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Abstract
It is well known that variable selection in multiple regression can be unstable and that
the model uncertainty can be considerable. The model uncertainty can be quantified
and explored by bootstrap resampling, see Sauerbrei et al. (Biom J 57:531–555, 2015).
Here approaches are introduced that use the results of bootstrap replications of the vari-
able selection process to obtain more detailed information about the data. Analyses
will be based on dissimilarities between the results of the analyses of different boot-
strap samples. Dissimilarities are computed between the vector of predictions, and
between the sets of selected variables. The dissimilarities are used to map the models
by multidimensional scaling, to cluster them, and to construct heatplots. Clusters can
point to different interpretations of the data that could arise from different selections of
variables supported by different bootstrap samples. A new measure of variable selec-
tion instability is also defined. The methodology can be applied to various regression
models, estimators, and variable selection methods. It will be illustrated by three real
data examples, using linear regression and a Cox proportional hazards model, and
model selection by AIC and BIC.

Keywords Linear regression · Cox proportional hazards · Cluster analysis ·
Multidimensional scaling · Heatmaps

Mathematics Subject Classification 62-07 · 62-09 · 62J20 · 91C15

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11634-
018-00351-6) contains supplementary material, which is available to authorized users.

B Christian Hennig
christian.hennig@unibo.it; c.hennig@ucl.ac.uk

1 University of Bologna, London, Italy

2 University College London, London, UK

3 Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center - University of
Freiburg, London, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11634-018-00351-6&domain=pdf
http://orcid.org/0000-0003-1550-5637
https://doi.org/10.1007/s11634-018-00351-6
https://doi.org/10.1007/s11634-018-00351-6


934 C. Hennig, W. Sauerbrei

1 Introduction

In many regression problems in which the aim is to explain or predict a response y
from a set of explanatory variables x1, . . . , xp , it is of interest to select a smaller subset
of the explanatory variables for fitting a model. Variable selection is done for various
reasons:

– A full model with all variables may be ill-conditioned or unstable.
– The practitioner may want a simpler model and a simpler interpretation.
– Prediction can be based on fewer (potentially expensive) measurements.
– There are many uninformative variables in the data set.
– The researcher’s main aim may be to find out which variables are relevant influ-
ences on y.

It is well known that variable selection can be unstable (Harrell 2001; Sauerbrei
et al. 2015); different models (i.e., different choices of explanatory variables) may
yield very similar fits of the observations, or quite different fits of the observations
by different models may have a similar quality and it may be impossible to tell them
reliably apart based on the available data (as is also an issue in other model selection
problems, formodel-based clustering seeCerioli et al. 2018). Small changes in the data
set can result in substantial changes of the selected model. This means that researchers
need to be very careful when interpreting the results of variable selection. Particularly,
regardless of which technique for variable selection was used, it can be taken for
granted neither that the selected variables are all relevant influences on y nor that
unselected variables are not relevant influences. For example, if different explanatory
variables share similar information about y, it may strongly depend on chance which
of them is selected.

The aim of the present paper is to explore the variability of variable selection. It
starts from running variable selectionmethods on bootstrapped data subsets (Sauerbrei
and Schumacher 1992; Sauerbrei et al. 2015). The set of models found on different
bootstrapped data sets is then explored using distance-based techniques such as mul-
tidimensional scaling and cluster analysis. This allows to address issues such as how
much variability there actually is, how this variability can be structured and interpreted
(i.e., what kind of different models or groups of models deliver very similar fits), how
such a structure can be related to the quality of the fits, which observations are fitted
differently by different models, which variables make a more or less stable contribu-
tion to the models in terms of the resulting fits, to what extent and in what way results
from different variable selection methods differ. We also define a new measure of
instability in the bootstrap variable selection. Complementary visualisation methods
for bootstrap based variables selection are implemented in the mplot package of the
statistical software system R, Tarr et al. (2018). Riani and Atkinson (2010) propose a
robust variables selection method involving exploration and visualisation of various
models, although their aim is not the exploration of the variability of variable selection.

In three examples, we will apply our approach here to variable selection problems
in linear regression fitted by least squares, and to Cox-regression in survival analysis.
Variable selection is done using backward elimination with Akaike’s Information
Criterion (AIC) or the Bayesian Information Criterion (BIC) as stopping rule. The
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ideas can be applied in much more general situations; they extend to different models
(generalized linear models, nonlinear regression, classification), different methods of
fitting (such as robust or kernel regression), different approaches for variable selection
(such as forward or exhaustive search or the Lasso), and the bootstrap can be replaced
by subsampling techniques.

In Sect. 2 we briefly introduce the three example data sets. Section 3 introduces the
formal methodology, regression and bootstrapped variables selection, dissimilarities,
multidimensional scaling (MDS) and clustering. Sections 4, 5 and 6 apply the method-
ology to the real data sets. This includes the introduction of some helpful scatter- and
heatplots in Sect. 4, the comparison of different model selection methods in Sects. 5
and 6, and in Sect. 6 a different model, namely the Cox proportional hazards model
for survival data. Section 7 concludes the paper with a discussion.

2 Data sets

We use three data sets to apply and motivate the methodology proposed here. The
structure of these data sets differs a lot, which allows us to illustrate different issues.
We explore one aspect of model building, namely the decision which variables to
include, and assume that the chosen model structure (linear for the first two data sets,
Proportional hazards for the third one) is appropriate, which is in line with earlier
analyses of these data sets.

The first data set was taken fromRouseeuw and Leroy (1987) and is originally from
Coleman et al. (1966). It contains data on n = 20 American schools. y is the verbal
mean test score, and there are five explanatory variables, namely x1 (staff salary per
pupil), x2 (percentage of white collar fathers), x3 (socioeconomic status composition
indicator), x4 (mean teacher’s verbal test score), and x5 (mean mother’s educational
level). The relevance of selection is debatable given that there are only five variables,
but to illustrate various issues an examplewith a small number ofmodels is (25 = 32) is
suitable. Because of the very small sample size the model selection process is instable
and it is likely that models selected in bootstrap samples will differ.

As second example data set we analyse a study on the effects of ozone on school
childrens lung growth. Sauerbrei et al. (2015) used this data set as an example for
investigating the stability of variable selection using bootstrap. The data set has n =
496 observations (children), p = 24 variables, and correspondingly 224 = 16,777,216
models. For details on the original study see Ihorst et al. (2004), for details on the data
set used here see Buchholz et al. (2008). The response is the forced vital capacity (in
l) in autumn 1997 (FVC). The explanatory variables are listed in Table 3.

The third data set uses the Cox proportional hazard model for survival times. Krall
et al. (1975) analysed the survival times of 65 multiple myeloma patients diagnosed
and treated with alkylating agents at West Virginia University Medical Center. There
are 16 explanatory variables, which are listed in Table 4.

The response is the rounded survival time in months. Of the 65 patients, 48 were
dead at the time of the end of the study, and 17 were alive. With an effective sample
size of 48 and 216 = 65,536 models we consider another extreme situation, but this
time with the additional issue of censored data. Later we will use observation numbers
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936 C. Hennig, W. Sauerbrei

and therefore it is useful to know that the observations are ordered in the following
way: the first 48 observations are the patients who had died, and within both the died
and the surviving patients, observations were ordered from the lowest to the highest
survival time (or time in the study after diagnosis).

3 Methodology

Here we give an overview of the formal part of themethodology. Apart from this, a key
feature of our analyses are various plots based on MDS and hierarchical clustering.
These plots are better introduced in connection with the analysis of the data sets and
are therefore presented “on the fly” in the Sects. 4, 5 and 6.

3.1 Regression and bootstrapped variable selection

The general situation of interest here is that the distribution of a response variable
y ∈ R is a function of variables x1, . . . , xp and a parameter vector β, and the issue of
interest is whether this distribution can also be written down as a function of a subset
of {x1, . . . , xp}. With p candidate variables there are 2p different possible models.

More specifically, before Sect. 6 we assume that we have a data set Z =
(yi , x1i , . . . , xpi ), i = 1, . . . , n, modelled as

yi = β0 + β1x1i + β2x2i + · · · + βpxpi + ei , (1)

ei ∼ N (0, σ 2) iid for i = 1, . . . , n (later we denote x.i = (x1i , . . . , xpi ), i =
1, . . . , n). Usually, the variable selection problem is understood as the task to find
V ⊆ {1, . . . , p} so that j /∈ V ⇔ β j = 0, although in practice nobody would believe
that any true β is exactly zero if it even exists. The present paper is concerned with
exploring the variability of variable selection and will therefore neither require that
the model holds nor that any β j is truly zero.

In Sect. 6, we use a Cox proportionals hazard model instead of (1); bootstrapped
variable selection is used in the same way as before. The hazard function at time t
given the explanatory variables x1, . . . , xp is modelled as

λ
(
t |x1, . . . , xp

) = λ0(t) exp

( p∑

i=1

βi xi

)

. (2)

λ0(t) is nonparametric, and β1, . . . , βp can be estimated without the need to estimate
λ0(t), see Cox (1972).

Given any variable selection method T that returns, for a data set of this kind, a set
V̂ ⊆ {1, . . . , p} and estimates β̂(V ,Z) = {β̂ j : j ∈ V }, its stability is explored by
applying it to b nonparametric bootstrap samplesZ∗

i , i = 1, . . . , b (of same size nwith
resampling, although other resampling sizes have been used in the literature as well,
e.g., Shao 1996) yielding sets V̂1, . . . , V̂b and estimates β̂(Vi ,Z∗

i ), i = 1 . . . , b, see
Sauerbrei and Schumacher (1992); Sauerbrei et al. (2015) for a detailed discussion.We

123



Exploration of the variability of variable selection based on distances between bootstrap… 937

use b = 500 for each variable selection method here (for the Coleman data set we only
use a single one, for the other two data sets we use AIC and BIC as selection criteria).
Apart from the very small Coleman data set, b = 500 does not allow to explore all
models that could potentially be selected, but unless p is very small, chances are that
this is not possible with a substantially larger and computationally realistic b either. To
us it seems that b = 500 strikes a good compromise between acceptable computing
times, a visual structure that can still be explored comfortably by eye, and on the other
hand a sufficiently rich coverage of the space of models that makes it quite likely
that what is missed will either be further instances of model clusters that are already
represented, or quite unlikely “outlying” models.

In the present paper we focus on backward elimination for variable selection, based
on Least Squares linear regression for model (1). The stopping criterion for the back-
ward elimination isAkaike’s InformationCriterion (AIC), i.e., elimination of variables
is stopped when the elimination of a variable makes the AIC worse. In Sects. 5 and 6
we will also use the BIC for a demonstration of how the methods introduced here can
explore the difference between different variable selection methods in a given data set.
See Royston and Sauerbrei (2008) for background.

The dissimilarity-based methodology defined below allows to compare directly the
models found in bootstrap samples with the model (or models) V̂ found by applying
one or more variable selection methods to the full data set. Because these comparisons
are of interest, themethodologywill be applied to the “model collection” of B = cb+c
models, where c is the number of variable selection methods applied to the full data
set (in the examples below, either c = 1 or c = 2). Let B∗ ≤ B be the number of
pairwise different models in the model collection. Note that the same model (in the
sense that the same variables were selected) may result from different bootstrapped
data sets.

3.2 Dissimilarities between sets of selected variables

Dissimilarity measures between the models found in different bootstrap runs are the
main ingredient of our analyses. Many such dissimilarity measures could be con-
structed. We distinguish two main approaches. A dissimilarity measure can be based
on (a) the set of variables in amodel or (b) the fitted y-values of themodel for all obser-
vations in the data set. Both of these are potentially of interest. In some applications
the set of variables may be the main focus for interpretation, namely if researchers are
mainly interested in finding out what the most important influences on y are. On the
other hand, we are also interested in finding out whether the different models result in
different groups of fits regarding the predicted values of the observations, and it would
be interesting to see to what extent models that are dissimilar in terms of variables are
nevertheless similar in terms of the fitted values.

As a dissimilarity measure based on the variables in the model we suggest the
Kulczynski-dissimilarity (Kulczynski 1927):

dK (V1, V2) = 1 −
( |V1 ∩ V2|

2|V1| + |V1 ∩ V2|
2|V2|

)
,
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938 C. Hennig, W. Sauerbrei

where V1, V2 ⊆ {1, . . . , p} are two subsets of variables and |V | is the number of
elements (variables) in a set V of variables. If at least one of |V1| and |V2| is 0, it is
sensible to set dK (V1, V2) = 1/2. There are two main reasons for the choice of dK .
Firstly, it seems appropriate to use a dissimilarity measure that does not rely on joint
absences of variables. Often a large number of variables is available and it is obvious
that most of them have to be removed for any acceptable model. Also, we expect that
normally in real data with many variables only a few variables have a strong effect on
the outcome. Several variables may have a rather weak effect and most variables may
have hardly any direct effect and may only be associated with the response through
correlation with other variables. Two models with one variable each, but different
variables, should not be assessed to be very similar based on the fact that nearly all
variables are missing from them both. The most popular dissimilarity measure that
does not depend on joint absences is the Jaccard distance (Jaccard 1901),

dJ (V1, V2) = 1 −
( |V1 ∩ V2|

|V1 ∪ V2|
)

.

This has the disadvantage that according to it models with few variables that are nested
in much bigger models are far away from these bigger models, which is undesirable
because most “fitting work” in the bigger model may be done by the one or few
variables that contribute strongest and are therefore most likely to appear also in
smaller models. The Kulczynski dissimilarity avoids this issue by relating |V1 ∩V2| to
both |V1| and |V2| rather than |V1 ∪V2|, which in case of nested models is just the size
of the bigger model. This comes at the price that the Kulczynski dissimilarity does not
fulfill the triangle inequality (which is why we refer to it as “dissimilarity” rather than
as “distance”), as opposed to the Jaccard distance. See Hennig and Hausdorf (2006)
for a discussion of this and why it may be seen as an advantage of the Kulczynski
dissimilarity in cases like the one considered here.

A reviewer suggested that the Kulcynski-dissimilarity could be modified so that
variables are not counted as “joint presences” if they are present in both models but
with different estimated regression parameter sign. Whether this is preferable is not
an issue of “right” or “wrong” but rather of how the researcher chooses to interpret
similarity. In our version, it refers to the idea that the variable is taken as “influential”
in a model rather than how exactly the influence plays out. The next section presents
another different formalisation of dissimilarity between models.

3.3 Dissimilarities between fits of observations

As dissimilarity measure between the fits from the two models based on the variable
sets V1 and V2 we suggest the L1-distance between the vector of fits, i.e.,

dF (V1, V2) =
n∑

i=1

| fV1(x.i ) − fV2(x.i )|, where

fV (x.i ) =
∑

j∈V
β̂ j (V ,Z)x ji , i = 1, . . . , n,

123



Exploration of the variability of variable selection based on distances between bootstrap… 939

V , V1, V2 ⊆ {1, . . . , p}. Note that in order to make the fits from the different models
better comparable, they are refitted on the whole data set (from now on referred to as
the “original data set”), i.e., we use β̂(Vi ,Z), i = 1, . . . , B, rather than β̂(Vi ,Z∗

i );
this also makes it possible to include the cmodels obtained from the full data set in the
B models in the collection, see above [such a least squares-refit may not be suitable for
all variable selection methods, e.g., for regularization techniques combining variable
selection and shrinkage such as the Lasso (Tibshirani 1996)]. Models with the same
variables resulting from different bootstrap samples are in this way represented by the
same regression parameter estimates and corresponding fits, although when computed
on the different bootstrap samples that selected the same model, regression parameter
estimates and fits would have been different.

The reason for choosing the L1-distance here is that the overall distance dF should
not be dominated by large individual distances between fits on certain observations if
the fits are very similar on most other observations. Such large individual differences
should have an impact, but this should not be upweighted compared with smaller
distances as it would be by the L2-distance based on squares.

3.4 Dissimilarities between observations and between variables

For some of the heatplots introduced later in Sect. 4.5, dissimilarities are also required
between observations and between variables. These can be defined based on the
bootstrap results as well. These dissimilarities are used for setting up hierarchical
clusterings that order observations or variables in the heatplot, so the main aim is to
allow for a visualisation that makes it easy to spot the main issues, see Sect. 4.5.

Variables can be characterized by sets of bootstrap runs inwhich theywere selected.
As dissimilarity measure between variables we propose the Jaccard distance between
these sets. The issue that prompted us to suggest the use of Kulczynski above does
not apply here; a variable i that appears rarely can be treated as very different from a
variable j that appears often, even if the models in which variable i appears are always
those in which variable j appears, too. In any case, we treat variables as similar if they
tend to appear together in selected models, which is good for the organisation of heat-
plots of variables against models, but is quite different frommeasuring their similarity
by the absolute value of their Pearson correlation |ρ|, see Sect. 4.2 for an example.

Heatplots involving observations in Sect. 4.5 will mainly show residuals, so we
will use the Euclidean distance dE between the vectors of an observation’s residuals
ri [β̂(Vk,Z)] = yi −∑

j∈Vk β̂ j (Vk,Z)x ji , k = 1, . . . , B∗ from the B∗ selectedmodels
(residuals for survival data are defined differently, see Sect. 6).

So overall we use

– the Kulczynski-dissimilarity dK between B∗(B∗−1)
2 pairs of models,

– the L1-distance dF between the fit vectors from the B∗(B∗−1)
2 pairs of models,

– the Euclidean distance dE between the vectors of model-wise residuals of the
n(n−1)

2 pairs of observations,

– the Jaccard distance dJ between the p(p−1)
2 pairs of variables (and additionally a

correlation-based similarity measure between pairs of variables for comparison in
Sect. 4.2).
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3.5 Instability measurement

Based on fits and their standard deviation, the bootstrap results allow to define an
absolutemeasure ofmodel selection instability (“absolute” in the sense that its internal
calibration makes values comparable between data sets). This can be achieved by
comparing themean variation of residuals betweenmodels within observations (which
should be low if models are stable) with the mean variation of residuals between
observations within models:

s∗ =
1
B

∑B
j=1 SD

(
r1

[
β̂(Vj ,Z)

]
, . . . , rn

[
β̂(Vj ,Z)

])

1
n

∑n
i=1 SD

(
ri

[
β̂(V1,Z)

]
, . . . , ri

[
β̂(VB,Z)

]) ,

where SD denotes the standard deviation. This is based on residuals rather than fits
because the standard deviation for different observationswithin the samemodel should
not be governed by the variation between the values of the explanatory variables. Also,
we prefer standard deviations to variances (which could have been used to create a
measure in the style of the regression R2) in order to avoid giving the models and
observations with the largest within-model or within-observation variations an unduly
large influence on the average. Low values imply that residuals between models are
rather similar, which means that the variable selection stability is high.

3.6 Multidimensional scaling

MDS is for mapping dissimilarity data in Euclidean space in such a way that the
Euclidean distances between observations approximate the original dissimilarities in
an optimal manner. We use MDS for visualising the dissimilarity structure (using dF
or dK as defined above) of the models selected by the bootstrap replicates.

There are various MDS techniques, see, e.g., Borg et al. (2012). We use ratio
MDS here, computed by the R-package smacof (de Leeuw and Mair 2009), which
is defined, for a target dimensionality q, by choosing a matrix of Euclidean points
Z = (z′1, . . . , z′n)′, zi ∈ R

q , i = 1, . . . , n in such a way that the Euclidean distances
di j (Z) = ‖zi − z j‖2 and a constant b > 0 minimize the normalized stress

S =

√√
√√

∑
i< j

(
bδi j − di j (Z)

)2

n(n − 1)/2

under the side condition that
∑

i< j bδ
2
i j = n(n−1)

2 , where δi j = dF (Vi , Vj ) or
dK (Vi , Vj ), i, j = 1, . . . , n, are the dissimilarities to be approximated.

This means that the Euclidean distances on Z approximate a normalized version
of the original dissimilarities in the sense of least squares. We chose this version
because we constructed the dissimilarities in such a way that their values and their
ratios should reflect how dissimilar the models are in a well-defined numerical sense
(this does not necessarily require that the dissimilarities fulfill the triangle inequality).
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Other popular versions of MDS only represent the order of the dissimilarities, or some
nonlinear transformation of it, or a linear transformation that doesn’t necessarily map
zero on zero, all of which are less appropriate here. Classical MDS can be thought of
as approximating squared dissimilarities, which gives large dissimilarities too much
of an influence on the MDS configuration. For details see Borg et al. (2012).

Obviously, for straightforward visualisation, q = 2 is most useful. One should
however be concerned about the information loss when representing dissimilarities
in low dimensions. The normalized stress, which has a straightforward interpretation
in terms of the percentage approximation error, can be used for this. The smacof
package also produces a Shepard plot that allows to assess the fit by looking at δi j
versus di j (Z) (not shown in the examples). We will in the following only showMDS-
plots with q = 2 because inspection of more dimensions for the data examples treated
here did not show further interesting structure. But in general we advise to consider
S, Shepard plots and further dimensions of a higher dimensional MDS-solution.

3.7 Clustering

For the exploratory analysis of the models selected by the bootstrap replicates,
dissimilarity-based clustering can make the following contributions: (a) it can com-
plement the MDS by using information in the dissimilarities that may be lost by the
MDS rendering of the data in low-dimensional Euclidean space; (b) as opposed to
visual clustering, it produces well defined and formally reproducible clusters (which
of course may coincide with the visually found ones, in which case it can confirm the
subjective impression from the MDS); (c) clustering outcomes serve well for ordering
the rows and columns of heatplots, see Sect. 4.5.

There is a very large array of clustering methods. We prefer hierarchical methods
here because it may be useful to look at groupings at various levels of coarseness
(we are not concerned with estimating any “true number of clusters”), and because
such methods give more information for structuring heatplots than methods that only
produce a partition. We have good experiences in this situation with average linkage
(UPGMA) hierarchical clustering, which often is a good compromise between single
linkage (which respects gaps but may join cluster with too large within-cluster dissim-
ilarities too early) and complete linkage (which keeps within-cluster dissimilarities
low at the expense of at times ignoring flexible cluster shapes). See Hennig (2015) for
some considerations regarding the choice of a cluster analysis method.

A general issue iswhether analyses should be based on the B = cb+c bootstrap/full
model runs or the B∗ found models. For data sets with many variables and rather
unstable variable selection as the Ozone and Myeloma data sets in Sects. 5 and 6 this
does not make much of a difference because B∗ is often not much smaller than B. For
the Coleman data set (Sect. 4), though, B∗ = 17 (of 32 possible) and B = 501. The
computation of the Kulczynski and fit-based dissimilarity measures between models
are not affected by this decision; identical models will just produce identical rows in
a B × B-dissimilarity matrix. But MDS and the outcome of most clustering methods
(but not single and complete linkage hierarchical clustering) will differ depending on
whether they are based on dissimilarities between B∗ pairwise different objects or
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942 C. Hennig, W. Sauerbrei

Table 1 Number of selections of
variables of Coleman data out of
501 models in the collection

x1 x2 x3 x4 x5

301 222 499 440 244

between B objects many of which are identical, in which case they are more strongly
influenced by models that were found more often. This may or may not be seen as
appropriate; we decided to base MDS and the Jaccard distance between variables on
all the B bootstrap replicates (so that all information is used) but to use only the B∗
pairwise different models for the heatplots (see Sect. 4.5) and the model clusterings
used in them (because this makes it easier to appreciate the models that were not
often found in the plots), as well as for the Euclidean distances between observations’
residuals.

4 Coleman data

4.1 Regression and bootstrapped variable selection

For the Coleman data, with such a low number of variables, in principle one could
include all possible subsets of the variables in an analysis, but we stick to the set of
models selected by the b = 500 bootstrap replications in order to be consistent with
what we recommend in a general case; models not selected by any bootstrap run are
quite bad here and not very relevant.

Applying backward elimination with the AIC stopping rule to the original data set
selects x1, x3 and x4 with R2 = 0.901. This is the model with the best AIC among all
possible models. The collection of B = 501models yielded B∗ = 17 different models
in this data set, 104 of which yielded the model that is best on the original data (one
model was foundmore often, the full model with all five variables was kept 139 times).
It is also of interest how often the variables appeared in the selected models, which
is indicated in Table 1. All the variables appeared in more than 40% of the models,
and one may wonder whether these variables were pre-selected out of a bigger, not
publicly available set.

The bootstrap variable selection instability is s∗ = 0.235, the residual variation
between models within observations is about a quarter of the variation between obser-
vations within models.

4.2 Dissimilarities

With B∗ = 17 we have (17×16)/2 dissimilarities between models. It is surprising
to see that in some of the replications the full model with 5 variables and in other
replications two different univariate models were selected, see Fig. 2, which also
shows that one of the univariate models is clearly outlying.

The left side of Fig. 1 shows a scatterplot of the two different distances, dK and dF .
It shows that for the Coleman data the similarity of some pairs of models is assessed
quite differently by dK and dF ; among the smallest Kulczynski dissimilarities dK (i.e.,
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Fig. 1 Left side: Scatterplot of Kulczynski versus fit-based dissimilarities for the Coleman data set. Right
side: Scatterplot of Jaccard distance versus 1 − |ρ| for pairs of variables in the Coleman-data set

Table 2 Pearson correlation
matrix for Coleman data

x1 x2 x3 x4 x5

x1 1.00 0.18 0.23 0.50 0.20

x2 0.18 1.00 0.83 0.05 0.93

x3 0.23 0.83 1.00 0.18 0.82

x4 0.50 0.05 0.18 1.00 0.12

x5 0.20 0.93 0.82 0.12 1.00

pairs of models with very similar set of variables) are models with dF (distance of fits)
up to about 18, much larger than the smallest dF -values, indicating that inclusion or
exclusion of a single variable can cause quite a difference in fits. There is also a group
of very high dF around 50 corresponding to moderate dK around 0.4, which looks like
a distinct cluster, and another one with dF high and dK = 1. Both of these “clusters”
refer to dissimilarities involving themodel with only the “white collar fathers” variable
in it (see Fig. 4 discussed later); some of the other models have no variable in common
with this (dK = 1) and some have one or more variables in common, but still the fits
are very different. On the other hand, some of the pairs of models with smallest dF
have dK up to 0.6. Figure 4 as introduced below shows some information about which
variables make a bigger difference in terms of fits.

The right side of Fig. 1 shows that dissimilarity assessment between pairs of vari-
ables by dJ is quite different from measuring their similarity by the absolute value of
their Pearson correlation |ρ| as mentioned in Sect. 3.2; the correlations are given in
Table 2. This means that the property of being selected together for two variables in
this data set has little relation to their correlation, which particularly means that strong
correlations are not a main driving force for variable selection here.

4.3 Multidimensional scaling

The MDS-solution for the Coleman data with fit-based distance is shown on the left
side of the Figs. 2 and 3, together with some further visualisation elements. In Fig. 2,
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Fig. 3 Left side: 2-dimensional MDS solutions for the fit-based dissimilarity between models for the
Coleman data set with 4-cluster average linkage clustering from fit-based similarity. Sizes of symbols are
proportional to the square root of how often a model was found. Right side: same with MDS solutions for
the Kulczynski dissimilarity between models (color figure online)

the numbers indicate howmany variables are in the models, and the colors and number
sizes indicate how good the model is according to the AIC.

On the left side, there seem to be four “clusters” of models in this plot, one of which
is just the single outlying model with apparently vastly different fits, with the worst
AIC-value (light blue). This model was only found once (in Fig. 3, the sizes of the
numbers indicate how often a model was found; the numbers and colors there refer to
the clusters, see Sect. 4.4) and has only a single variable, namely percentage of white
collar fathers, as can be seen in Fig. 4. Close to the middle of the plot there seems to be
a group of models with similar fits that are far from optimal according to the AIC. The
two groups of fits on the lower right side were selected most often (cluster 1 selected
290 times, cluster 2 selected 151 times, cluster 3 selected 59 times, cluster 4 selected
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Fig. 4 Variables in models for Coleman data; model clustering dendrogram from fit-based distance. Colors
on the left side correspond to clusters from Fig. 3 (black—1, red—2, green—3, blue—4) (color figure
online)

once out of B = 501) and yield the best fits. In Sect. 4.5 we will explore these groups
of fits in more detail in order to find out how these different models interpret the data
differently.

The MDS-solution with q = 2 yields S = 0.118 for the fit-based distance, which
according to experience is fairly good but not excellent.

The right sides of the Figs. 2 and 3 show the 2-dimensional MDS-solution for the
variable-based Kulczynski dissimilarity, with the same meaning of the additional plot
elements as on the left side.

This shows the same “outlier model” as before, now far on the left side. As the
space of subsets of {1, 2, 3, 4, 5} is quite discrete, the other models are not so clearly
clustered. One thing that can be seen on the right side of Fig. 2 is that the models
with the next best AIC values (red) are close to the best model (black) also in terms of
the Kulczynski dissimilarity. The model with all five variables is central regarding the
Kulczynski dissimilarity; it belongs to the black cluster 1.Models with fewer variables
are more marginal.
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4.4 Clustering

For the Coleman data with fit-based distance between models, the average linkage
dendrogram cut at four clusters corresponds with an intuitive visual clustering, see the
left side of Fig. 3. The right side of Fig. 3 shows the same clustering on the MDS plot
based on the variable-based Kulczynski dissimilarity.

In the Kulczynski-MDS plot (Fig. 3, right side), clusters 1 and 2 are more central
and not separated; and cluster 3 looks rather heterogeneous regarding the variables.
Connecting this with Fig. 2, the models with 1 and 2 variables in this cluster are
actually better, regarding the AIC, than those with 3 and 4 variables, although models
in clusters 1 and 2, which are superior in terms of the AIC, tend to havemore variables.
The AIC is known to favor rather “big” models, see also Sects. 5 and 6.

The next important issue is to explain the clustering, i.e., what characterizes the
different fits, and which variables are important for determining to which cluster a
model belongs. This can be done using heatplots.

4.5 Heatplots

Heatplots are probably the most useful tool for visualising the bootstrap results. We
use them here for showing the variables in all the bootstrapped models (Fig. 4) and for
analysing the fits from the different models (Figs. 5, 6). In Figs. 5 and 6, grey scales
correspond to the raw fits by the models as indicated by the Color Key. Differences
between models are usually more pronounced when looking at residuals (Fig. 6).

Heatplots are ordered by the average linkage clusterings from the fit-based distance
(models), the Jaccard distance (variables) and the Euclidean distance on vectors of
residuals (observations). This easily allows to connect the heatplots with the cluster
structure of the models that was highlighted above. Colors on the left side of the
heatplot correspond to those used in Fig. 3. Cluster 1 in Fig. 3 comprises the models
no. 12, 1, 6 and 4, cluster 2 comprises models no. 13, 5, 3 and 2, cluster 4 only has
model 10 and the remaining models belong to cluster 3. Figure 4 shows that cluster
1 and 2 on one hand and clusters 3 and 4 on the other hand are distinguished by
whether or not x4 (teacher’s test score) is in the model or not. Figures 5 and 6 show
considerable differences between the fits of these two groups of clusters. Clusters 1 and
2 are distinguished by the presence or absence of variable x1 (salary per pupil). Figure 5
shows some specific differences between their fits, which are not as pronounced as
between them and cluster 3 and 4.

Model 10 (cluster 4) uses only variable x2, which makes it outlying, and its fits are
very different from all the other models. There is a minority of observations on which
its fit is actually the best (e.g., no. 7 and 18), but on the majority it does badly (e.g.,
no. 11 and 15).

If required, the differences in fits can be interpreted in terms of the specific obser-
vations. E.g., observation no. 6 is fitted by a much larger value in cluster 3 (green)
than in the other three clusters. Its residual in clusters 1 and 2 (black and red) is around
zero, somewhat worse in cluster 4 and quite high in cluster 3.
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Fig. 5 Model fits of observations for Coleman data; model clustering dendrogram from fit-based distance.
Colors on the left side correspond to clusters from Fig. 3 (black—1, red—2, green—3, blue—4) (color
figure online)

The models with the best AIC-values are in clusters 1 and 2 (Fig. 2), but looking at
Fig. 6 it can be seen that the models in cluster 3 by and large produce lower absolute
values of residuals (i.e., color closer to white) for more observations than the models
in clusters 1 and 2, which makes these models attractive from a robust perspective.
The models in clusters 1 and 2 deliver much better fits for observations 6 and 10,
which account largely for the better AIC-values of these models. This means that
these models are not as clearly better as the AIC suggests. The fits in cluster 3 look
just as legitimate from this perspective.

Overall the four clusters of models clearly refer to quite different ways to fit the
observations, and the heatplots in Figs. 5 and 6 allow to explore the differences on
the level of individual observations, here showing that the same data may be seen as
supporting also a way of fitting the data that is quite different from the AIC-optimal
model 1.

In order to save space, we will omit some analyses for the further examples.
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Fig. 6 Residuals for Coleman data with negative residuals in red; model clustering dendrogram from fit-
based distance. Colors on the left side correspond to clusters from Fig. 3 (color figure online)

5 Ozone data

5.1 Regression and bootstrapped variable selection

The explanatory variables of the Ozone data set with selection frequencies are listed
in Table 3.

Regression and bootstrap variable selection have been carried out as described in
Sect. 3.1, but we have used twice 500 bootstrap replications using each of AIC and
BIC as stopping criteria for variable selection by backward elimination, and we will
be interested in the extent to which these deliver different results. Furthermore, we
added the models that were produced by applying backward elimination using AIC
and BIC, respectively, to the full data set. Different from the Coleman data set, here
thesemodels were not found on any bootstrap sample, so there were B = 1002models
considered overall, with B∗ = 798 different models. The variables SEX, FLGROSS
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Table 3 Explanatory variables of Ozone data

Name Description AIC sel. BIC sel.

x1 ALTER Age (years) 270 117

x2 ADHEU Allergic rhinitis 173 44

x3 SEX 0 male, 1 female 500∗ 500∗
x4 HOCHOZON Lives high ozone village 421∗ 193

x5 AMATOP Maternal atopy 107 19

x6 AVATOP Paternal atopy 144 31

x7 ADEKZ Eczema 107 16

x8 ARAUCH Tobacco smoke exposure 93 24

x9 AGEBGEW Weight (g) at birth 183 23

x10 FSNIGHT Cough at night / morning 115 41

x11 FLGROSS Height (cm) at pfm 500∗ 500∗
x12 FMILB Allergen sensitization 286∗ 131

x13 FNOH24 Max. NO2 before pfm 458∗ 254

x14 FTIER Animal dander sensitization 129 52

x15 FPOLL Pollen sensitization 286∗ 166

x16 FLTOTMED Number of medications 318∗ 136

x17 FO3H24 Max. O3 before pfm 281∗ 63

x18 FSPT Sens., any of (x12, x14, x15) 153 62

x19 FTEH24 Max. temperature before pfm 278∗ 85

x20 FSATEM Shortness of breath 349∗ 195

x21 FSAUGE Itchy or watery eyes 73 6

x22 FLGEW Weight (kg) at pfm 500∗ 500∗
x23 FSPFEI Chest wheezing or whistling 426∗ 288∗
x24 FSHLAUF Cough following exercise 120 21

The “sel.” columns indicate how often the variables were selected in the 2b = 2 ∗ 500 bootstrap replicates
by AIC and BIC (500 replicates each)
p f m, Pulmonary function testing
Variables with “*” were selected in the original data set by AIC (R2 = 0.662) or BIC (R2 = 0.642)

and FLGEW were selected in all 1002 models, but otherwise model uncertainty is
quite high.

On the full data set, the AIC selects 12 variables and the BIC selects 4, see Table 3,
three of which were selected in all 798 models, 585 of which include x23, the fourth
variable selected by the BIC.

The AIC and BIC models from the original data were both only selected this one
time; they did not come up exactly in any bootstrap replication. The three variables
selected in all models have a strong influence on the fits and are an important reason
that the fits are rather similar, see Sauerbrei et al. (2015) for related investigations.
Consequently, the measure s∗ = 0.118 shows that the variable selection instabil-
ity of fits is substantially lower than for both the Coleman and the Myeloma data
set.
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Fig. 7 Fit-based MDS for models for Ozone data. Numbers and colors indicate the 3-cluster partition from
average linkage. The size of the numbers is proportional to the square root of how often the models were
found. “A” and “B” denote the models found on the full data set by AIC and BIC, respectively (color figure
online)

5.2 Multidimensional scaling

Figure 7 shows the 2-dimensional MDS solution for dF . The stress is S = 0.286,
which is not particularly good, but in terms of visible and interpretable structure
higher dimensional MDS solutions do not deliver much more. There is an obvious gap
separating two groups of models from each other and another not so clear gap that
splits the group on the right side up into two clusters. The 3-cluster partition obtained
from fit-based average linkage clustering indicated by the numbers 1, 2, 3 in the plot
corresponds nicely to this. In order to investigate the meaning of this structure, we had
a look at the differences between models found by the AIC and the BIC, as indicated
by different colors in Fig. 8. These are strongly related to, but not completely aligned
with the split between cluster 1 (mostly AIC) and the union of clusters 2 and 3 (mostly
BIC). In any case it is clear from the plots that AIC and BIC select systematically
very different models here, with AIC selecting models with more variables. Symbol
sizes in the two plots in Fig. 8 show the rankings of the models according to the AIC
(left side) and BIC (right side). These show that the AIC and the BIC disagree quite
generally in this data set, with the good AICmodels in the lower left and the good BIC
models in the upper right of the two plots, although the models at the outer margin are
rather bad according to both criteria. The good AIC models seem to occur in groups,
and models that are further away from the lower left of the plot mostly yield a clearly
worse AIC. The good BIC models are more scattered and good models occur in all
regions of the plot that are sufficiently densely populated by BIC models.
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Fig. 8 Fit-based MDS for models for Ozone data. Red: found by BIC, black: found by AIC, blue: found by
both (potentially on different bootstrap samples). “A” and “B” denote the models found on the full data set
by AIC and BIC, respectively. Symbols show how many variables are in the models (“0”,“a”, “b”,…refer
to 10, 11, 12, …variables). Left side: the size of the symbol shows the ranking of the models in terms of
the AIC, i.e., the biggest symbol corresponds to the best AIC. Right side: same for the BIC (color figure
online)

Furthermore, Fig. 8 explores themodel sizes, i.e., the numbers of selected variables.
Again there is no complete alignment although the biggest models tend to occur in
cluster 1 and yield typically a higher AIC, and the smallest models tend to occur in
cluster 3, connected to the BIC.

A number of decisions has to bemade for producing these plots, including the range
of symbol sizes and the assignment of the characteristics to different aspects of the plot
(color, symbol, size). For practical exploratory analysis it is probably better to produce
more plots and to focus on one or two characteristics in each plot; in Fig. 8 and later
in Fig. 13 we visualized “criterion by which a model was chosen”, “AIC ranking” (or
BIC) and “number of variables in the model” in a single plot for reasons of space.

5.3 Clustering and heatplots

Figure 9 shows a heatplot of variables in models with the fit-based average linkage
clustering. All models include the three dominating variables FLGEW, FLGROSS,
and SEX. This plot characterizes cluster 1 (black, 502 out of 798 models; found on
average 1.19 times) as models that all include both the variables HOCHOZON and
FNOH24. The models in cluster 2 (red, 102 out of 798 models; found on average 1.17
times) include FNOH24 but not HOCHOZON, and the models in cluster 3 (green, 194
out of 798 models; found on average 1.48 times) never include FNOH24 and include
HOCHOZON only very occasionally.

Heatmaps of residuals with dendrograms of models (fit-based) and observations are
given in Figs. 10 and 11. Figure 10 suggests that despite the large variation in terms of
the selected variables, the models actually produce quite similar fits (this is confirmed
by the not shown heatplot of fits; it is in line with Sauerbrei et al. (2015), and also with
the lowest value of s∗ in the data sets examined in this paper). A grouping of observa-
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Fig. 9 Variables in models for Ozone data; model clustering dendrogram from fit-based distance. “AIC-
model” and “BIC-model” denote models found on the full data set by AIC and BIC, respectively. Colors
on the left side correspond to clusters from Fig. 7 (black—1, red—2, green—3) (color figure online)

tions into those that tend to produce negative residuals and those that tend to produce
positive residuals with some that produce a residual around zero by almost all models
seems much clearer from the plot than the clustering of the models. If interested in
specific observations, one could identify and interpret the clusters of observations, but
we do not do this here. Differences between the model clusters are almost invisible. A
conclusion from this is that regarding the fits it matters little which model is actually
chosen. The fits are quite stable; what is unstable is the selection of variables, which
therefore should not be over-interpreted in any finally selected model.

Figure 11 shows column-standardized residuals, which show which observations
are fitted with rather high or low values in comparison by the different models. This
plot allows to see that and how the fits in clusters 1 (black), 2 (red) and 3 (green) are
systematically different, with some lower variation in residuals in cluster 1 (which is
connected to AIC-selection). Some cluster structure on lower levels, albeit quite weak,
is also visible.
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Fig. 10 Heatplot of residuals of observations versusmodelswith fit-based hierarchical clusterings forOzone
data. “AIC-model” and “BIC-model” denote models found on the full data set by AIC and BIC, respectively.
Colors on the left side correspond to clusters from Fig. 7 (black—1, red—2, green—3) (color figure online)

The most important overall message regarding this data set is that there is far
more stability in fits than in the collection of selected variables. One can distinguish
roughly two or three different ways of fitting the data, which are connected to whether
the variables HOCHOZON and FNOH24 are in the model or not. The models selected
by AIC and BIC differ strongly with AIC selecting bigger models that belong mostly
to cluster 1.

6 Myeloma data

6.1 Regression and bootstrapped variable selection

Variable selection is again done using backward elimination guided by theAIC and the
BIC, respectively. Because of the small sample size the difference of the penalty factors
for AIC and BIC is smaller than in the Ozone data [we used the log of the number of
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Fig. 11 Heatplot of residuals of observations versusmodelswith fit-based hierarchical clusterings forOzone
data. Values are column-standardized, i.e., all column-wise means are zero and standard deviations are 1.
“AIC-model” and “BIC-model” denote models found on the full data set by AIC and BIC, respectively.
Colors on the left side correspond to clusters from Fig. 7 (black—1, red—2, green—3) (color figure online)

events here as penalty for the BIC, as recommended in Volinsky and Raftery (2000)],
and consequently models selected with AIC and BIC are more similar.

As in Sect. 5, we produced B = 1002 models (twice 500 bootstrapped data sets and
theAIC- andBIC-selectedmodel on the full data set) ofwhich B∗ = 780were pairwise
different. Table 4gives the selectionnumbers of the variables, and the variables selected
on the full data set by AIC, BIC, respectively. Actually on the full data set the two
selected models are the same, with 8 variables. However, as expected, BIC selected
smaller models than AIC in many bootstrap replications (BIC selected on average 7.5
variables, AIC 9.9).

In the Cox proportional hazards model there are various ways to define fits and
residuals. For the definition of the fit-based distance dF we use as fits the expected
number of deaths per month given x1, . . . , xp; we chose these here rather than the
linear predictor because the expected number of deaths is directly interpretable in
practice. As residuals for the heatplots we use martingale residuals, which arise from
comparing the death indicator with the expected number of deaths after the survival
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Table 4 Explanatory variables of Myeloma data

Description AIC sel. BIC sel.

x1 Log BUN at diagnosis 420∗ 368∗
x2 Hemoglobin at diagnosis 286 228

x3 Platelets at diagnosis 348∗ 278∗
x4 Infections at diagnosis 330∗ 245∗
x5 Age at diagnosis 229 144

x6 Sex 334∗ 263∗
x7 Log WBC at diagnosis 381∗ 308∗
x8 Fractures at diagnosis 328∗ 243∗
x9 Plasma cells in bone marrow 190 108

x10 Lymphocytes in peripheral blood 153 78

x11 Myeloid cells in peripheral blood 185 108

x12 Proteinuria at diagnosis 417∗ 339∗
x13 Bence Jone protein in urine 450∗ 395∗
x14 Total serum protein at diagnosis 351 272

x15 Serum globin (gm%) at diagnosis 287 196

x16 Serum calcium (mgm%) at diagnosis 247 173

The “sel.” columns indicate how often the variables were selected in the 2b = 2 ∗ 500 bootstrap replicates
by AIC and BIC (500 replicates each)
Variables with “*” were selected in the original data set by AIC or BIC (same model: Cox and Snell
pseudo-R2 = 0.390)

time (equal to the fit times the survival time) of the patient, see Therneau et al. (1990).
The asymmetry of the distribution of martingale residuals is not an issue, because the
diagnosis of the model assumptions is not our main aim.

s∗ = 0.309 is the largest value among the data sets analysed here. The variable
selection instability looks quite substantial for this data set.

6.2 Dissimilarities, multidimensional scaling, clustering

Figure 12 shows the 2-dimensional MDS solution for dF . The stress is S = 0.277;
again in terms of visible and interpretable structure higher dimensionalMDS solutions
do not deliver much more, despite improving the stress. The left side of the plot shows
the average linkage clustering with 3 clusters. Clusters 1 and 2 do not seem to be very
strongly separated. There is a big red “2” indicating amodel from cluster 2 at the upper
left side of cluster 3, which testifies that not all dissimilarity information is properly
represented in a 2-dimensional MDS. Quite a bit of heterogeneity can be seen within
cluster 1. Particularly, there seems to be a very homogeneous subcluster of cluster 1,
containing the model that was found on the original data set by both AIC and BIC.
This cluster is highlighted in cyan on the right side of Fig. 12. In the average linkage
dendrogram, this cluster is only isolated at a very low level, i.e., when partitioning
into very many clusters (the cluster was isolated when asking for a partition into 70
clusters of the average linkage hierarchy). This means that in fact the isolation of this
subcluster is not that strong compared with dissimilarities between other subclusters,
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Fig. 13 Fit-basedMDS for models forMyeloma data. Red: found by BIC, black: found by AIC, blue: found
by both. “A” denotes the models found on the full data set by AIC (BIC found the same one). Symbols
show how many variables are in the models (“a”, “b”,…refer to 10, 11, 12, …variables). Left side: the size
of the symbol shows the ranking of the models in terms of the AIC, i.e., the biggest symbol corresponds to
the best AIC. Right side: same for the BIC (color figure online)

but compared with its own homogeneity, its isolation is still strong and this makes it
a potentially interesting cluster. Because cluster analysis is used here for exploratory
reasons only, andwe are not concerned about estimating a “true” number of clusters, in
the following we will consider four clusters, namely the 3-cluster partition of average
linkage but with the lower level cluster highlighted on the right side of Fig. 12 as
cluster 4.

Figure 13 shows that the AIC/BIC-selected model on the full data set is surrounded
by many models that were found by both AIC and BIC, with mostly many variables,
in cluster 4. It also shows that the differences between the model selection by the AIC
and the BIC are by far not as strong here as they were for the Ozone data in Sect. 5. The
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Fig. 14 Variables inmodels forMyeloma data;model clustering dendrogram fromfit-based distance. “AIC–
BIC” denotes the model found on the full data set by AIC and BIC. The color bar on the left shows the
clusters from Fig. 12 (black—1, red—2, green—3, cyan—4) (color figure online)

number of models found by both criteria is much larger. This is not surprising, because
using the number of events in the BIC penalty means that the BIC penalty term is not
much larger than the AIC one. Bigger models tend to be on the right side of the first
MDS-dimension (in practical analysis it pays off to enlarge the plots in order to see
more detail particularly within cluster 4). The model clusters are not strongly related
to AIC versus BIC selection. By and large, as can be generally expected, AIC-selected
models are bigger than BIC-selected models, and there is a number of BIC-selected
(red)models on the left side of the firstMDS-dimension that aremuch better according
to the BIC than to the AIC, but there are also many models with a quality ranking that
is very similar according to AIC and BIC.

6.3 Heatplots

Figure 14 shows a heatplot of the variables in the models with the fit-based average
linkage clustering. This plot characterizes cluster 3 (green, bottom, 179 out of 768
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Fig. 15 Heatplot of fits of observations versus models with fit-based hierarchical clusterings for Myeloma
data. The color bar on the left shows the clusters from Fig. 12 (black—1, red—2, green—3, cyan—4).
“AIC–BIC” denotes the model found on the full data set by AIC and BIC (color figure online)

models, found on average 1.18 times) by the absence of x1. Cluster 3 is merged with
the other clusters at the top level of the dendrogram, meaning that these fits are the
most distinct group of fits alternative to the mainstream. Cluster 4 (cyan, 50 out of
768 models, found on average 1.92 times) is characterized by the presence of all eight
variables in the AIC-model selected on the full data set, plus some more. Some even
bigger models of this kind are grouped in cluster 1 (black, 148 out of 768 models,
found on average 1.51 times) below cluster 4. Note that cluster 4 was identified based
on dF ; the variable-based dK would not separate this group of models as a distinctive
cluster, but would yield a generally less expressive clustering (not shown). The rest
of the models in cluster 1 has most but not all of these variables, and additionally we
often find x14 and x15. In cluster 2 (red, 391 out of 768 models, found on average 1.20
times), only x1 out of these is a regular appearance; x12, x13 and x2 appear on some
lower level sub-clusters of cluster 2.

Heatmaps of fits and residuals with dendrograms of models (fit-based) and obser-
vations are given in Figs. 15 and 16. Figure 15 shows that a number of observations are
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Fig. 16 Heatplot of martingale residuals of observations versus models with fit-based hierarchical clus-
terings. The color bar on the left shows the clusters from Fig. 12 (black—1, red—2, green—3, cyan—4).
“AIC–BIC” denotes the model found on the full data set by AIC and BIC (color figure online)

fitted by the different models in quite different ways. Cluster 4 and some parts of clus-
ter 1 seems to produce large fits (expected monthly death rates) for these observations,
as opposed to clusters 2 and 3. These patients have low observation numbers, i.e., they
all died quite early, and the models in clusters 1 and 4 seem more eager to fit at least
some of these by use of more variables (but do not manage to assign a high death rate
to all patients who died early), whereas clusters 2 and 3 produce less variation of fits.
To be more precise, patients 1–6 are those who died within the first three months, and
the estimated death rate per month averaged over these patients and averaged over all
models within a cluster are for clusters 1–4: 0.14, 0.09, 0.08 and 0.18. Either there is
overfitting in the group of clusters 1 and 4, or underfitting in clusters 2 and 3, or both.
Fits in cluster 4 are very homogeneous; in the other clusters there is somewhat more
variability, but the cluster structure can clearly be seen.

This is also the case for the plot of the residuals, Fig. 16. Here it can be seen
that the observations on the right (which are patients with long survival times that
still eventually died during the study) are hardest to fit. As in Fig. 10, there is a
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clear clustering of observations, because most of them behave rather consistently over
the models in terms of the residual sign. The residual structure in cluster 4 and its
immediate surroundings is very stable, this is clearly and in all respects the most
homogeneous cluster of models. For the other clusters, it is possible to spot groups
of observations that are fitted in a stable manner in some clusters but produce a large
variation of residuals in others; there is a noticeable extent of variation of residuals
overall in all clusters but cluster 4.

Overall clusters 3 and 4 are the most noticeable clusters of models here. Cluster 4
has a group of very homogeneous fits similar to theAIC-selectedmodel on the full data
set, particularly assigning a large variation of fits, fitting well some of the patients who
die early. The fits in cluster 3 do not vary that much; they are not strongly driven by the
patients who die early, they tend to have fewer variables and in particular they exclude
x1. The remaining clusters can be seen as compromising to some extent between these.
Generally the model uncertainty is rather high, and only a few observations usually
make a difference when comparing fits and residuals of two models.

As in the previous examples, the fit clusters are for the Myeloma data characterized
by certain patterns of included variables, rather than by model sizes, BIC- versus
AIC-selection, or by the fits to specific observations.

7 Discussion

We have introduced various exploratory dissimilarity-based techniques for analysing
the outcome of a bootstrap exploration of stability of model selection. These can be
used to detect, for example, different groups of fits, and the sources of these differences.
The difference between different model selection approaches can be explored, as well
as different roles of the variables.

Using three examples we illustrate the proposed methodology and highlight some
of the issues. They do not necessarily represent “typical” data sets where variable
selection methods are the first choice for analysis, but they are publicly available,
which allows reproducibility of our work, and the possibility to use other approaches
and aim to derive further knowledge about the variability of variables selected. The
Ozone datawas published in an appendix of Sauerbrei et al. (2015),which also includes
code for the analyses in that paper. The Myeloma data are available on https://www.
imbi.uni-freiburg.de/Royston-Sauerbrei-book/index.html#datasets. They were used
before in various methodological papers. The Coleman data has only 20 observations
and 5 variables, which implies that there are only 32 models. We used such a small
data set as initial example because details can be easier identified in plots of a size that
works well in a journal. For bigger data sets researchers may want to use the flexibility
of a computer screen to explore details more thoroughly. The multiple myeloma data
is also small, which makes it hard to derive a suitable model with variable selection
techniques (65 observations, 48 events and 16 variables). It was chosen because severe
variable selection variability was expected (Sauerbrei and Antes 1992). In contrast,
the structure of the ozone data (n = 496; 24 potential predictors) represents a typical
variable selection problem. In an earlier paper (Sauerbrei et al. 2015) several issues
were investigated and the current analysis can be considered as an extension with the
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aim to better understand the relationships between variables and models selected with
corresponding fits of the data.

Among the things that can be learnt from these analyses are (1) the discovery of
a cluster structure in the selected models, lending itself to an easier interpretation of
the variety of models, (2) visual analysis of how the models differ regarding residuals
and fits, which may possibly lead to the discovery of substantial alternatives to the
overall selected model, (3) exploration of how the differences between different vari-
able selection criteria (here BIC and AIC) play out in the specific data set, (4) more
specific issues such as the interplay between model sizes and similarities. We have
also proposed a measure for the overall stability of variable selection.

In order to simplify all the information given in the various plots, a user might want
to look at a low number of different models that represent the overall variability. This
could be done by selecting onemodel from each cluster according to a quality criterion
(this may be AIC or BIC but there may be other criteria relevant to the research in
question).

We are well aware of problems caused by data-dependent modelling and stress that
the aim of this paper is not formal inference but rather exploration. Already in the early
nineties, Breiman (1992) heavily criticized the common practice to base inference on
a “conditional model”, ignoring uncertainty of model predictions, estimates of effects,
and variance caused by model selection. Nowadays there is much literature on post-
selection inference (see for example Berk et al. 2013; Efron 2014). In our work, the
bootstrap is used for exploring a variety of models rather than for improving the
inference based on one finally selected model.

Our proposals involve a number of decisions, such as the choices of distances
between sets of variables, fit vectors, residual vectors, pairs of variables, and the MDS
method. In order to investigate the sensitivity of our analyses to such choices, we did
some alternative analyses, using the Euclidean distance for fit vectors, L1-distance for
residuals, exchanged the use of Jaccard and Kulczynski distance for models based on
variable sets and variables based onmodel sets, andwe tried out classical andKruskal’s
nonmetricMDS for theOzone andMyeloma data. Although a high agreement between
results for the different choices would probably increase the user’s confidence in
the findings, it should be expected that results are to some extent affected by these
decisions, as different choices often change the meaning of the analyses. We gave
reasons for our original decisions andwebelieve that they aremore appropriate than the
alternative analyses, which were carried out purely for the investigation of sensitivity.
For example, using the Euclidean distance for the vectors of fits will treat models that
agree approximately on the fits for many observations but deviate strongly for one
or two as much more different than L1, compared to pairs of fits that deviate clearly
but not extremely on all observations. We do not think that this is desirable. Indeed,
the correlation between the two vectors of pairwise distances obtained from these
two methods is 0.851 for the Myeloma data, the lowest values out of all correlations
between vectors of distances obtained from alternative choices, all others being above
0.9.We used the cophenetic correlation (Sokal andRohlf 1962) to compare the average
linkage hierarchical clusterings obtained from the different distances. The impact of
the change in distances on the resulting hierarchies is somewhat bigger, with the lowest
cophenetic correlation at 0.571 (clusterings from Euclidean vs. L1-distance between
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fit vectors for the Ozone data). In this specific case this has some visible impact on the
heatplots, which seem otherwise rather unaffected by reordering using dendrograms
computed from alternative distances. Alternative MDS methods give images that are
mostly in line with those from our preferred ratio MDS. There is some effect but this
doesn’t affect any of the data analytic conclusions presented above.

The proposed methods can be applied to various kinds of regression problems
(as demonstrated with the survival data set in Sect. 6), various kinds of regression
estimators (one could use robust ones, for example), various resampling schemes
(such as robust versions of the bootstrap or subsampling), and variousways of selecting
variables (here BIC and AIC, but one could also use the Lasso, for example). Note
that currently the fit-based distance is defined by refitting a model that was selected
on a bootstrap sample on the full data set. When applying the methodology to variable
selection methods like the Lasso, this may not be suitable and the original estimates
from the bootstrap sample may be used for computing fits.

The distances between models also allow for the definition of an index for model
atypicality and for finding observations that are generally influential or of which the
inclusion leads to atypical models. This is left to future work, as is a theoretical
investigation of the variable selection instability measure.

We have used a fair amount of manual plot manipulation (e.g., by flexibly changing
symbol sizes, color schemes and annotations) so that not everything presented here
can be easily automated, and we encourage researchers to adapt the plots to their own
needs. We provide the R-code for the analyses with some comments in order to ease
the implementation which can be found in the Supplementary Material.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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