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Abstract
We propose and study a new frequency-domain procedure for characterizing and com-
paring large sets of long time series. Instead of using all the information available from
data, which would be computationally very expensive, we propose some regulariza-
tion rules in order to select and summarize the most relevant information for clustering
purposes. Essentially, we suggest to use a fragmented periodogram computed around
the driving cyclical components of interest and to compare the various estimates. This
procedure is computationally simple, but able to condense relevant information of the
time series. A simulation exercise shows that the smoothed fragmented periodogram
works in general better than the non-smoothed one and not worse than the complete
periodogram for medium to large sample sizes. We illustrate this procedure in a study
of the evolution of several stock markets indices. We further show the effect of recent
financial crises over these indices behaviour.

Keywords Big data · Fragmented periodogram · Spectral clustering · Smoothed
periodogram · Time series clustering

Mathematics Subject Classification 62H30 · 62M10 · 62M15

1 Introduction

The big data revolution is now offering researchers and analysts new possibilities and
new challenges. This is particularly true with time series, as for many domains we now
have access to many and very long time series related to a given domain of interest.
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This happens in areas as diverse as astronomy, geophysics, medicine, social media,
and finance.

In astronomy, for instance, we now have long and diverse series of star magni-
tude and spectra, radio-astronomy signals, asteroid position measurements, and other
records. In medicine, we have very long and multiple records of physical activity indi-
cators, heart rate, and other biological features. In social media and social studies, we
have long records of human interactions, from administrative data to internet activities.
In finance, we have tic-by-tic data of asset prices from many markets and firms.

The diversity and length of data available to researchers leads to particular chal-
lenges when comparing and clustering time series. For these tasks it is usually not
possible to use traditional methods of analysing, estimating models, and comparing
features, as these methods imply computing and inverting extremely large matrices.

In this paper, we propose a spectral method of synthesizing and comparing time
series characteristics which is nonparametric and focused on the periodic behaviour of
the time series. This method does not imply the computation of the full periodograms,
but only of the periodogram components around the frequencies of interest. It then
proceeds to comparing the periodogram ordinates for the various time series and
grouping themwith common clusteringmethods.We call it a fragmented-periodogram
approach.

This method is somehow inspired by a procedure to predict tides due to William
Thomson, later knighted Lord Kelvin. Almost 150 years ago, this famous scientist
devised the first computationally achievable method for successfully predicting the
tidal behaviour at any port for which a sufficiently long historical data would be
available (Thomson 1881). For this purpose, he computed the amplitude and phase of
just the cyclical components known to be of interest from astronomical reasonings.

We also check the advantages of smoothing the fragmented periodograms since it
reduces the variance of the differences we compare: when two time series are different,
the differences show up in the smoothed periodograms; when they are similar, the
smoothed versions should be closer since the variance of the difference of the smoothed
periodograms diminishes.

Clustering time series would be based on these new regularized periodograms. We
will check the performance of our new proposal through some simulations. We will
also apply themethod to real financial time series, in particular, to the returns’ volatility
series, and check the effects of the Great Recession and of the European sovereign
debt crisis in the financial integration of the stock markets.

The plan for the rest of this paper is as follows. In Sect. 2 we review the main
traditional methods used to group time series. In Sect. 3 we discuss how time series
characterization can be simplified in the presence of significative periodic compo-
nents by using the corresponding spectral estimates. We introduce what we call the
fragmented periodogram. In Sect. 4 we discuss the distribution of the fragmented peri-
odogram ordinates and show that smoothing reduces the variance of the periodogram
differences. In Sect. 5 we present finite-sample simulation evidence about the prop-
erties of the new clustering methods when we vary both the time dimension T and
the cross sectional dimension N . In Sect. 6 we illustrate the procedure with three
examples. Firstly, we cluster five data series both with the full and the fragmented
periodograms. Secondly, we show how the 2007/2008 crisis changed the clustering
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of the main world financial indices. Thirdly, we show how the sovereign debt crisis
changed the clustering of the main national stock indices. In Sect. 7 we present some
conclusions.

2 Traditional clustering of time series

Various methods have been developed for comparing and clustering time series. One
class of such methods is based on statistics for the time series co-movements. This
can be done through structure analysis of covariances applied to Principal Component
Analysis (PCA) and factor models analysis, among other methods. Dynamic factor
models have gained a great popularity in recent times since they are widely used, for
instance, in economics and finance. They allow to model common movements in time
series fluctuations by decomposing the variance-covariance matrix of the observed
series into the sum of a reduced-rank matrix (the one related to the common move-
ments), and a (quasi) idiosyncratic part. Peña and Box (1987) analyzed dynamic factor
models with stationary time series, Peña and Poncela (2006) extended the analysis to
nonstationary time series, and Lam et al. (2011) further extended it to large data sets.
Additionally, PCA methods have been heavily used in recent times to consistently
estimate the common factors in dynamic factor models when both the time series
dimension T and the cross dimension N tend to infinity [for stationary time series see
Forni et al. (2000, 2005) or Stock and Watson (2002); for nonstationary time series
see Bai and Ng (2004)]. Doz et al. (2011, 2012) extended these double asymptotic
results for dynamic factor models estimated in state space form through the Kalman
filter. For surveys of the literature on this topic see, for instance, Bai and Ng (2008)
and Stock and Watson (2011).

In contrast to this class of methods, there are others that do not use any type of
information regarding the co-movement of the series. Consider, for instance, studies
in the classification of heart-beat patterns: the major interest of these studies is to
characterize different types of patterns, without considering any correlation among
records (Yang et al. 2011). In financial time series we may also be interested in market
reaction to different shocks in different times. For this purpose, it may be helpful to
compare and cluster time series according to their type of behaviour only. In order to
do so, it is necessary to construct measures of similarity or dissimilarity among the
time series. Preferably, but not necessarily, these measures should be distances, i.e.,
respect the identity, symmetry, and triangle inequality properties.

The first of this type of methods was introduced by Piccolo (1990). It is simply the
Euclidean distance between the coefficients of the autoregressive representation of the
time series under consideration. Consider two time series allowingAR representations,
xt and yt , with t integer-valued, i.e.,

xt = π1,x xt−1 + π2,x xt−2 + π3,x xt−3 + · · · + εt

yt = π1,y yt−1 + π2,y yt−2 + π3,y yt−3 + · · · + εt
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Then, Piccolo’s (1990) distance is given by

d(x, y) =
√
√
√
√

∞
∑

j=1

(π j,x − π j,y)2 (1)

If the autoregressive coefficients are square summable, then this distance exists.
However, even if the series are not stationary, it is possible to rely on truncated AR
representations, which are always possible for empirical time series. Piccolo’s method
requires the estimation of a model and the computation of its AR coefficients. The
same is true for other similar methods such as the residual-based metric of Tong and
Dabas (1990) and the truncatedAR expansions distancemeasure proposed byMaharaj
(1996).

Early nonparametric methods for clustering time series were based on the sample
autocorrelation distance (see, Galeano and Peña 2000). Assume, as above,we have two
time series xt and yt . Assume also that ρ̂x = (ρ̂x,1, ..., ρ̂x,r ) and ρ̂ y = (ρ̂y,1, ..., ρ̂y,r )

are the vectors of estimated autocorrelation coefficients for each series, and that for
some r , ρ̂i, j ∼= 0 for j > r and i = x, y. Following Galeano and Peña (2000), a
distance measure between x and y maybe defined by

d(x, y) =
√

(ρ̂x − ρ̂ y)
′�(ρ̂x − ρ̂ y), (2)

where� is a diagonalmatrix of positive elements. Thismatrixmay naturally givemore
weight to the lower order coefficients. If � is the identity matrix, then this measure
corresponds simply to the Euclidean distance between the autocorrelation vectors of
the two series x and y.

Later, Caiado et al. (2006) introduced frequency domain methods, which are also
nonparametric as they do not require the estimation of any particularmodel. Asymptot-
ically, thesemethods are equivalent to autocorrelationmethods, but theymay highlight
and conveniently extract different information from the time series under considera-
tion.

Spectral methods for comparing time series benefit from early work by Coates and
Diggle (1986), who developed periodogram-based nonparametric tests for the hypoth-
esis that two independent time-series are realizations of the same stationary process,
and by Diggle and Fisher (1991), who developed similar tests by using the cumulative
periodograms. Since then, spectral methods have found considerable interest in the
literature.

Following Caiado et al. (2006), spectral methods essentially use the periodogram
defined for each frequency w j = 2π j

T , j = 1, ..., [T /2], ([z] denotes the integer part
of z, and T the number of time points)

Ix (w j ) = T−1

∣
∣
∣
∣
∣

T
∑

t=1

xt e
−i tw j

∣
∣
∣
∣
∣

2

(3)
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and compute some type of distance between time series x and y such as

d(x, y) =

√
√
√
√
√

[T /2]
∑

j=1

(

Px (ω j ) − Py(ω j )
)2

, (4)

where P stands for the periodogram I , for the normalized periodogram γ −1
0 I , where

γ0 is the variance of the series, or for the log-normalized periodogram ln(γ −1
0 I ).

In a simulation study, Caiado et al. (2006) show that using the normalized peri-
odogram in (2) works quite well for distinguishing between nonstationary and
near-nonstationary time series. An interpolated periodogram based metric was later
proposed by Caiado et al. (2009) for handling series of unequal length.

The surveys by Liao (2005) and Caiado et al. (2015) review some of the most
important developments on time series clustering and applications.

3 Cutting down the computations for large data sets clustering

In order to cut down the computations when the number of observations is large, we
will propose to classify time series based only on that part of the series dynamics that
define their main fluctuations; so, instead of computing the whole periodogram, we
will compute it only for specific intervals. For instance, inmacroeconomics, if wewant
to classify a set of time series according to their business cycle, we would filter the
periodogram keeping only the frequencies that generate a cycle, for example, between
1 and 4 years. In finance, Corsi (2009) introduced the Heterogeneous Autoregressive
(HAR) model for the stochastic volatility, a cascade of autoregressions on the squares
of the returns at different frequencies (daily, weekly, monthly). This way one can
reproduce the main features observed in financial returns such as long memory, fat
tails and self-similarity. See Fig. 1 for an illustration of these features with the German
stock index DAX. Let us assume that we have a time series process that on the levels
or on the squares exhibit seasonality at weekly and monthly frequency, not presenting
important oscillations at any other frequency. As an illustration, consider daily time
series pt close to a random walk and define the returns as rt = ln pt − ln pt−1, which
will be close to a non-correlated noise. An HAR(3) model for the (realized) volatility
RVt = r2t would be given by

RV (d)
t+1 = c + β(d)RV (d)

t + β(w)RV (w)
t + β(m)RV (m)

t + ωt+1 (5)

where d stands for daily, w = 5 for weekly, m = 21 for monthly, and ωt is a white
noise. Following Corsi (2009), we can approximate the weekly and monthly terms
respectively by RV (w)

t = 1
5

∑5
i=1 RV

(d)
t−i and RV (m)

t = 1
21

∑21
i=1 RV

(d)
t−i . The HAR

model is able to pick up the fact that the participants of financial markets respond to
uncertainty at different horizons. As recently recognized in Bollerslev et al. (2018)
this specification has become a benchmark to compare forecasts of realized volatility.
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Fig. 1 German stock index DAX series illustrates the issues regarding the analysis we are performing. Price
values are nonstationary and returns display typical volatility clustering; squared returns display typical time
dependence with some dominant frequencies, the periodogram displays a sequence of peaks revealing these
dominant frequencies

Our proposal consists on computing the periodogram only around the frequencies
s of interest. But we may not choose frequency-domain symmetric intervals with
frequencies ± h around the desired one s, since this would render time-domain asym-
metric intervals.

Assume, for instance, that we are dealing with daily time series and are interested
only in the annual cycle. For time series of length T = 3556 (one of the dimensions
that we use in our empirical financial applications), we will select cycles of around
252 working days, that is, fluctuations at the annual frequency corresponding to js =
T /252 ∼= 14. As the time series might not behave exactly in the same way, we would
like to keep an interval of frequencies around the one of interest, s. In this case, if
we keep frequencies in the interval [Is−10; Is+10] = [I4; I24], we will capture cycles
between 148 and 889 working days. Although the interval is symmetric [Is−10; Is+10]
around the frequency of interest, it is asymmetric in the number of days we consider
around 252. Therefore, we will use intervals that give us cycles of ±h days around
the one of interest, i.e., intervals of the form [I ( 2π

s+h′ ); I ( 2π
s−h′ )].

For instance, consider a time symmetric filter for monthly seasonality in daily
time series around the monthly frequency s that reflects oscillations with a period
of 22 working days. The time symmetric bandpass [I ( 2π

s+h′ ); I ( 2π
s−h′ )] for h′ = 2

will pick up all the cycles between 22 ± 2 days or between 20 and 24 days. In
summary, we propose to use time-domain symmetric intervals (although frequency
domain asymmetric). Figure 2 illustrates this issue.

We believe this choice is intervals adequate for many types of analyses, namely for
economic and financial time series comparisons. Time domain intervals are easier to
understand for most problems, and so they are easier to assess and chose in order to
isolate the frequencies of interest.
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Fig. 2 Illustration of limits for fragmented periodogram frequencies to use, with two windows: frequency-
domain symmetric (top) and time-domain symmetric (bottom). We clearly observe that symmetry in one
domain implies asymmetry in the other domain

Finally, the amount of ordinates in the periodogramused at high frequencies ismuch
larger than that used at low frequencies. Therefore, we would make the bandwidth
dependent on the frequency we want to isolate: the higher the frequency, the larger the
bandwidth. To highlight the dependence of the bandwith on the frequency of interest
we will denote the h′ parameter as hs .

The choice of a reasonable parameter hs is very flexible and can be adapted to the
problem under consideration. There are a few conditions to take into account. Firstly,
the longer the time series the larger hs can be. Secondly, as we are limited by the
computer memory and speed we should chose a small fraction of the frequencies.
Thirdly, when we know the frequencies of interest we should try as much as possible
to isolate them, i.e., to have small and non-overlapping windows. Taking these issues
into consideration, we experimented various window lengths and got very reasonable
results when hs is proportional to s.

For the application developed in Sect. 6 of this paper, we have selected hs = [ s4 ].
The seasonal periods are s = 5, 21, 252 days. Define the lower and upper bounds, l
and u, as

l =
⌊

T

s + hs

⌋

and u =
⌈

T

s − hs

⌉

, (6)

respectively, where � � denotes the floor function and � � the ceiling function. For
instance, if the number of time points is T = 2000, then the frequency correspond-
ing to the weekly cycle is js = 400, hs = 1, and the upper and lower bounds
are l = 333 and u = 500. So we will evaluate the periodogram for the inter-
val [I333; I500], picking up 77 frequencies to the left and 100 to the right of the
weekly seasonal frequency. For s = 21, that corresponds to js = 95, hs = 5
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Fig. 3 A fragmented periodogram compared with the full periodogram and the filtered frequencies of
interest. The inset highlights part of the smoothed fragmented periodogram

and we will compute the periodogram ordinates for the interval [I76; I125]. Finally,
for the annual cycle s = 252 that corresponds to js = 7, hs = 63 and we will
keep the frequencies in the interval [I6; I10]. In all cases, notice that this asymme-
try of the interval in the frequency domain leads to symmetric intervals in the time
domain.

4 Why smoothing?

It is well known that the periodogram is not a consistent estimator of the spectral
density, but it can be made consistent by smoothing the ordinates with an appropriate
moving window (see, e.g., Brockwell and Davis 1991).

The purpose of this paper, however, is not to get estimates but to compare time
series by using the periodogram. In this context, the usefulness of smoothing is not
immediate: When comparing periodogram ordinates at a given set of frequencies,
many differences between each spectral density and the corresponding periodogram
ordinate are added or averaged, and so the noise in the values may level out for the
final comparison. This means that the comparison is already a means of using grouped
estimates.

However, by simulation and using a few theoretical results we found out that proper
smoothing is justifiable and very useful. In reality, smoothing the periodogram gener-
ally improves significantly time series clustering results (Fig. 3).

In this section,we carry on some theoretical arguments for the usefulness of smooth-
ing. We draw from early work of Coates and Diggle (1986) and Diggle and Fisher
(1991). For simplicity, we assume a rectangular smoothing scheme. The smoothed
spectral estimates will be denoted by Î k , where k is the number of frequencies used;
the periodogram ordinates will be denoted by I f rag , which will be just the peri-

123



A fragmented-periodogram approach for clustering big data… 125

odogram ordinates I (ω) if the frequency ω is used, i.e., included in the fragmented
periodogram, and zero otherwise. For a rectangular window we thus have:

Î k(ω j ) = 1

2M + 1

M
∑

i=−M

I f rag(ω j−i ).

Recall that in this case k = 2M + 1.
For frequencies not overlapping zero or π , the normalized periodogram filtering

estimates approximate a χ2 distribution:

I k(ω j )2k/ f (ω j )
.
∼ χ2

2k .

Then, assuming the time series X and Y are uncorrelated but have identical second-
order properties with f (·) as their common spectral density, the normalized difference
of the periodogram smoothed estimates follows asymptotically a Variance-Gamma
(VG) distribution with parameters λ = 2k/2, α = 1/2, β = μ = 0:

(I kX (ω j ) − I kY (ω j ))2k/ f (ω j )
.
∼ VG.

From the assumptions and the properties of the VG, we immediately get

E[2k(I kX (ω j ) − I kY (ω j ))/ f (ω j )] = 0

Var[2k(I kX (ω j ) − I kY (ω j ))/ f (ω j )] = 2λ(α2 + β2)

(α − β)2(α + β)2
= 8k.

Then,

Var

[

Î kX (ω j ) − Î kY (ω j )

f (ω j )

]

= 2

k
= 2

2M + 1
→ 0, (M → ∞).

Similar results hold when comparing log-periodograms. Again, using results in Coates
and Diggle (1986) and Diggle and Fisher (1991), we know this difference follows
a logistic distribution. For clarity, we can write both spectral densities fX and fY ,
although we are assuming that fX = fY = f . For each used periodogram ordinate,
the difference D will then have the asymptotic distribution

D = ln IX (ω j ) − ln IY (ω j )
.
∼ logistic{ln fX (ω j ) − ln fY (ω j ), 1}
.
∼ logistic{0, 1}.

and so from the properties of the logistic it follows that E[D] = 0 and Var[D] =
π2/3 � 0, where we stress the fact that the variance of each ordinate difference
converges to a nonzero constant.
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As we have assumed that fX = fY , for smoothed periodogram ordinates not
overlapping 0 or π we obtain the distribution of eD

eD = I kX (ω j )

I kY (ω j )
∼ fX (ω j )

fY (ω j )
F2k,2k ∼ F2k,2k

Then E
[

eD
] = k/(k − 2) → 1 and Var

[

eD
] = 2k2(2k−2)

k(k−2)2(k−4)
∼ 1

k → 0, from which
we obtain the distribution of the log-smoothed periodogram

D = ln I kX (ω j ) − ln I kY (ω j ) ∼ 2 ln FisherZ(2k, 2k).

Now, from the well-known distribution of the FisherZ, we get

E[ln I kX (ω j ) − ln I kY (ω j )] → 2 · 1
2

(
1

2k
− 1

2k

)

= 0

Var[ln I kX (ω j ) − ln I kY (ω j )] → 4 · 1
2

(
1

2k
+ 1

2k

)

→ 0.

We conclude that for both the periodogram and the log-periodogram, smoothing
reduces the variance of the differences. This constitutes an argument in favour of
smoothing the fragmented periodogram: time series with similar spectral densities
should appear closer and time series with different spectral densities should be distin-
guishable.

We propose the following procedure to compute the smoothed periodogram:

1. Compute the periodogram, normalized periodogram or log normalized peri-
odogram only for the ordinates in the intervals

[
2π

s + hs
; 2π

s − hs

]

(7)

where hs depends on the frequencies s of interest.
2. Smooth the fragmented periodogram, normalized periodogram or log normalized

periodogram P f rag . We suggest two most popular smoothers, the Bartlett and the
rectangular ones, given in Eqs. (8) and (9) respectively, although, in principle, any
other smoother can be used.

P̂k
j = 1

M

M
∑

i=−M

(

1 − |i |
M

)

P f rag
j−i (8)

P̂k
j = 1

2M + 1

M
∑

i=−M

P f rag
j−i (9)

where k = 2M + 1.

In the next section, we assess and confirm the advantage of smoothing by means of
an extensive simulation study.
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Fig. 4 Top panel: simulated data. Bottom panel: periodogram (full line, in green), fragmented periodogram
(dot dashed line, in blue), and smoothed fragmented periodogram (dashed line, in red) (colour figure online)

5 Simulation exercise

In order to check the performance of our proposed procedure we have performed
several simulation exercises. For N = 4 time series we have simulated the following
model

yt = φw yt−w + φm yt−m + φa yt−a + εt

where φi , i = w,m, a is the autoregressive parameter associated to the weekly,
monthly and annual cycles, respectively, and εt is white noise. To get an idea of
the simulated data, Fig. 4 plots the generated time series in one replication when the
AR parameters take the values φw = 0.7, φi = 0.1, i = m, a and var(εt ) = 1. This
is one of the models that we will use in this set of simulations as it will be shown in
Table 3. The model reflects the case where the weekly cycle is very noticeable while
the monthly and annual cycles are less marked. The sample size is T = 500 time
points and the plot shows the time series in the top panel and the periodogram and
its fragmented and smoothed fragmented versions in the bottom panel. Notice that
we only use a small percentage of the ordinates of the periodogram in its fragmented
versions (smoothed or not). Notice as well that we do not even use the information
provided by the harmonics in the fragmented versions.
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In each run, we generated N time series divided into 2 groups considering two
different data generating processes each time we simulate a replica. First, we consider
that the weekly, monthly and annual cycles might not been of exactly the same length,
so we have varied the lags w, m, a in the two data sets. In our first experiment we
have considered that for the first group of series the lags associated to the weekly,
monthly and annual seasonal cycles were 5, 21 and 252, respectively, while for the
second group they were 4, 25 and 300. Therefore, in our first set of simulations we
will be comparing series generated by the model

yt = φw yt−5 + φm yt−21 + φa yt−252 + εt

versus those generated by

yt = φw yt−4 + φm yt−25 + φa yt−300 + εt .

This might be due, for instance, to different bank holidays. We have generated the
2 sets of series according to the previous models and computed the log normalized
periodogram and the fragmented and the smoothed fragmented versions. We use the
log normalized periodogram based on the results of Caiado et al. (2006). For the
smoothed version, we have used the Bartlett filter given in (8) with M = u−l

2 , with u
and l as defined in Eqs. (5) and (6) and hs taking values 0.5, 3 and 45 for the annual,
monthly and weekly cycles, respectively. We have used these values of hs in order
to keep approximately the same percentage of ordinates (a little bit more than 11%
in all cases) in the fragmented versions of the periodogram. Then, we have clustered
the time series using the Euclidean distance of the 3 versions of the log normalized
periodogram. For brevity, we will simply denote the log normalized periodogram as
just the periodogram from now on. We have run 1000 replications for each set of
parameters and sample sizes T = 500, 1000, 2000, 5000 and 10,000.

All the tables in this section are read in the same way. The first column shows a
triple of numbers (T , p, f ) being the first one T the sample size, the second one p the
number of ordinates of the periodogram (T /2 for T even) and the third one the number
of ordinates that we use in the fragmented and smoothed fragmented periodograms,
which are the same. Then the table shows three panels of 3 columns each one of them,
where we show the percentage of times that the N time series are correctly clustered
for each sample size T when using the whole periodogram and the fragmented and
smoothed fragmented versions. Notice that our fragmented versions use a small part
of ordinates of the full periodogram (around 11%). We want to check that if using
only a small fraction of the information (ordinates in the periodogram), we could get
classification results comparable to those obtainedwhen using thewhole periodogram.
We would also like to see the effect of smoothing the fragmented periodogram before
clustering. The overall effect of smoothing the periodogram is to reduce the variance
of the spectral estimates differences as the number of ordinates used for smoothing
increases. The effect of smoothing should be larger, the larger the interval we use
for smoothing. In this sense, we would like to point out that the number of ordinates
associated to theweekly cycle in the fragmented periodogram is larger than that related
to the monthly cycle and both larger than that used in the annual cycle. In fact, for the
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smallest sample size T = 500 used in the simulations, the number of ordinates of the
fragmented and smoothed fragmented periodograms associated to the annual cycle is
just 1 and, of course, both coincide in that ordinate. The effect of smoothing should
be larger, the larger the interval we use.

Table 1 illustrates the results of our first simulation exercise, in which we have used
three different sets of parameters for generating three stationary processes. The first
column shows the sample size and information regarding the number of ordinates used.
Columns 2–4, 5–7 and 8–10 the percentage of correctly classified cases for the 3 sets
of parameters used in the simulations. For a given set of parameters, the results always
improve with the sample size T . Notice that given the period of the annual cycle in
both sets (the lags used for simulating the yearly cycle were 252 and 300, respectively,
in the 2 groups), the annual cycle is hardly reproduced for the smallest sample size,
T = 500, so the results improve with the sample size as we can detect more times the
annual cycle.Moreover, for a given sample size, the best results are always given by the
full periodogram. However the smoothed periodogram, that uses a small percentage
of information, follows closely the outcome of the full periodogram for moderate to
large sample sizes. The fragmented periodogram gives the worst results of all the
procedures but it works quite well from T = 2000 (with, for instance, already 92% of
correctly classified replications for the first set of parameters). As smoothing decreases
the variance of the periodogram, we could detect differences in periodograms more
easily using the smoothed version than just the fragmented version.

In the second set of simulations we assign the same value to the autoregressive
parameters associated to each one of the seasonal cycles, so all the cycles rely on the
same value of the parameters and it is not the difference in the value of the parameters
what drives the good or bad performance of the method. Table 2 shows the results
in the left, center and right panels when all the autoregressive parameters take the
value of .3, .2 and .1, respectively. Notice that as the magnitude of the autoregressive
parameters decreases, the processes are closer to white noise. In the extreme case
in which all the autoregressive parameters took the value of zero, all the time series
would be white noise and then we would have only one group of series instead of two.

The ordering in the performance of the methods is maintained in Table 2: the full
periodogram works better in classifying the time series, followed by the smoothed
fragmented periodogram and finally by the fragmented. As expected, results are better
in the left panel, then in the center panel and, finally, they worsen in the right panel as
we are diminishing the differences between the two sets of time series getting all of
them closer to the same white noise process. Also, and as expected, given a column
in the table, results improve as we move down, that is, as we increase the sample size
T . Notice that for T = 2000, results are quite good for all methods when φi = 0.3,
i = w,m, a.

In the next set of simulations, we will maintain the same lag for all the autoregres-
sive processes and the differences would rely in the value of only one parameter. In
particular, we will simulate N/2 series from each one of the following processes.

yt = φ5yt−5 + 0.1yt−21 + 0.1yt−252 + εt
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versus

yt = φ∗
5 yt−5 + 0.1yt−21 + 0.1yt−252 + εt ,

so the only difference would be the in the value of the autoregressive parameter asso-
ciated to the weekly seasonal cycle. Table 3 presents the results when the difference
between the two parameters are high, medium, and low.

As expected, the results are better for all methods when the differences between the
two parameters are large (left panel), theyworsenwhen they are ofmedium size (center
panel) and they further diminish when they are low (right panel). As usual, the results
improve with the sample size T for all methods and are close to 100% of corrected
classified cases for sample sizes from T = 2000when the differences in the parameters
are large (left panel). Notice, however, that the ordering of the methods is not the same
as in previous tables and for the smallest sample size, T = 500, clustering based on
the smoothed fragmented periodogram works best, followed by clustering based on
the full periodogram and, finally, by that based on the fragmented one. This happens
for the 3 sets of parameters. It seems that clustering based on smoothing fragmented
periodograms always improves over clustering over plain fragmented periodograms
as it decreases the variance of the difference of the spectral estimates periodogram
at each smoothed ordinate but notice that for T = 500 it also works better than
the full periodogram. It could not be due to the fact the discarded information was
only noise since the fragmented always works worst than the full periodogram, so we
conclude that smoothing in the weekly cycle (the one associated to the largest number
of ordinates of the three cycles), reduces drastically the variance of the smoothed
ordinates of the periodogram. For instance, for T = 500, the percentage of correctly
classified cases when using the smoothed periodogram for the parameters in the center
panel (medium size of the differences between the parameters) is about twice that
percentage of just the fragmented periodogram.

We repeat the exercise when the difference in the parameters are given in the
monthly cycle and simulate the processes

yt = 0.1yt−5 + φ21yt−21 + 0.1yt−252 + εt

versus

yt = 0.1yt−5 + φ∗
21yt−21 + 0.1yt−252 + εt .

Table 4 presents the results when the differences in the monthly parameter are big
(left panel), medium (center panel) and small (right panel). Notice that, for a given
sample size T , the monthly cycle is repeated fewer times than the weekly cycle so the
results could worsen with respect to differences in the weekly cycle.

The overall results are similar to those of Table 3, although the percentages of
correctly classified cases are lower for the smaller sample sizes. Here, however, the
usual ordering about the performance of themethods is maintained andwe do not see a
surpass in the classification based on the smoothed fragmented periodogram over that
based on the full periodogram, perhaps, due to the fact that the number of ordinates
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of the monthly cycle in the fragmented periodogram is smaller than that related to the
weekly cycle, so the benefits from smoothing are smaller as well.

Overall, the previous set of simulations shows the effects of increasing T for small
N . Firstly, for very large (T , p, f ) sizes the three methods used to cluster time series
(full, fragmented and smoothed fragmented) give similar results. However, as the size
T decreases there can be great differences. Secondly, smoothing the fragmented peri-
odogram always gives better results that just using the plain fragmented periodogram
since the variance of the difference of the periodograms at each ordinate goes to zero
with the smoothing parameter. Thirdly, differences due to the weekly cycle are bet-
ter detected than differences due to the monthly cycle, as the former are reproduced a
larger number of times in each periodogram. Additionally, the higher the interval asso-
ciated to each seasonal frequency the higher is the seasonal frequency, so smoothing
can work through a larger set of ordinates. That is, the higher the frequency associated
to the seasonal cycle that is different in the two data sets, the better classification results
we obtain.

We complete our simulation exercise increasing the cross section dimension N
so as to having results varying both dimensions in our problem, N and T . As we
have mentioned in Sect. 2, related literature in the context of principal components
suggest that when both N and T go to infinity, principal components can be used to
consistently estimate dynamic factor models. However, in spite of the aforementioned
theoretical results, Boivin and Ng (2006) for dynamic factor models estimated through
principal components and Poncela and Ruiz (2015) for those estimated through the
Kalmanfilter question this in empiricalmodels. Simulation studies in Poncela andRuiz
(2015) suggest that choosing N between 20 and 30 is a good compromise between
the increasing complexity of the models with N and the reduction in the uncertainty
when estimating the common factors that the asymptotic theoretical results suggest
when both N and T tend to infinity. To check the role of both dimensions in our case
we also run additional simulations for N = 20 and N = 100, while varying T as
in the previous tables, T = 500, 1000, 2000, 5000, 10, 000. In particular, N/2 series
were simulated from each of two processes. The N series were then grouped into two
clusters and we computed the number of series correctly classified into both clusters.
This was repeated 1000 times. A conversation formula is then used to determine the
percentage of success on a scale ranging from 0 to 100%. Tables 5 and 6 show the
results for N = 20 and N = 100, respectively, for the same two processes.

Overall, we can conclude that the effect of increasing N from 4 to 20 renders better
classification results while further increasing N to 100 worsens the results, except if
the time dimension T is large enough to assure success. Medium size problems in the
cross dimension seem to point to a good compromise between increasing complexity
with N and retaining enough information for clustering.

Now, we are going to increase the cross section dimension N so as it would be diffi-
cult to handle the classification problem with more traditional methods. In particular,
we will consider N = 1000 and N = 10, 000 time series. The first thing we need to
do is to we use a non-hierarchical clustering procedure since it is less time consuming.
More specifically, we will use the k-means algorithm, which is more suitable than
hierarchical clustering for large amounts of data. Tables 7 and 8 show the results for
N = 1000 and N = 10, 000, respectively, for the same two processes that we have
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used in Tables 5 and 6. The main conclusions are maintained through this new set of
simulations. We observe that all procedures work quite well. As before, the smoothed
fragmented periodogram works better than just the fragmented version. Smoothing
helps. Notice that we only use around 11.2% of the ordinates in the fragmented and
smoothed fragmented versions and the results are quite similar.Whenwe also increase
the time dimension T the results get even closer and from T = 2000 onwards we can
hardly see the differences.

6 Real data applications

As illustrative examples, we provide here a simple but convincing illustration and
two simple case studies of country financial clustering evolution. In finance, cluster
analysis of time series has become an important task, as researchers and investors
are interested in identifying similarities in financial assets for investments and risk
management purposes.

For instance, Otranto (2010) proposed a clustering algorithm to compare groups of
homogeneous time series in terms of dynamic conditional correlations. Caiado and
Crato (2010) introduced a volatility-based metric for cluster analysis of stock returns
using the information about the estimated parameters in the threshold GARCHmodel.
Bastos and Caiado (2014) proposed a metric for clustering financial time series based
on the distance between variance ratio statistics computed for individual series.

6.1 A simple illustration

In the illustrative example presented below, we use spectral analysis and classic mul-
tidimensional scaling to construct a configuration of five stock markets (DAX and
HDAX from Germany, Italia All-Share and MIB, and PSI20 Index from Portugal)
in a two-dimensional space. We purposely use two time series from Italy, two from
Germany, and one from Portugal.

We all know these three countries have different characteristics and expect them to
be separated. We also expect that financial indices from the same country to appear
close.

When using all periodogram ordinates, results shown in Fig. 5 are reassuring about
the efficiency of the spectral method as indices appear as expected. The two Italian
indices appear close together, the two German indices appear close together, and the
three countries appear separated. Now, instead of using all periodogram ordinates, we
perform the same analysis using the fragmented periodogram ordinates only. It is very
revealing and reassuring that not much comparative information is lost. Essentially,
with a significantly reduced computational effort we get the same information, as we
can see in Fig. 6.
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Fig. 5 Five stocks analysed with a two-dimensional scaling map using with the full periodograms
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Fig. 6 Five stocks analysed with a two-dimensional scaling map using the fragmented periodograms

6.2 A two-period comparison of European stockmarkets

We now use the fragmented-periodogram approach to identify similarities among 44
European stock markets. Data correspond to closing prices and cover the period from
January 2003 toDecember 2016.We divide the analysis into two periods: (i) before the
sovereign debt crisis (2nd January 2003–30th June 2011) and (ii) after the sovereign
debt crisis (1th July 2011–31th December 2016).

Figures 7 and 8 show the two-dimensional scaling maps for these two periods.
In blue we show series from distressed countries or from countries that have experi-
enced a significant deterioration (Ireland, Greece, Spain, Italy and Portugal). In red
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Fig. 7 European stocks for the years 2001–2011, i.e., before the sovereign debt crisis, analysed with a
two-dimensional scaling map using the fragmented periodograms
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Fig. 8 European stocks for the years 2011–2016, i.e., after the sovereign debt crisis, analysed with a two-
dimensional scaling map using the fragmented periodograms

we show series from the Euro area core (Austria, Belgium, Finland, France, Ger-
many, Luxembourg, and Netherlands). In green we show series from non-distressed
but non euro-area core countries (Denmark, Great Britain, Sweden, and Switzerland).
In orange we show series from the East Euro area (Estonia, Latvia, Lithuania, Slo-
vakia). In black we show series from the East euro-area (Bulgaria, Czech Republic,
Hungary, Poland, Romania, and Croatia). In grey we show global European stock
indexes (eurostock50 and stxe600).

123



A fragmented-periodogram approach for clustering big data… 143

First dimension
-2 -1 0 1 2 3 4 5

S
ec

on
d 

di
m

en
si

on

-3

-2

-1

0

1

2

3

ATAT

BE

BG

HR

CZ

DK

DK

EEFI

FI

FR FR
DEDE

GR

GR

HU
HU

IE
IT

IT

LV

LT

LU

LU MT

NL

NL
PL
PL

PT

RO

SK

ES

ES

SE
SE

GBGB

CH
CH

US

US

US
US

US
US

US

US

USUS

CA
CA

JP

JP

JP

JP

JP

JP

JP

JP

JP

JP

JP

JP JP

JP

CN

CN

CN

CN

CN

CN CN CN
CN

EU

EU

Fig. 9 International stocks before the financial crisis (2003–2007) analysed with a two-dimensional scaling
map using the fragmented periodograms

Figure 7, corresponds to period (i) and Fig. 8 to period (ii). Comparing the two
graphs it becomes clear that this technique sheds light over the evolution of themarkets.
In the first period, most non-distressed euro-area and non-euro-area countries are
together while euro-area distressed countries are close together in a clear cluster. In
the second period, after the sovereign debt crisis, the separation is clearer: euro-area
core countries remain close to each other but far from non euro-area countries UK and
Denmark; Greece is further separated from the other euro are distressed countries that
improved their situation during this period (Portugal, Spain, Italy and Ireland).

6.3 A two-period comparison of worldwide stockmarkets

We now use the same technique for clustering 79 free float adjusted market capitaliza-
tion equity indices constructed byMorgan Stanley Capital International (MSCI). Data
used in the analysis consists on daily index prices from January 2003 to December
2016. Again, we divide the analysis into two periods: (i) before the financial crisis
(2003–2007) and (ii) after the financial crisis (2008–2016).

Figures 9 and 10 show two-dimensional scalingmaps for the two subperiods.Again,
it becomes clear by comparing the two graphs that this technique sheds light over the
evolution of the markets. In the first period, we do not see a clear separation: a large
cluster contains Asian, North America and European stock markets. In the second
period we see that the crisis forced the countries do individualize their paths: we can
identify a cluster containing most Japanese and Chinese stock markets at the left-hand
side of the map, a cluster containingmost Canadian and American stockmarkets at the
right-hand side, and a large cluster containing most European markets at the middle.

All these examples show how this fragmented periodogram clustering technique is
able to illuminate interesting characteristics of the time series under consideration
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Fig. 10 International stocks after the financial crisis (2008–2016) analysed with a two-dimensional scaling
map using the fragmented periodograms

7 Conclusions

We have suggested a method for comparing and clustering time series, which is suit-
able to face large data sets and should provide insights to new big data challenges.
The method works in the frequency domain, uses a computationally simple and very
parsimonious approach, and is nonparametric, as it does not rely on fitting any specific
model. The proposal is somehow inspired by the ideas for tide predicting set forth by
Lord Kelvin in the mid of the nineteenth century, but it can be used for any type of
time series, particularly those with known dominating frequencies.

In its essence, our method computes the periodogram ordinates only in narrow
vicinities of the frequencies of interest, obtaining what we call a fragmented-
periodogram. Then, it proceeds to smooth these ordinates in order to obtain spectral
estimates. With these estimates, the spectral differences have a reduced variance and
provide an improved way for comparing the time series. Finally, we apply standard
clustering methods for grouping the time series under consideration.

By using some standard results we were able to theoretically show that smoothing
the fragmented periodogram reduces the variance of the spectral estimates differences
and thus provides a more reliable means for comparing time series.

By means of simulations, we have contrasted our method with one using the full
periodogramand shown that the fragmented periodogramobviously looses some infor-
mation but not much. We further show that smoothing the fragmented periodogram
improves the method, giving results that are often as reliable as those from the full
periodogram. We finally show that the method is able to successfully characterize,
compare, and differentiate time series, thus providing a basis for clustering. Its suc-
cess depends on the existence of long time series—but it was devised exactly to deal
with these cases.
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To illustrate the usefulness of our method we presented two financial studies. In
the first one, we studied 44 European stock market series both before and after the
sovereign debt crisis. In the second one, we studied 79 worldwide equity indices
both before and after the 2008 financial crisis. In both cases, our method was able
to find significant and meaningful changes in the clustering of the time series under
consideration.

The method is applicable to any time series domain, from geophysics to finance—it
only needs the presence of some type of cyclical behaviour. It is particularly suited to
large data time series, and should provide useful for big-data clustering challenges as
it provides a computationally feasible way of comparing a large number of very long
time series.
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