models. However, it is unclear whether the PCA loss function in
Zou et al. (2006) is the best choice for building SPCR, as there exist several formulae
for PCA.

This paper proposes a novel formulation for SPCR. As a PCA loss for SPCR, we
adopt a loss function based on a singular value decomposition approach (Shen and
Huang 2008). Using the basic loss function, a combination of the PCA loss and the
regression squared loss, with sparse regularization, we derive an alternative formula-
tion for SPCR.We call the proposed method as sparse principal component regression
based on a singular value decomposition approach (SPCRsvd). An estimation algo-
rithm of SPCRsvd is developed using an alternating direction method of multipliers
(Boyd et al. 2011) and a linearized alternating direction method of multipliers (Li et al.
2014; Wang and Yuan 2012). We show the effectiveness of SPCRsvd through numeri-
cal studies. Specifically, the performance of SPCRsvd is shown to be competitive with
or better than that of SPCR.

As an alternative approach, partial least squares (PLS) (Frank and Friedman 1993;
Wold 1975) is a widely used statistical method that regresses a response variable on
composite variables built by combining a response variable and explanatory variables.
In Chun and Keleş (2010), sparse partial least squares (SPLS) was proposed, which
enables the removal of irrelevant explanatory variables when constructing the compos-
ite variables. PLS and SPLS are similar to SPCR and SPCRsvd in terms of using new
explanatory variables with information relating the response variable to the original
explanatory variables. Herein, these methods are compared using simulated data and
real data.

The remainder of the paper is organized as follows. In Sect. 2, we review SPCA
in Zou et al. (2006) and Shen and Huang (2008), and SPCR in Kawano et al. (2015).
We present SPCRsvd in Sect. 3. Section 4 derives two computational algorithms for
SPCRsvd and discusses the selection of tuning parameters. Monte Carlo simulations
and real data analyses are presented in Sect. 5. Conclusions are given in Sect. 6.
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2 Preliminaries

2.1 Sparse principal component analysis

PCA finds a loading matrix that induces a low-dimensional structure in the data. As
an easy way to interpret the principal component loading matrix, SPCA has been
proposed. To date, several formulae for SPCA have been proposed (Bresler et al.
2018; Chen et al. 2020; d’Aspremont et al. 2007; Erichson et al. 2020; Shen and
Huang 2008; Vu et al. 2013; Witten et al. 2009; Zou et al. 2006). For an overview of
SPCA, we refer the reader to Zou and Xue (2018) and the references therein. In this
subsection, we review the two formulae for SPCA in Zou et al. (2006) and Shen and
Huang (2008).

Let X = (x1, . . . , xn)� denote an n× p data matrix, where n and p are the number
of observations and the number of variables, respectively. Without loss of generality,
we assume that the columns of the matrix X are centered. In Zou et al. (2006), SPCA
was proposed as

min
A,B

⎧
⎨

⎩

n∑

i=1

‖xi − AB�xi‖22 + λ

k∑

j=1

‖β j‖22 +
k∑

j=1

λ1, j‖β j‖1
⎫
⎬

⎭

subject to A�A = Ik, (1)

where A = (α1, . . . ,αk) and B = (β1, . . . ,βk) are p × k principal component
(PC) loading matrices, k denotes the number of principal components, Ik is the k ×
k identity matrix, λ, λ1,1, . . . , λ1,k are non-negative regularization parameters, and
‖ · ‖q is the Lq norm for an arbitrary finite vectors. This SPCA formulation can be
regarded as a least squares approach. The first term represents performing PCA by
least squares. The second and third terms represent sparse regularization similar to
elastic net regularization (Zou and Hastie 2005). These terms enable us to set some
of the estimates of B to zero. If λ = 0, then the regularization terms reduce to the
adaptive lasso (Zou 2006).

A simple calculation gives

min
A,B

k∑

j=1

{
‖Xα j − Xβ j‖22 + λ‖β j‖22 + λ1, j‖β j‖1

}
subject to A�A = Ik . (2)

Optimizing the parameters A and B for this minimization problem is straightforward.
Given a fixed A, the SPCA problem (2) turns out to be a simple elastic net problem.
Thus, the estimate of B can be obtained by the least angle regression algorithm (Efron
et al. 2004) or the coordinate descent algorithm (Friedman et al. 2007; Wu and Lange
2008). Given a fixed B, an estimate of A can be obtained by solving the reduced
rank Procrustes rotation problem (Zou et al. 2006). By alternating procedures, we can
obtain the final estimates Â and B̂ of A and B, respectively. Note that only B̂ is used
as the principal component loading matrix.
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798 S. Kawano

Alternately, Shen and Huang (2008) proposed another formulation of SPCA, which
can be regarded as a singular value decomposition (SVD) approach. Consider a low-
rank approximation of the data matrix X obtained by SVD in the form

UDV� =
r∑

k=1

dkukv�
k , (3)

where U = (u1, . . . , ur ) is an n × r matrix with U�U = Ir , V = (v1, . . . , vr ) is
an r × r orthogonal matrix, D = diag(d1, . . . , dr ), and r < min(n, p). The singular
values are assumed to be ordered such that dr ≥ · · · ≥ dp ≥ 0. Using the connection
between PCA and SVD, Shen and Huang (2008) obtained the sparse PC loading by
estimating V with sparse regularization.

To achieve sparseness of V , Shen and Huang (2008) adopted the rank-one approx-
imation procedure. First, the first PC loading vector ṽ1 is obtained by solving the
minimization problem

min
ũ1,ṽ1

{
‖X − ũ1ṽ

�
1 ‖2F + λP(ṽ1)

}
subject to ‖ũ1‖2 = 1. (4)

Here ũ1, ṽ1 are defined as rescaled vectors such that ũ1ṽ
�
1 = d1u1v�

1 , P(·) is a
penalty function that induces the sparsity of ṽ1, and ‖ · ‖F is the Frobenius norm
defined by ‖A‖F = √

tr(A�A) for an arbitrary matrix A. As the penalty function,
Shen andHuang (2008) used the lasso penalty (Tibshirani 1996), the hard-thresholding
penalty (Donoho and Johnstone 1994), or the smoothly clipped absolute deviation
(SCAD) penalty (Fan and Li 2001). The rank-one approximation problem is easy to
solve (4); see Algorithm 1 in Shen and Huang (2008). The remaining PC loading
vectors are obtained by performing rank-one approximations of the corresponding
residual matrices. For example, to derive the second PC loading vector ṽ2, we solve
the minimization problem

min
ũ2,ṽ2

{
‖X† − ũ2ṽ

�
2 ‖2F + λP(ṽ2)

}
subject to ‖ũ2‖2 = 1,

where X† = X− ũ1ṽ
�
1 . The regularization parameter λ is selected by cross-validation.

2.2 Sparse principal component regression

For a one-dimensional continuous response variable Y and a p-dimensional explana-
tory variable x, suppose we have obtained a dataset {(yi , xi ); i = 1, . . . , n}. We
assume that the response variable is explained by variables composed by PCA of
X = (x1, . . . , xn)�. Traditional PCR uses a regression model with a few PC scores
corresponding to large eigenvalues. Note that these PC scores are derived by PCAprior
to the regression. This two-stage procedure might then fail to predict the response if
the response variable is related to PCs corresponding to small eigenvalues.
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To attain a one-stage procedure for PCR, the SPCR proposed in Kawano et al.
(2015) was formulated as the following minimization problem:

min
A,B,γ0,γ

{ n∑

i=1

(
yi − γ0 − γ �B�xi

)2 + w

n∑

i=1

‖xi − AB�xi‖22

+ λβξ

k∑

j=1

‖β j‖22 + λβ(1 − ξ)

k∑

j=1

‖β j‖1 + λγ ‖γ ‖1
}

(5)

subject to A�A = Ik,

where γ0 is an intercept, γ = (γ1, . . . , γk)
� comprises coefficients for regression, λβ

and λγ are non-negative regularization parameters, w is a positive tuning parameter,
and ξ in [0, 1] is a tuning parameter. The first term in Formula (5) is the regression
squared loss function including the PCs B�x as explanatory variables, while the
second term is the PCA loss function used in SPCA in Zou et al. (2006). Sparse
regularization in SPCR has two roles: sparseness and identifiability of parameters. For
the identifiability by sparse regularization, we refer the reader to Choi et al. (2010),
Jennrich (2006), Kawano et al. (2015). Kawano et al. (2018) also extended SPCR from
the viewpoint of generalized linear models, which can deal with binary, count, and
multi-categorical data for the response variable.

3 SVD-based sparse principal component regression

SPCR uses two basic loss functions: the regression squared loss function and the
PCA loss function in Zou et al. (2006). However, it is unclear whether the PCA loss
is the best choice for building SPCR. To investigate this issue, we propose another
formulation for SPCR using the SVD approach in Shen and Huang (2008).

We consider the following minimization problem:

min
β0,β,Z ,V

{
1

n
‖ y − β01n − XVβ‖22 + w

n
‖X − ZV�‖2F + λV ‖V ‖1 + λβ‖β‖1

}

subject to V�V = Ik, (6)

where β0 is an intercept, k is the number of PCs, β is a k-dimensional coefficient
vector, Z is an n × k matrix of PCs, V is a p × k PC loading matrix, and 1n is an
n-dimensional vector of ones. In addition,w is a positive tuning parameter and λV , λβ

are non-negative regularization parameters.
The first term is the regression squared loss function relating the response and the

PCs XV . The second term is the PCA loss function in the SVD approach in Shen
and Huang (2008). Although the formula is seemingly different from the first term in
Formula (4), they are essentially equivalent: we estimate the k PCs simultaneously,
while Shen and Huang (2008) estimates them sequentially. The third and fourth terms
constitute the lasso penalty that induces zero estimates of the parameters V and β,
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800 S. Kawano

respectively. The tuning parameterw controls the degree of the second term. A smaller
value for w is used when our aim is to obtain better prediction accuracies, while
a larger value for w is used when we want to obtain exact expressions of the PC
loadings. The minimization problem (6) allows us to perform regression analysis and
PCA simultaneously. We call this method SPCRsvd. In Sect. 5, we will observe that
SPCRsvd is competitive with or better than SPCR through numerical studies.

We remark on two points here. First, it is possible to use Z in the first term of
(6) instead of XV , since Z is also the PCs. However, the formulation with Z instead
of XV did not perform well in numerical studies, so we adopt the formulation with
XV here. Second, SPCR imposes a ridge penalty for the PC loading but SPCRsvd
does not. The ridge penalty basically comes from SPCA in Zou et al. (2006). Because
SPCRsvd is not based on SPCA in Zou et al. (2006), a ridge penalty does not appear
in Formula (6). It is possible to add a ridge penalty and replace the lasso penalty with
other penalties that induce sparsity, e.g., the adaptive lasso penalty, the SCAD penalty,
or minimax concave penalty (Zhang 2010), but the our aim of this paper is to establish
the basic procedure of Formula (6).

4 Implementation

4.1 Computational algorithm

To obtain the estimates of the parameters β, Z , V in Formula (6), we employ the
alternating direction method of multipliers (ADMM) and the linearized alternating
direction method of multipliers (LADMM). ADMM and LADMMhave recently been
used in variousmodels with sparse regularization; see, for example, Boyd et al. (2011);
Danaher et al. (2014); Li et al. (2014); Ma and Huang (2017); Price et al. (2019); Tan
et al. (2014); Wang et al. (2018); Yan and Bien (2020) and Ye and Xie (2011).

To solve the minimization problem (6) by using ADMM, we rewrite the problem
as

min
β0,β,β0,Z ,V ,V0,V1

{
1

n
‖ y − β01n − XV1β‖22 + w

n
‖X

−ZV�‖2F + λV ‖V0‖1 + λβ‖β0‖1
}

subject to V�V = Ik, V = V0 = V1, β = β0. (7)

The scaled augmented Lagrangian for the problem (7) is then given by

1

n
‖ y − β01n − XV1β‖22 + w

n
‖X − ZV�‖2F + λV ‖V0‖1 + λβ‖β0‖1

+ ρ1

2
‖V − V0 + �1‖2F + ρ2

2
‖V1 − V0 + �2‖2F + ρ3

2
‖β − β0 + λ3‖22

subject to V�V = Ik,
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where�1,�2,λ3 are dual variables and ρ1, ρ2, ρ3 (> 0) are penalty parameters. This
gives rise to the following ADMM algorithm:

Step 1 Set the values of the tuning parameterw, the regularization parameters λV , λβ ,
and the penalty parameters ρ1, ρ2, ρ3.

Step 2 Initialize all the parameters as β
(0)
0 ,β(0),β

(0)
0 , Z (0), V (0), V (0)

0 , V (0)
1 ,�

(0)
1 ,

�
(0)
2 ,λ

(0)
3 .

Step 3 For m = 0, 1, 2, . . ., repeat from Steps 4 to 11 until convergence.
Step 4 Update V1 as follows:

vec(V (m+1)
1 ) =

(
1

n
β(m)β(m)� ⊗ X�X + ρ2

2
Ik ⊗ Ip

)−1

vec

{
1

n
X�( y − β

(m)
0 1n)β(m)�

+ ρ2

2
(V (m)

0 − �
(m)
2 )

}

,

where ⊗ represents the Kronecker product.
Step 5 Update V as follows:

V (m+1) = PQ�,

where P and Q are the matrices given by the SVD

w

n
X�Z (m) + ρ1

2

(
V (m)
0 − �

(m)
1

)
= PΩQ�.

Step 6 Update V0 as follows:

v
(m+1)
0i j = S

(
ρ1(v

(m+1)
i j + λ

(m)
1i j ) + ρ2(v

(m+1)
i j + λ

(m)
2i j )

ρ1 + ρ2
,

λV

ρ1 + ρ2

)

,

i = 1, . . . , p, j = 1, . . . , k,

where v
(m)
0i j = (V (m)

0 )i j , v
(m)
i j = (V (m))i j , λ	i j (	 = 1, 2) is the (i, j)-th

element of thematrix�	 (	 = 1, 2), andS(·, ·) is the soft-thresholdingoperator
defined by S(x, λ) = sign(x)(|x | − λ)+.

Step 7 Update Z by Z (m+1) = XV (m+1).
Step 8 Update β as follows:

β(m+1) =
(
1

n
V (m+1)�
1 X�XV (m+1)

1 + ρ3

2
Ik

)−1 {
1

n
V (m+1)T
1 X�( y − β

(m)
0 1n)

+ ρ3

2
(β

(m)
0 − λ

(m)
3 )

}

.
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Step 9 Update β0 as follows:

β
(m+1)
0 j = S

(

β
(m+1)
j + λ

(m)
3 j ,

λβ

ρ3

)

, j = 1, . . . , k,

where λ
(m)
3 j and β

(m)
j are the j-th elements of the vectors λ

(m)
3 and β(m), respec-

tively.
Step 10 Update β0 as follows:

β
(m+1)
0 = 1

n
1�
n ( y − XV (m+1)

1 β(m+1)).

Step 11 Update �1,�2,λ3 as follows:

�
(m+1)
1 = �

(m)
1 + V (m+1) − V (m+1)

0 ,

�
(m+1)
2 = �

(m)
2 + V (m+1)

1 − V (m+1)
0 ,

λ
(m+1)
3 = λ

(m)
3 + β(m+1) − β

(m+1)
0 .

The derivations of the updates are given in “Appendix A”.
To apply LADMM to the minimization problem (6), we consider the following

problem:

min
β0,β,β0,Z ,V ,V0

{
1

n
‖ y − β01n − XV0β‖22 + w

n
‖X − ZV�‖2F + λV ‖V0‖1 + λβ‖β0‖1

}

subject to V�V = Ik, V = V0, β = β0. (8)

The augmented Lagrangian for this problem is given by

1

n
‖ y − β01n − XV0β‖22 + w

n
‖X − ZV�‖2F + λV ‖V0‖1 + λβ‖β0‖1

+ ρ1

2
‖V0 − V + �‖2F + ρ2

2
‖β − β0 + λ‖22

subject to V�V = Ik,

where �,λ are dual variables and ρ1, ρ2 (> 0) are penalty parameters.
The updates of the LADMM algorithm are almost the same as those of the ADMM

algorithm. We summarize the updates and the derivations in “Appendix B”.
Here we remark on the main differences between ADMM and LADMM. LADMM

has two penalty parameters (ρ1, ρ2), while ADMM has three penalty parameters
(ρ1, ρ2, ρ3). This means that the total number of tuning parameters in LADMM is
only one less than that in ADMM. This is an advantage of LADMM regardless of
whether the user tunes the penalty parameters subjectively or objectively. On the other
hand, approximation by Taylor expansion is used in LADMM. If this approximation
is inappropriate, LADMMmay fail to estimate parameters. In terms of running times,
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ADMM seems to be faster than LADMM, based on several numerical studies. These
results will be presented in Sect. 6 when discussing the limitations of the current study.

4.2 Determination of tuning parameters

We have the six tuning parameters: w, λV , λβ , ρ1, ρ2, ρ3. The penalty parameters
ρ1, ρ2, ρ3 are fixed as ρ1 = ρ2 = ρ3 = 1 in accordance with Boyd et al. (2011). The
tuning parameter w is set according to the purpose of the analysis. A small value is
allocated to w when the user considers the regression loss to be more important than
the PCA loss. This idea follows Kawano et al. (2015, 2018).

The two regularization parameters λV , λβ are objectively selected by K -fold cross-
validation. For the original dataset divided into the K datasets ( y(1), X (1)), . . . , ( y(K ),

X (K )), the criterion for the K -fold cross-validation in ADMM is given by

CV = 1

K

K∑

k=1

1

n

∥
∥
∥ y(k) − β̂

(−k)
0 1(k) − X (k)V̂ (−k)

1 β̂
(−k)

∥
∥
∥
2

2
, (9)

where β̂
(−k)
0 , V̂ (−k)

1 , β̂
(−k)

are the estimates of β0, V1,β, respectively, computed with
the data excluding the k-th dataset. We omit the CV criterion for LADMM, since we
only replace V̂ (−k)

1 in (9) with V̂ (−k)
0 .

We choose the values of the regularization parameters λV , λβ from the minimizers
of CV in (9).

5 Numerical study

5.1 Monte Carlo simulations

We conducted Monte Carlo simulations to investigate the effectiveness of SPCRsvd.
The simulations had six cases, which were the same as those in Kawano et al. (2015)
except for Case 6. These six cases are given as follows.

Case 1 The 10-dimensional covariate vector x = (x1, . . . , x10) follows a multivariate
normal distribution having a zero mean vector and variance-covariance matrix
Σ . The response was obtained by

yi = ζ1e�
1 xi + ζ2e�

2 xi + εi , i = 1, . . . , n,

where e1 = (1, 0, . . . , 0
︸ ︷︷ ︸

9

)�, e2 = (0, 1, 0, . . . , 0
︸ ︷︷ ︸

8

)�, and εi are independently

distributed as a normal distribution with mean zero and variance σ 2. We used
ζ1 = 2, ζ2 = 1,Σ = I10. Then we note that e1 and e2 are eigenvectors of Σ .

Case 2 This case is the same as Case 1 except with ζ1 = 8, ζ2 = 1,Σ =
diag(1, 32, 1, . . . , 1

︸ ︷︷ ︸
8

). Then e2 becomes the first eigenvector. In addition,
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804 S. Kawano

Cov(y, x1) = 8 and Cov(y, x2) = 9. For more details of this setting, we
refer to p. 196 in Kawano et al. (2015).

Case 3 The 20-dimensional covariate vector x = (x1, . . . , x20) has multivariate nor-
mal distribution N20(0,Σ). The response was obtained as

yi = 4ζ�xi + εi , i = 1, . . . , n,

where εi are independently distributed as N (0, σ 2). We used ζ =
(ν, 0, . . . , 0

︸ ︷︷ ︸
11

)� andΣ = block diag(Σ1, I11),whereν = (−1, 0, 1, 1, 0,−1,−1, 0, 1)

and (Σ1)i j = 0.9|i− j | (i, j,= 1, . . . , 9). Note that ν is a sparse approximation
of the fourth eigenvector of Σ1. This case deals with the situation where the
response is associated with the fourth principal component.

Case 4 The 30-dimensional covariate vector x = (x1, . . . , x30) has multivariate nor-
mal distribution N30(0,Σ). The response was obtained as

yi = 4ζ�
1 xi + 4ζ�

2 xi + εi , i = 1, . . . , n,

where εi are independently distributed as N (0, σ 2). We used ζ 1 =
(ν1, 0, . . . , 0︸ ︷︷ ︸

21

)�, ζ 2 = (0, . . . , 0
︸ ︷︷ ︸

9

, ν2, 0, . . . , 0︸ ︷︷ ︸
15

)�,Σ = block diag(Σ1,Σ2, I15).

Here ν1 = (−1, 0, 1, 1, 0,−1,−1, 0, 1), ν2 = (1, . . . , 1
︸ ︷︷ ︸

6

), and (Σ2)i j =

0.9|i− j | (i, j,= 1, . . . , 6). Note that ν1 is a sparse approximation of the
third eigenvector of Σ1 and ν2 is the first eigenvector of Σ2. This case deals
with the situation where the response is associated with the third principal
component from Σ1 and the first principal component from Σ2.

Case 5 This case is the sameasCase 4 exceptwith ν2 = (1, 0,−1,−1, 0, 1). Note that
ν2 is a sparse approximation of the third eigenvector of Σ2. This case deals
with the situation where the response is associated with the third principal
components from Σ1 and Σ2.

Case 6 This case is the same as Case 2 except with x = (x1, . . . , x100). This is a
high-dimensional case of Case 2.

The sample size was set to n = 50, 200. The standard deviation was set to σ = 1, 2.
We considered the two algorithms given in Sect. 4.1: ADMMfor SPCRsvd (SPCRsvd-
ADMM) and LADMM for SPCRsvd (SPCRsvd-LADMM). SPCRsvd was fitted to
the simulated data with one or five components (k = 1, 5) except for Case 6 and one or
two components (k = 1, 2) for Case 6. We set the value of the tuning parameter w to
0.1 and employed five-fold cross-validation for selecting the regularization parameters
λV , λβ . We used a two-dimensional grid and evaluated the CV in (9) on the grid, as
illustrated in Fig. 1. The cross-validation surface was obtained by SPCRsvd-ADMM
with k = 1 and was estimated by data generated from Case 1 with n = 50, σ = 1. The
minimum is achieved for the combination of the first candidate of λV and the seventh
candidate of λβ .
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Fig. 1 Cross-validation surface in SPCRsvd-ADMM estimated by data generated from Case 1

SPCRsvd was compared with SPCR, PCR, SPLS, and PLS. SPCR was computed
by the package spcr, SPLS by spls, and PLS and PCR by pls. These packages are
included in the software R (R Core Team 2020). We used the default settings of the
packages when determining the values of tuning parameters in SPCR, PCR, SPLS,
and PLS. The values of the tuning parameters w and ξ in SPCR were set to 0.1 and
0.01, respectively, and then the regularization parameters were selected by five-fold
cross-validation. The value of the regularization parameter in SPLS was selected
by 10-fold cross-validation. The number of components in SPLS, PLS, and PCR was
also selected by 10-fold cross-validation from ranges from one to five when SPCRsvd-
ADMM, SPCRsvd-LADMM, and SPCR employ k = 5 and from one to two when
k = 2. Theperformancewas evaluated in termsofMSE = E[(y−ŷ)2]. The simulation
was conducted 100 times. MSE was estimated from 1,000 random samples.

We summarize themeans and standard deviations ofMSEs in Tables 1, 2, 3, 4, 5 and
6. The results for σ = 1, 2 had similar tendencies. PCR and PLS were worst in almost
all cases, so we will focus on comparing the other methods. SPCRsvd-LADMM and
SPCRsvd-ADMM were competitive with SPCR. In particular, SPCRsvd-LADMM
and SPCRsvd-ADMM provided smaller MSEs than SPCR in almost all cases when
k = 1. Compared to SPLS, SPCRsvd-LADMM and SPCRsvd-ADMM were slightly
inferior in many cases when k = 5. However, SPLS produced so large values of MSEs
in many cases when k = 1.

The true positive rate (TPR), the true negative rate (TNR), and theMatthews correla-
tion coefficient (MCC) (Matthews 1975) were also computed for SPCRsvd-LADMM,
SPCRsvd-ADMM, SPCR, and SPLS. TPR and TNR are respectively defined by

TPR = TP
∣
∣
∣

{
j : ζ ∗

j �= 0
}∣
∣
∣

= 1

100

100∑

k=1

∣
∣
∣

{
j : ζ̂

(k)
j �= 0 ∧ ζ ∗

j �= 0
}∣
∣
∣

∣
∣
∣

{
j : ζ ∗

j �= 0
}∣
∣
∣

,
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Table 7 Mean (standard deviation) of TPR, TNR, and MCC for Case 1

σ n k SPCRsvd-LADMM SPCRsvd-ADMM SPCR SPLS

1 50 1 TPR 0.980 1 0.810 0.930

(0.272) (0) (0.394) (0.174)

TNR 0.461 0.553 0.387 0.951

(0.339) (0.271) (0.325) (0.130)

MCC 0.327 0.470 0.188 0.881

(0.295) (0.232) (0.144) (0.184)

5 TPR 0.970 1 0.980 1

(0.171) (0) (0.140) (0)

TNR 0.512 0.532 0.273 0.905

(0.288) (0.249) (0.201) (0.220)

MCC 0.412 0.460 0.238 0.879

(0.253) (0.222) (0.137) (0.235)

200 1 TPR 0.870 1 0.430 1

(0.337) (0) (0.497) (0)

TNR 0.480 0.700 0.711 1

(0.381) (0.311) (0.357) (0)

MCC 0.306 0.637 0.123 1

(0.347) (0.305) (0.183) (0)

5 TPR 0.960 1 0.850 1

(0.196) (0) (0.358) (0)

TNR 0.577 0.630 0.441 0.916

(0.333) (0.298) (0.300) (0.152)

MCC 0.474 0.557 0.255 0.880

(0.323) (0.292) (0.176) (0.196)

2 50 1 TPR 0.890 1 0.870 0.795

(0.314) (0) (0.337) (0.247)

TNR 0.356 0.347 0.238 0.942

(0.288) (0.219) (0.313) (0.126)

MCC 0.214 0.301 0.122 0.775

(0.203) (0.169) (0.109) (0.212)

5 TPR 0.970 1 0.990 0.940

(0.171) (0) (0.100) (0.163)

TNR 0.387 0.412 0.142 0.878

(0.249) (0.224) (0.151) (0.215)

MCC 0.309 0.354 0.146 0.795

(0.189) (0.172) (0.112) (0.239)

200 1 TPR 0.860 1 0.370 1

(0.348) (0) (0.485) (0)
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Table 7 continued

σ n k SPCRsvd-LADMM SPCRsvd-ADMM SPCR SPLS

TNR 0.412 0.501 0.703 0.966

(0.345) (0.269) (0.399) (0.106)

MCC 0.227 0.417 0.070 0.951

(0.261) (0.219) (0.122) (0.136)

5 TPR 0.950 1 0.920 1

(0.219) (0) (0.272) (0)

TNR 0.487 0.545 0.276 0.920

(0.304) (0.262) (0.264) (0.150)

MCC 0.375 0.469 0.190 0.886

(0.255) (0.223) (0.138) (0.194)

The bold values correspond to the largest means

TNR = TN
∣
∣
∣

{
j : ζ ∗

j = 0
}∣
∣
∣

= 1

100

100∑

k=1

∣
∣
∣

{
j : ζ̂

(k)
j = 0 ∧ ζ ∗

j = 0
}∣
∣
∣

∣
∣
∣

{
j : ζ ∗

j = 0
}∣
∣
∣

,

where TP = ∑100
k=1 |{ j : ζ̂

(k)
j �= 0∧ζ ∗

j �= 0}|/100, TN = ∑100
k=1 |{ j : ζ̂

(k)
j = 0∧ζ ∗

j =
0}|/100, ζ ∗

j is the true j-th coefficient, ζ̂ (k)
j is the estimated j-th coefficient for the k-th

simulation, and |{∗}| is the number of elements included in set {∗}. MCC is defined
by

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

,

where FP = ∑100
k=1 |{ j : ζ̂

(k)
j �= 0 ∧ ζ ∗

j = 0}|/100 and FN = ∑100
k=1 |{ j : ζ̂

(k)
j =

0 ∧ ζ ∗
j �= 0}|/100.

Table 7 represents the means and standard deviations of TPR, TNR, and MCC
for Case 1. Many methods provided higher TPR, whereas SPCR sometimes did not.
SPLS provided the highest TNR andMCC among themethods in all situations. For all
cases, these tendencies for TPRandTNRwere essentially unchanged,while SPCRsvd-
ADMM sometimes provided the highest ratios of MCC. The results from Cases 2 to
6 are shown in the supplementary material.

We also investigated the sensitivity of the tuning parameter w and the penalty
parameters. Table 8 shows MSEs for SPCRsvd with w = 1, 0.5, 0.01. Note that we
could not compute MSEs for w = 0.01 in Case 6. Table 9 shows MSEs for SPCRsvd
withρ = 1.5, 0.5,whereρ = ρ1 = ρ2 for SPCRsvd-LADMMandρ = ρ1 = ρ2 = ρ3
for SPCRsvd-ADMM. Note that the number of iterations of the simulation was 10
times and we set n = 50, σ = 1, and k = 1 in both settings. From the results, we
observe that varying w has little influence on MSEs in SPCRsvd-ADMM, whereas it
has a small influence in SPCRsvd-LADMM. For the penalty parameters, we observe
that varying ρ has a small influence onMSEs (in particular, Case 6 seems to be affected
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Table 8 Mean (standard deviation) of MSE for w = 1, 0.5, 0.01

Case SPCRsvd-LADMM SPCRsvd-ADMM

w = 1 w = 0.5 w = 0.01 w = 1 w = 0.5 w = 0.01

1 1.496 1.625 1.775 1.160 1.162 1.163

(1.208) (1.433) (1.567) (0.121) (0.122) (0.122)

2 1.926 1.933 1.962 1.220 1.221 1.229

(7.338) (7.337) (7.337) (0.159) (0.161) (0.158)

3 3.202 2.310 2.688 1.600 1.589 1.581

(5.153) (1.549) (4.494) (0.352) (0.339) (0.334)

4 2.913 2.311 2.404 2.298 2.301 2.313

(1.067) (0.631) (0.761) (0.603) (0.590) (0.582)

5 2.221 2.172 3.838 2.207 2.203 2.189

(0.627) (0.586) (7.136) (0.576) (0.571) (0.561)

6 3.285 4.906 – 1.858 1.820 –

(3.187) (4.027) – (0.483) (0.346) –

Table 9 Mean (standard
deviation) of MSE for
ρ = 1.5, 0.5, where we set
ρ = ρ1 = ρ2 for
SPCRsvd-LADMM and
ρ = ρ1 = ρ2 = ρ3 for
SPCRsvd-ADMM

Case SPCRsvd-LADMM SPCRsvd-ADMM

ρ = 1.5 ρ = 0.5 ρ = 1.5 ρ = 0.5

1 1.624 1.475 1.163 1.180

(1.357) (1.145) (0.131) (0.116)

2 2.672 1.979 1.211 1.237

(10.275) (7.333) (0.174) (0.131)

3 1.529 1.620 1.574 1.612

(0.331) (0.319) (0.354) (0.325)

4 2.237 2.387 2.280 2.429

(0.581) (0.623) (0.647) (0.591)

5 2.395 2.296 2.172 2.298

(3.261) (0.527) (0.610) (0.564)

6 4.246 10.715 1.592 2.152

(10.685) (7.624) (0.306) (0.416)

by ρ.). However, we note that the influences do not essentially change the conclusions
derived from Tables 1, 2, 3, 4, 5 and 6 in almost all cases. This means that MSEs of
SPCRsvd may be relatively insensitive to w and ρ.

5.2 Real data analyses

WeappliedSPCRsvd to real datasets. Specifically,we applied it to eight real datasets
(housing, communities, concrete, diabetes, parkinsons, triazines, winequality-red, and
winequality-white), which are available from the UCI database (http://archive.ics.
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Table 10 Sample size and
number of covariates in real
datasets

Sample size # of covariates

Housing 506 13

Communities 1993 101

Concrete 1030 8

Diabetes 442 10

Parkinsons 5875 19

Triazines 186 36

Winequality-red 1599 11

Winequality-white 4898 11

uci.edu/ml/index.html). The sample sizes and the numbers of covariates are listed
in Table 10. If the sample size was larger than 1100, we randomly extracted 1,100
observations from the dataset. For each dataset,we randomly selected 100 observations
as training data and used the remaining as test data to estimateMSEs.We standardized
the covariates for each dataset. We applied two algorithms: SPCRsvd-LADMM and
SPCRsvd-ADMM. The procedure was repeated 50 times.

We compared SPCRsvd with the four methods used in Sect. 5.1. The number of
components was set as k = 1. The value of the tuning parameter w in SPCRsvd was
set to 0.01, and then λV and λβ were selected by five-fold cross-validation. The tuning
parameters in the other methods were selected in similar manners to in Sect. 5.1.

Table 11 lists the means and standard deviations ofMSEs. PLS and PCRwere com-
petitive but did not provide the smallestMSEs for any dataset. SPCRwas slightly better
than PLS and PCR. SPCRsvd-LADMM and SPCRsvd-ADMM provided smaller
MSEs than the other methods in many cases. Although SPLS sometimes provided
smaller MSEs than other methods, SPLS also had the worst MSEs in some cases.
From the result, we may conclude that SPCRsvd-LADMM and SPCRsvd-ADMM
are superior to the other methods in terms of giving smaller MSEs, which is consistent
with the results in Sect. 5.1.

6 Conclusions

In this paper, we proposed SPCRsvd, a one-stage procedure for PCR with a loss
function for regression loss andPCA loss of SVD.To obtain the estimates of the param-
eters in SPCRsvd, we developed two computational algorithms based on ADMM and
LADMM. From our numerical studies, we observed that our one-stage method is
competitive with or better than competing approaches.

Amajor limitation of SPCRsvd is the computational cost. Figure 2 shows common
logarithm of the run-times for the simulation presented in Sect. 5.1. Note that the
number of iterations of the simulation was 10 times and we set n = 50, σ = 1, and
k = 1. In these results, we observe that SPCRsvd-ADMMwas faster than SPCRsvd-
LADMM, and that the SPCRsvd-based methods required more computation time
than the other four methods in almost cases. This high computational cost causes
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Fig. 2 Common logarithm of run-times (seconds) for the simulation in Sect. 5.1

some problems. For example, SPCRsvd provides relatively low TNR, based on Table
7. To address this issue, one could apply the adaptive lasso to the regularization term
in SPCRsvd. However, owing to the computational cost, it may be difficult to perform
SPCRsvd with the adaptive lasso because the adaptive lasso generally requires more
computation time than lasso.

SPCRsvd cannot handle binary data for the explanatory variables. To perform PCA
for binary data, Lee et al. (2010) introduced the logistic PCAwith sparse regularization.
It would be interesting to extend SPCRsvd in the context of the method in Lee et al.
(2010). We leave them as future research.
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Appendix

A Derivation of the updates in the ADMM algorithm

By simple calculations, we can easily obtain the solutions for β0,�1,�2,λ3. Hence
we show only the derivations for V1, V , V0, Z ,β,β0. For simplicity, we omit iteration
index m.

123

http://creativecommons.org/licenses/by/4.0/


818 S. Kawano

Update of V1.

V1 := arg min
V1

{
1

n
‖ y − β01n − XV1β‖22 + ρ2

2
‖V1 − V0 + �2‖2F

}

.

Set y∗ = y − β01n . The terms on the right-hand side are calculated by

‖ y∗ − XV1β‖22 = y∗� y∗ − 2tr(β y∗�XV1) + β�V�
1 X�XV1β,

‖V1 − V0 + �2‖2F = tr(V�
1 V1) − 2tr{(V0 − �2)

�V1} + tr{(V0 − �2)
�(V0 − �2)}.

Using these, we obtain

F := 1

n
‖ y∗ − XV1β‖22 + ρ2

2
‖V1 − V0 + �2‖2F

= 1

n
β�V�

1 X�XV1β − 2

n
tr(β y∗�XV1)

+ ρ2

2
tr(V�

1 V1) − ρ2tr{(V0 − �2)
�V1} + C,

where C is a constant. Setting ∂F/∂V1 = O, we have

2

n
X�XV1ββ� − 2

n
X� y∗β� + ρ2V1 − ρ2(V0 − �2) = O.

This leads to the update for V1.
Update of V .

V := arg min
V

{w

n
‖X − ZV�‖2F + ρ1

2
‖V − V0 + �1‖2F

}
subject to V�V = Ik .

The terms on the right-hand side are calculated by

‖X − ZV�‖2F = tr(X�X) − 2tr(V Z�X) + tr(Z�Z),

‖V − V0 + �1‖2F = −2tr{(V0 − �1)
�V } + tr{(V0 − �1)

�(V0 − �1)} + k.

Adding the equality constraint V�V = Ik , we obatin

arg min
V

{w

n
‖X − ZV�‖2F + ρ1

2
‖V − V0 + �1‖2F

}

= arg min
V

{∥
∥
∥V −

{w

n
X�Z + ρ1

2
(V0 − �1)

}∥
∥
∥
2

F

}

.

From the SVD wX�Z/n + ρ1 (V0 − �1) /2 = PΩQ�, we obtain the solution
V = PQ�. This follows from the Procrustes rotation by Zou et al. (2006).
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Update of V0.

V0 :=arg min
V0

{ρ1

2
‖V − V0 + �1‖2F+ ρ2

2
‖V1−V0 + �2‖2F + λV ‖V0‖1

}
.

(A.1)

A simple calculation shows that the first two terms on the right-hand side are given
by

ρ1 + ρ2

2

∥
∥
∥
∥V0 − 1

ρ1 + ρ2
{ρ1(V + �1) + ρ2(V1 + �2)}

∥
∥
∥
∥

2

F
.

Formula (A.1) can be rewritten as

V0 := arg min
V0

{
1

2

∥
∥
∥
∥V0 − 1

ρ1 + ρ2
{ρ1(V + �1) + ρ2(V1 + �2)}

∥
∥
∥
∥

2

F

+ λV

ρ1 + ρ2
‖V0‖1

}

.

Thus we obtain the update of V0.
Update of Z .

Z := arg min
Z

{w

n
‖X − ZV�‖2F

}
.

We have the solution Z = XV from the first-order optimality condition.
Update of β.

β := arg min
β

{
1

n
‖ y − β01n − XV1β‖22 + ρ2

2
‖β − β0 + λ‖22

}

.

The first-order optimality condition is

−2

n
V�
1 X�( y − β01n − XV1β) + ρ2(β − β0 + λ) = 0.

This leads to the update of β.
Update of β0.

β0 := arg min
β0

{ρ2

2
‖β − β0 + λ‖22 + λβ‖β0‖1

}
.

It is clear that the update of β0 can be simply obtained by an element-wise soft-
threshold operator.

123



820 S. Kawano

B LADMM algorithm for SPCRsvd

The LADMM algorithm for SPCRsvd is as follows:

Step 1 Set the values of the tuning parameter w, regularization parameters λV , λβ ,
and penalty parameters ρ1, ρ2.
Step 2 Initialize all the parameters as β

(0)
0 ,β(0),β

(0)
0 , Z (0), V (0), V (0)

0 ,�(0),λ(0).
Step 3 For m = 0, 1, 2, . . ., repeat Steps 4 to 10 until convergence.
Step 4 Update V as follows:

V (m+1) = PQ�,

where P and Q are the matrices given by SVD

w

n
X�Z (m) + ρ1

2

(
V (m)
0 + �(m)

)
= PΩQ�.

Step 5 Update V0 as follows:

v
(m+1)
0i j = S

(

si j , λV /

(
2ν + nρ1

n

))

, i = 1, . . . , p, j = 1, . . . , k, (B.1)

where v
(m)
0i j = (V (m)

0 )i j , ν is the maximum eigenvalue of β(m)β(m)� ⊗ X�X , and
si j is the (i, j)-th element of the matrix

2n

2ν + nρ1

{
1

n

(

X�( y − β
(m)
0 1n)β(m)� − X�XV (m)

0 β(m)β(m)�)

+ ν

n
V (m)
0 − ρ1

2
(�(m) − V (m+1)

)}

.

Step 6 Update Z by Z (m+1) = XV (m+1).
Step 7 Update β as follows:

β(m+1) =
(
1

n
V (m+1)�
0 X�XV (m+1)

0 + ρ2

2
Ik

)−1 {
1

n
V (m+1)�
0 X�( y − β

(m)
0 1n)

+ ρ2

2
(β

(m)
0 − λ(m))

}

.

Step 8 Update β0 as follows:

β
(m+1)
0 j = S

(

β
(m+1)
j + λ

(m)
j ,

λβ

ρ2

)

, j = 1, . . . , k,

where λ
(m)
j and β

(m)
j are the j-th element of the vector λ(m) and β(m), respectively.
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Step 9 Update β0 as follows:

β
(m+1)
0 = 1

n
1�
n ( y − XV (m+1)

0 β(m+1)).

Step 10 Update �,λ as follows:

�(m+1) = �(m) + V (m+1)
0 − V (m+1),

λ(m+1) = λ(m) + β(m+1) − β
(m+1)
0 .

Next, we describe only the update of only V0 because the derivations of other
updates are the same as in Appendix A. As in Appendix A, we omit iteration indexm.

We consider

V0 :=arg min
V0

{
1

n
‖ y−β01n−XV0β‖22 + ρ1

2
‖V0 − V + �‖2F + λV ‖V0‖1

}

.

(B.2)

Set y∗ = y−β01n . By Taylor expansion, the term ‖ y∗ − XV0β‖22 is approximated as

‖ y∗ − XV0β‖22 = y∗� y∗ − 2tr(β y∗�XV0) + β�V�
0 X�XV0β

≈ y∗� y∗ − 2tr(β y∗�XV0) + 2tr(ββ�Ṽ0X�XV0) + ν‖V0 − Ṽ0‖2F ,

where Ṽ0 is the current estimate of V0 and ν is a constant. Following Li et al. (2014),
we use the maximum eigenvalue of ββ� ⊗ X�X as ν. Using the approximation, the
problem (B.2) can be replaced with

V0 := arg min
V0

{

− 2

n
tr(β y∗�XV0) + 2

n
tr(ββ�Ṽ0X�XV0) + ν

n
‖V0 − Ṽ0‖2F + ρ1

2
‖V0 − V + �‖2F

︸ ︷︷ ︸
(A)

+ λV ‖V0‖1
}

.

Formula (A) is calculated as

2ν + nρ1

2n

∥
∥
∥
∥V0 − 2n

2ν + nρ1

{
1

n
(X� y∗β� − X�XṼ0ββ�) + ν

n
Ṽ0 − ρ1

2
(� − V )

}∥
∥
∥
∥

2

F
.

This leads to the update of V0 given in Formula (B.1).
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