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Abstract
The predictive performance of a random forest ensemble is highly associated with
the strength of individual trees and their diversity. Ensemble of a small number of
accurate and diverse trees, if prediction accuracy is not compromised, will also reduce
computational burden.We investigate the idea of integrating trees that are accurate and
diverse. For this purpose, we utilize out-of-bag observations as a validation sample
from the training bootstrap samples, to choose the best trees based on their individual
performance and then assess these trees for diversity using the Brier score on an
independent validation sample. Starting from the first best tree, a tree is selected for
the final ensemble if its addition to the forest reduces error of the trees that have already
been added. Our approach does not use an implicit dimension reduction for each tree
as random project ensemble classification. A total of 35 bench mark problems on
classification and regression are used to assess the performance of the proposedmethod
and compare it with random forest, randomprojection ensemble, node harvest, support
vector machine, kNN and classification and regression tree. We compute unexplained
variances or classification error rates for all the methods on the corresponding data
sets. Our experiments reveal that the size of the ensemble is reduced significantly and
better results are obtained in most of the cases. Results of a simulation study are also
given where four tree style scenarios are considered to generate data sets with several
structures.
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1 Introduction

Various authors have suggested that combining weak models leads to efficient ensem-
bles (Schapire 1990; Domingos 1996; Quinlan 1996;Maclin and Opitz 2011; Hothorn
and Lausen 2003; Janitza et al. 2015; Gul et al. 2016b; Lausser et al. 2016; Bolón-
Canedo et al. 2012; Bhardwaj et al. 2016; Liberati et al. 2017). Combining the outputs
of multiple classifiers also reduces generalization error (Domingos 1996; Quinlan
1996; Bauer and Kohavi 1999; Maclin and Opitz 2011; Tzirakis and Tjortjis 2017).
Ensemble methods are effective in that different types of models have different induc-
tive biases where such diversity reduces variance-error while not increasing the bias
error (Mitchell 1997; Tumer and Ghosh 1996; Ali and Pazzani 1996).

Extending this notion, Breiman (2001) suggested growing a large number, T for
instance, of classification and regression trees. Trees are grown on bootstrap samples
form a given training dataL = (X,Y) = {(x1, y1), (x2, y2), . . . , (xn, yn)}. The xi are
observations on d features and y values are from the set of real numbers and a set of
known classes (1, 2, 3, . . . , K ) in cases of regression and classification, respectively.
Breiman called this method bagging and using random selections of features at each
node random forest (Breiman 2001).

As the number of trees in random forest is often very large, there has been a signif-
icant work done on the problem of minimizing this number to reduce computational
cost without decreasing prediction accuracy (Bernard et al. 2009; Meinshausen 2010;
Oshiro et al. 2012; Latinne et al. 2001a).

Overall prediction error of a random forest is highly associated with the strength
of individual trees and their diversity in the forest. This idea is backed by Breiman
(2001) upper bound for the overall prediction error of random forest given by

̂Err ≤ ρ̄ êrr j , (1)

where j = 1, 2, 3, . . . , T , T denotes the number of all trees, ̂Err is the overall
prediction error of the forest, ρ̄ represents weighted correlation between residuals
from two independent trees i.e. mean (expected) value of their correlation over entire
ensemble, and êrr j is the average prediction error of some j th tree in the forest.

Based on the above discussion, our paper proposes to select the best trees, in terms of
individual strength i.e. accuracy and diversity, from a large ensemble grown by random
forest. Using 35 benchmark data sets, the results from the new method are compared
with those of random forest, random projection ensemble (classification case only),
node harvest, support vector machine, kNN and and classification and regression tree
(CART). For further verification, a simulation study is also given where data sets with
many tree structures are generated. The rest of the paper is organized as follows. The
proposed method, the underlying algorithm and some other related approaches are
given in Sect. 2, experiments and results based on benchmark and simulated data sets
are given in Sect. 3. Finally, Sect. 4 gives the conclusion of the paper.
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2 OTE: optimal trees ensemble

Random forest refines bagging by introducing additional randomness in the base
models, trees, by drawing subsets of the predictor set for partitioning the nodes of
a tree (Breiman 2001). This article investigates the possibility of further refinement by
proposing amethod of tree selection on the basis of their individual accuracy and diver-
sity using unexplained variance and Brier score (Brier 1950) in cases of regression and
classification respectively. To this end, we partition the given training dataL = (X,Y)

randomly into two non overlapping partitions, LB = (XB,YB) and LV = (XV,YV).
Grow T classification or regression trees on T bootstrap samples from the first par-
tition LB = (XB,YB). While doing so, select a random sample of p < d features
from the entire set of d predictors at each node of the trees. This inculcates additional
randomness in the trees. Due to bootstrapping, there will be some observations left out
of the samples which are called out-of-bag (OOB) observations. These observations
take no part in the training of the tree and can be utilized in two ways:

1. In case of regression, out-of-bag observations are used to estimate unexplained
variances of each tree grown on a bootstrap sample by the method of random
forest (Breiman 2001). Trees are then ranked in ascending order with respect to
their unexplained variances and the top ranked M trees are chosen.

2. In case of classification, out-of-bag observations are used to estimate error rates
of the trees grown by the method of random forest (Breiman 2001). Trees are then
ranked in ascending order whith respect to their error rates and the top ranked M
trees are chosen.

A diversity check is carried out as follows

1. Starting from the two top ranked trees, successive ranked trees are added one by
one to see how they perform on the independent validation data, LV = (XV,YV).
This is done until the last M th tree is tested.

2. Select tree L̂k, k = 1, 2, 3, . . . , M if its inclusion to the ensemble without the
kth tree satisfys the following two criteria given for regression and classification
respectively.

(a) In the regression case, let U .EXP〈k−〉 be the unexplained variance of the
ensemble not having the kth tree and U .EXP〈k+〉 be the unexplained variance
of the ensemble with kth tree included, then tree L̂k is chosen if

U .EXP〈k+〉 < U .EXP〈k−〉.

(b) In the classification case, let B̂S〈k−〉
be the Brier score of the ensemble not

having the kth tree and B̂S〈k+〉
be the Brier score of the ensemble with kth tree

included, then tree L̂k is chosen if

B̂S〈k+〉
< B̂S〈k−〉

,
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where

B̂S =
∑# of test cases

i=1

(

yi − P̂(yi |X)
)2

total # of test instances
,

yi is the state of yi for observation i in the (0, 1) form and P̂(y|X) is the binary
response probability of the ensemble estimate given the features.

These trees, named as optimal trees, are then combined and are allowed to vote, in
case of classification, or average, in case of regression, for new/test data. The resulting
ensemble is named as optimal trees ensemble, OTE.

2.1 The Algorithm

Steps of the proposed algorithm both for regression and classification are

1. Take T bootstrap samples from the given portion of the training data LB =
(XB,YB).

2. Grow regression/classification trees on all the bootstrap samples using random
forest method.

3. Rank the trees in ascending order with respect to their prediction error on out-of-
bag data. Choose the first M trees with the smallest individual prediction error.

4. Add the M selected trees one by one and select a tree if it improves performance
on validation data, LV = (XV,YV), using unexplained variance and Brier score
in cases of regression and classification as the respective performance measures.

5. Combine and allow the trees to vote, in case of classification, or average, in case
of regression, for new/test data.

An illustrative flow chart of the proposed algorithm can be seen in Fig. 1.
An algorithm, based on a similar idea has previously been proposed at the European

Conference on Data Analysis 2014, where instead of classification trees, probability
estimation trees are used (Khan et al. 2016). The ensemble of probability estimation
trees is used for estimating class membership probabilities in binary class problems.
This paper, OTE, focuses on regression and classification and evaluates the perfor-
mance by the standard measures of unexplained variances and classification error
rates. On the other hand, optimal trees ensemble given in Khan et al. (2016) is focus-
ing on probability estimation and provides comparison of the benchmark results by
Brier score. Moreover, we included a comparison of OTE and (Khan et al. 2016),
OTE.Prob, (when evaluated by classification error rates) in the analysis of benchmark
problems in the last two columns of Table 5 of this paper.

Ensembles selection for kNN classifiers have also been proposed recently where in
addition to individual accuracy, the kNN models are grown on random subsets of the
feature set instead of considering the entire feature set (Gul et al. 2016a, b).
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Fig. 1 Flow chart of OTE for regression and classification

2.2 Related approaches

There has been a significant work done on the issue of reducing the number of trees
in random forests by various authors. One possibility of limiting the number of trees
in a random forest might be determining a priori the least number of trees to combine
that gives prediction performance very similar to that of a complete random forest as
proposed by Latinne et al. (2001b). Themain idea of this method is to avoid overfitting
trees in the ensemble. This method uses the McNemar test of significance to decide
between the predictions given by two different forests having different number of trees.
Bernard et al. (2009) proposed a method of shrinking the size of forest by using two
well known selection methods: sequential forward selection method and sequential
backward selection method for finding sub-optimal forests. Li et al. (2010) proposed
the idea of tree weighting for random forest to learn data sets with high dimensions.
They used out-of-bag samples for weighting the trees in the forest. Adler et al. (2016)
have recently considered ensemble pruning to fix the class imbalanced problem by
using AUC and Brier score for Glaucoma detectection. Oshiro et al. (2012) examined
the performance of random forests with different numbers of trees on 29 different
data sets and concluded that there is no significant gain in the prediction accuracy
of a random forest by adding more than a certain number of trees. Zhang and Wang
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(2009) considered the similarity of outcomes between the trees and removing the trees
that were similar, thus reducing the size of the forest. They called this method the “By
similarity method”. However, this methodwas not able to compete with their proposed
“By prediction” method. Motivated by the idea of downsizing ensembles, this work
has proposed optimal tree selection for classification and regression that could reduce
computational costs and achieve promissing prediction accuracy.

3 Experiments and results

3.1 Simulation

This section presents four simulation scenarios each consisting of various tree struc-
tures (Khan et al. 2016). The aim is to make the recognition problem slightly difficult
for classifiers like kNN and CART, and to provide a challenging task for the most
complex method like SVMs and random forest. In each of the scenarios, four different
complexity levels are considered by changing the weights ηi jk of the tree nodes. Con-
sequently, four different values of the Bayes error are obtained where the lowest Bayes
error indicates a data set with strong patterns and the highest Bayes error means a data
set with weak patterns. Table 1 gives various values of ηi jk used in Scenarios 1, 2, 3,
and 4. Node weights for obtaining the complexity levels are listed in four columns of
the table for k = 1, 2, 3, 4, for each model. A generic equation for producing class
probabilities of the bernoulli responseY = Bernoulli(p) given the n×3T dimensional
vector X of n iid observations from Uniform(0, 1) is

p(y|X) =
exp

(

c2 ×
(Zm

T − c1
))

1 + exp
(

c2 ×
(Zm

T − c1
)) , where Zm =

T
∑

t=1

p̂t . (2)

c1 and c2 are some arbitrary constants,m = 1, 2, 3, 4 is the scenario number andZm’s
are n×1 probability vectors. T is the total number of trees used in a scenario and p̂t ’s
are class probabilities for a particular response inY. These probabilities are generated
by the following tree structures

p̂1 = η11k × 1(x1≤0.5&x3≤0.5) + η12k × 1(x1≤0.5&x3>0.5) + η13k × 1(x1>0.5&x2≤0.5)

+η14k × 1(x1>0.5&x2>0.5),

p̂2 = η21k × 1(x4≤0.5&x6≤0.5) + η22k × 1(x4≤0.5&x6>0.5) + η23k × 1(x4>0.5&x5≤0.5)

+η24k × 1(x4>0.5&x5>0.5),

p̂3 = η31k × 1(x7≤0.5&x8≤0.5) + η32k × 1(x7≤0.5&x8>0.5) + η33k × 1(x7>0.5&x9≤0.5)

+η34k × 1(x7>0.5&x9>0.5),

p̂4 = η41k × 1(x10≤0.5&x11≤0.5) + η42k × 1(x10≤0.5&x11>0.5) + η43k × 1(x10>0.5&x12≤0.5)

+η44k × 1(x10>0.5&x12>0.5),

p̂5 = η51k × 1(x13≤0.5&x14≤0.5) + η52k × 1(x13≤0.5&x14>0.5) + η53k × 1(x13>0.5&x15≤0.5)
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Table 1 Node weights, ηi jk , used in simulation scenarios where i is the tree number, j is the node number
in each tree and k is denoting a variant of the weights for the four complexity levels for all the scenarios
(Khan et al. 2016)

Scenario 1 Scenario 2 Scenario 3 Scenario 4

i j k i j k i j k i j k
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 1 0.9 0.8 0.7 0.6 1 1 0.9 0.8 0.7 0.6 1 1 0.9 0.9 0.9 0.8 1 1 0.9 0.9 0.9 0.8

2 0.1 0.2 0.3 0.4 2 0.1 0.2 0.3 0.4 2 0.1 0.1 0.1 0.2 2 0.1 0.1 0.1 0.2

3 0.1 0.2 0.3 0.4 3 0.1 0.2 0.3 0.4 3 0.1 0.1 0.1 0.2 3 0.1 0.1 0.1 0.2

4 0.9 0.8 0.7 0.6 4 0.9 0.8 0.7 0.6 4 0.9 0.9 0.9 0.8 4 0.9 0.9 0.9 0.8

2 1 0.9 0.8 0.7 0.6 2 1 0.9 0.8 0.7 0.6 2 1 0.9 0.9 0.9 0.8 2 1 0.9 0.9 0.9 0.8

2 0.1 0.2 0.3 0.4 2 0.1 0.2 0.3 0.4 2 0.1 0.1 0.1 0.2 2 0.1 0.1 0.1 0.2

3 0.1 0.2 0.3 0.4 3 0.1 0.2 0.3 0.4 3 0.1 0.1 0.1 0.2 3 0.1 0.1 0.1 0.2

4 0.9 0.8 0.7 0.6 4 0.9 0.8 0.7 0.6 4 0.9 0.9 0.9 0.8 4 0.9 0.9 0.9 0.8

3 1 0.9 0.8 0.7 0.6 3 1 0.9 0.8 0.7 0.6 3 1 0.9 0.8 0.7 0.7 3 1 0.9 0.9 0.9 0.8

2 0.1 0.2 0.3 0.4 2 0.1 0.2 0.3 0.4 2 0.1 0.2 0.3 0.3 2 0.1 0.1 0.1 0.2

3 0.1 0.2 0.3 0.4 3 0.1 0.2 0.3 0.4 3 0.1 0.2 0.3 0.3 3 0.1 0.1 0.1 0.2

4 0.9 0.8 0.7 0.6 4 0.9 0.8 0.7 0.6 4 0.9 0.8 0.7 0.7 4 0.9 0.9 0.9 0.8

4 1 0.9 0.8 0.7 0.6 4 1 0.9 0.8 0.7 0.7 4 1 0.9 0.8 0.7 0.7

2 0.1 0.2 0.3 0.4 2 0.1 0.2 0.3 0.3 2 0.1 0.2 0.3 0.3

3 0.1 0.2 0.3 0.4 3 0.1 0.2 0.3 0.3 3 0.1 0.2 0.3 0.3

4 0.9 0.8 0.7 0.6 4 0.9 0.8 0.7 0.7 4 0.9 0.8 0.7 0.7

5 1 0.9 0.8 0.7 0.7 5 1 0.9 0.8 0.7 0.6

2 0.1 0.2 0.3 0.3 2 0.1 0.2 0.3 0.4

3 0.1 0.2 0.3 0.3 3 0.1 0.2 0.3 0.4

4 0.9 0.8 0.7 0.7 4 0.9 0.8 0.7 0.6

6 1 0.9 0.8 0.7 0.6

2 0.1 0.2 0.3 0.4

3 0.1 0.2 0.3 0.4

4 0.9 0.8 0.7 0.6

+η54k × 1(x13>0.5&x15>0.5),

p̂6 = η61k × 1(x16≤0.5&x17≤0.5) + η62k × 1(x16≤0.5&x17>0.5) + η63k × 1(x16>0.5&x18≤0.5)

+η64k × 1(x16>0.5&x18>0.5),

where 0 < ηi jk < 1 are weights given to the nodes of trees, k = 1, 2, 3, 4 and
1(condition) is an indicator function whose value is 1 if the condition is true and 0
otherwise . Note that each individual tree is grown on the principle of selecting p < d
features while splitting the nodes. The four scenarios defined as follows
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Fig. 2 One of the trees used in simulation Scenario 1 (Khan et al. 2016)

3.1.1 Scenario 1

This scenario consists of 3 tree components each grown on 3 variables with T = 3,
Z1 = ∑3

t=1 p̂t and X becomes a n × 9 dimensional vector.

3.1.2 Scenario 2

In this scenario we take a total of T = 4 trees where Z2 = ∑4
t=1 p̂t such that X

becomes a n × 12 dimensional vector.

3.1.3 Scenario 3

This scenario is based on T = 5 trees such that Z3 = ∑5
t=1 p̂t and X becomes a

n × 15 dimensional vector.

3.1.4 Scenario 4

This scenario consists of 6 tree components which follows that, T = 6,Z4 = ∑6
t=1 p̂t

and X becomes a n × 18 dimensional vector.
To understand how the trees are grown in the above simulation scenarios, a tree

used in simulation Scenario 1 is given in Fig. 2.
The values of c1 and c2 are fixed at 0.5 and 15, respectively, in all the scenarios for

all variants. A total of n = 1000 observation are generated using the above setup. kNN,
CART, random forest, node harvest, SVM and OTE are trained by using 90% of the
data as training data (of which 90% is for bootstrapping and 10% for diversity check,
in the case of OTE) and then applying the remaining 10% data as test data for testing
purpose. For OTE, T = 1000 trees are grown as the initial ensemble. Experiments
are repeated 1000 times in each scenario giving a total of 1000 realizations. The final
results are obtained by averaging outcomes under the 1000 realizations made in all the
scenarios and are given in Table 2. Node weights are changed in a manner that could
make the patterns in the data less meaningful and thus getting a higher Bayes error.
This can be observed in the fourth column of Table 2, where each scenario has four
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Fig. 3 Box plots for kNN, tree, random forest (RF), node harvest (NH), SVMandOTE on the data simulated
in Scenario 1. a Simulation with Bayes error 9%, b simulation with Bayes error 14%, c simulation with
Bayes error 17% and d simulation with Bayes error 33%. The best results of OTE can be seen in a where
the model produces a data with almost perfect tree structures. d This shows the worst example of OTE

different values of the Bayes error. It can be observed in the simulation that Bayes error
of a scenario can be regulated by changing either the number of trees in the scenario
or node weights of the trees or both. For example, weights of 0.9 and 0.1 assigned to
extreme nodes (right most and left most) and inner nodes, respectively, would lead to
a less complex tree as compared to the one with 0.8 and 0.2 such weights. Tree given
in Fig. 2 is the least complex tree used in the simulation in terms of Bayes error. As
anticipated, kNN and tree classifiers have the highest percentage errors in all the four
scenarios. Random forest and OTE performed quite similarly with slight variations
in few cases. In cases where the models have the highest Bayes error, the results of
random forest are better or comparable with those of OTE. In all the remaing cases
where the Bayes error is the smallest,OTE is better or comparable with random forest.
SVM performed very similarly to kNN and tree. Percentage reduction in ensemble
size of OTE compared to random forest is also shown in the last column of the table.
A 90% reduction in the size would mean that OTE use only 10 trees to achieve a
performance level of a random forest of 100 trees. This means thatOTE could be very
helpful in decreasing the size of the ensemble thus reducing storage costs.

The box plots given in Fig. 3 reveal that the best results of OTE can be observed in
Fig. 3a where a data set with meaningful tree structures is generated. Figure 3d is the
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worst example of OTE where the Bayes error is the highest (i.e. 33%), and where the
data have no meaningful tree structures.

3.2 Benchmark problems

For assessing the performance of OTE on benchmark problems, we have considered
35 data sets out of which 14 are regression and 21 classification problems. A brief
summary of the data sets is given in Table 3. The upper portion of Table 3 are regression
problems whereas the lower portion are classification problems.

3.3 Experimental setup for benchmark data sets

Experiments carried out on the 35 data sets are designed as follows. Each data set
is divided into two parts, a training part and testing part. The training part consists
of 90% of the total data while the testing part consists of the remaining 10% of the
data. A total of T = 1500 independent classification and regression trees are grown on
bootstrap samples from 90% of training data along with randomly selecting p features
for splitting the nodes of the trees. The remaining 10% of training data is used for
diversity check. In the cases of both regression and classification, the number p of
features is kept constant at p = √

d for all data sets. The best of the total T trees are
selected by using the method given in Sect. 2 and are used as the final ensemble (M
is taken as 20% of T ). Testing part of the data is applied on the final ensemble and a
total of 1000 runs are carried out for each data set. Final result is the average of all
these 1000 runs. The same setting is used for the optimal trees ensemble in Khan et al.
(2016) i.e. OTE.Prob.

For tuning various parameters of CART, we used the R-Function “tune.rpart” avail-
able within the R-Package “e1071” (Meyer et al. 2014). We tried various values, (5,
10, 15, 20, 25, 30) for finding the optimal number of splits and the minimal optimal
depth of the trees.

For tuning the hyper parameters, nodesize, ntree and mtry of random forest, we
used the function “tune.randomForest” available with in the R-Package “e1071” as
used by Adler et al. (2008). For tuning the node size we tried values (1, 5, 10, 15, 20,
25, 30), for tuning ntree we tried values (500, 1000, 1500, 2000) and for tuning mtry,
we tried (sqrt(d), d/5, d/4, d/3, d/2). We tried all the possible values of mtry where
d < 12.

The only parameter in the node harvest estimator is the number of nodes in the
initial ensemble and for its large values the results are insensitive (Meinshausen 2010).
Meinshausen (2010) showed for various data sets that initial ensemble size greater than
1000 yields almost the same results. In our experiments we kept this value fixed at
1500. In case of SVM, automatic estimation of sigma was used available with in the R
package “kernlab”. The rest of the parameters are kept at default values. Four kernels,
Radial, Linear, Bessel and Laplacian, are used for SVM. kNN is tuned by using the R
function “tune.knn” within the R library “e1071” for various values of the number of
nearest neighbours i.e. k = 1, . . . , 10.
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Table 3 Data sets for classification and regression with total number of observations n, number of features
d and feature type; F: real, I: integer and N: nominal features in a data set. Sources are also given

Data set n d Feature type (R/I/N) Sources

Regression

Bone 485 3 (1/1/1) (Halvorsen 2012; Bachrach et al. 1999)

Galaxy 323 4 (4/0/0) (Halvorsen 2012; Buta 1987)

Friedman 1200 5 (5/0/0) (Friedman 1991)

CPU 209 7 (7/0/0) (Bache and Lichman 2013)

Concrete 103 7 (7/0/0) (Bache and Lichman 2013)

Abalone 4177 8 (7/0/1) (Bache and Lichman 2013)

MPG 398 8 (2/2/4) (Bache and Lichman 2013)

Stock 950 9 (9/0/0) http://funapp.cs.bilkent.edu.tr/DataSets/

Wine 1599 11 (11/0/0) (Bache and Lichman 2013)

Ozone 203 12 (9/0/3) (Leisch and Dimitriadou 2010)

Housing 506 13 (12/0/1) (Meinshausen 2013)

Pollution 60 15 (7/8/0) http://openml.org/

Treasury 1049 15 (15/0/0) http://sci2s.ugr.es/keel/dataset.php?cod=42

Baseball 337 16 (2/14/0) http://sci2s.ugr.es/keel/dataset.php?cod=76#sub2

Classification

Mammographic 830 5 (0/5/0) http://sci2s.ugr.es/keel/category.php?cat=clas

Dystrophy 209 5 (2/3/0) Peters and Hothorn (2012)

Monk3 122 6 (0/6/0) (Bache and Lichman 2013)

Appendicitis 106 7 (7/0/0) http://sci2s.ugr.es/keel/dataset.php?cod=183

SAHeart 462 9 (5/3/1) http://sci2s.ugr.es/keel/dataset.php?cod=184#sub1

Tic-Tac-Toe 958 9 (0/0/9) (Bache and Lichman 2013)

Heart 303 13 (1/12/0) (Bache and Lichman 2013)

House vote 232 16 (0/0/16) (Bache and Lichman 2013)

Bands 365 19 (13/6/0) http://sci2s.ugr.es/keel/dataset.php?cod=184#sub1

Hepatitis 80 20 (2/18/0) (Bache and Lichman 2013)

Parkinson 195 22 (22/0/0) (Bache and Lichman 2013)

Body 507 23 (22/1/0) Hurley (2012)

Thyroid 9172 27 (3/2/22) (Bache and Lichman 2013)

WDBC 569 29 (29/0/0) (Bache and Lichman 2013)

WPBC 198 32 (30/2/0) (Bache and Lichman 2013)

Oil-Spill 937 49 (40/9/0) http://openml.org/

Spam base 4601 57 (55/2/0) (Bache and Lichman 2013)

Glaucoma 196 62 (62/0/0) (Peters and Hothorn 2012)

Nki 70 144 76 (71/5/0) (Goeman 2012)

Musk 476 166 (0/166/0) (Karatzoglou et al. 2004)
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A recently proposed method, random projection (RP) ensemble (Cannings and
Samworth 2017), has also been considered for comparison purposes using the
“RPEnsemble” (Cannings and Samworth 2016) R package. Due to computational
constraint we have used B1 = 30 and B2 = 5. Linear discriminant analysis
base = “LDA” and quadratic discriminant analysis base = “QDA”methods are
used as the base classifiers along with d=5, projmethod = “Haar” keeping
the rest of the parameters at their default values. We did not use k-NN base as it has
been shown outperformed by LDA and QDA (Cannings and Samworth 2017).

The same set of training and test data is used for tree, random forest, node harvest,
SVM and our proposed method. Average unexplained variances and classification
errors, for regression and classification respectively, are noted down for all the four
methods on the data sets. All the experiments are done using R version 3.0.2 R Core
Team (2014). The results are given in Tables 4 and 5 for regression and classification
respectively.

3.4 Discussion

The results given in Tables 4 and 5 show that the proposedmethod is performing better
than the other methods on many of the data sets. In the case of regression problems,
our method is giving better results than the other methods considered on 7 data sets
out of a total of 14 data sets, whereas on 2 data sets, Wine and Abalone, random forest
gives the best performance. On 5 of the data sets, Bone, Galaxy, Freidman, and Ozone,
SVM with radial kernel and Concrete with Bessel kernel gave the best results. Tree
and kNN are unsurprisingly the worst performers in all the methods with the exception
of the Stock data set where kNN is the best.

In the case of classification problems, the new method is giving better results than
the othermethods considered on 9 data sets out of a total of 21 data sets and comparable
to random forest on 1 data set. On 3 data sets, random forest gives the best performance.
On three of the data sets, Mammographic, Appendicitis and SAHeart, node harvest
classifier gives the best result among all other methods. SVM is better than the others
on 3 data sets. Random projection ensemble gave better results on 3 data set.

Moverover, the optimal trees ensemble in Khan et al. (2016), OTE.Prob, when
evaluated by classification error rates, is also giving very close results to those ofOTE.
This can be seen in the last two columns of Table 5 where the result of OTE.Prob is
itilicised when it performed better than OTE.

Overall, the proposed method gave better results on 13 data sets and comparable
results on 2 data set.

We kept all our parameters in the ensemble fixed for the sake of simplicity. Search-
ing for the optimal total number T of trees grown before the selection process, the
percentage M of best trees selected at the first phase, node size and the number of
features for splitting the nodes might further improve our results. Large values are
recommended for the size of the initial set under the available computation resources
and a value of T ≥ 1500 is expected to work well in general. This can be seen in
Fig. 4 that show the effect of the number of trees in the initial set on (a): unexplained
variance and (b): misclassification error for the data sets given using OTE.
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Fig. 4 The effect of the number of trees in the initial set on a unexplained variance and b misclassifica-
tion error for the data sets given using OTE. In both the cases, number of trees larger than 1500 can be
recommended
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Fig. 5 Effect of M on the unexplained variances (a) and error rate (b), of the data sets shown using OTE.
The value of M in percentage is on the x-axis and unexplained variance on the y-axis

One important parameter of our method is the number M of best trees selected at
the first phase for the final ensemble. Various values of M reveal different behaviour of
the method. We considered the effect of M = (1%, 5%, 10%, 20%, . . . , 70%) of the
total T trees on the method for both regression and classification as shown in Fig. 5. It
is clear from Fig. 5 that the highest accuracy is obtained by using only a small portion,
1–10%, of the total trees that are individually strong which is further reduced in the
second phase. This may significantly decrease the storage costs of the ensemble while
increasing/without loosing accuracy. On the other hand, having a large number of trees
may not only increase storage costs of the resulting ensemble but also decrease the
overall prediction accuracy of the ensemble. This can be seen in Fig. 5 in the cases of
Concrete, WPBC and Ozone data sets where the best results are obtained at about less
than 5% best trees of the total trees at the first phase. This might be due to the reason
that in such cases the possibility of having poor trees is high if the size of ensemble is
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Fig. 6 Effect of the number of features (on x-axis) selected at random for splitting the nodes of the trees on
the unexplained variance (a), and error rate (b) for the data sets shown using OTE

large and trees are simply grown with out considering their individual and collective
behaviours.

We also looked at the effect of various numbers p = √
d, d

5 , d
4 , d

3 , d
2 of features

selected at random for splitting the nodes of the trees on the unexplained variances
and classification error in the cases of both regression and classification, respectively,
for some data sets. The graph is shown in Fig. 6. The only reason that random forest is
considered as an improvement over bagging is the inclusion of additional randomness
by randomly selecting a subset of features for splitting the nodes of the tree. The effect
of this randomness can be seen in Fig. 6 where different values of p results in different
unexplained variances/classification errors for the data sets. For example in the case
of Ozone data, selecting a higher value of p adversely affects the performance. For
some data sets, Sonar for example, selecting large p results in better performance.

4 Conclusion

The possibility of selecting best trees from an original ensemble of a large number
of trees, and combining them together to vote/average for the response is considered.
The new method is applied on 35 data sets consisting of 14 regression problems and
21 classification problems. The ensemble performed better than kNN, tree, random
forest, node harvest and SVM on many of the data sets. The intuition for the better
performance of the newmethod is that if the base learners in the ensemble are individ-
ually accurate and diverse, then their ensemble must give better or at least comparable
results as compared to the one consisting of all weak learners. This might also be due
to the reason that there could be various different meaningful structures present in the
data that could not be captured by an ordinary algorithm. Our method tries to find
these meaningful structures in the data and ignore those that only increase the error.

Our simulation reveals that the method can find meaningful patterns in the data as
effectively as other complex methods might do.
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Even if one could get comparable results by using a few strong and diverse base
learners to those based upon thousands of weak base learners should be welcomed.
This might be very helpful in reducing the associated storage costs of tree forests with
little or no loss of prediction accuracy.

The method is implemented in the R-Package “OTE” (Khan et al. 2014).
A practical challenge for OTE arises when we have relatively small number of

observations in the data. The trees are grown on 90% of the training data leaving
the remaing 10% for internal validation. This might result in missing some important
information to learn fromwhile traingOTE. On the other hand, the rest of the methods
use the whole training data. Solving this issue might further improve the results of
OTE. One way to solve this issue could be using the out-of-bag data from boostrap
samples again in a clever way while adding the corresponding trees for collective
performance.

Theuse of somevariable selectionmethods, (Hapfelmeier andUlm2013;Mahmoud
et al. 2014a, b; Brahim and Limam 2017; Janitza et al. 2015), might, in conjunction
with our method, lead to further improvements. Using the idea of random projection
ensembles (Cannings and Samworth 2016, 2017) with the proposed method may also
allow further improvements.
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