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Abstract
The amount and distribution of precipitation plays a vital role in the management of water resources, agriculture and flood-
risk preparedness. Unfortunately, Zambia like many other developing countries is a highly data-scarce country with few and 
unevenly distributed meteorological stations. The objective of this study was to run a comparative analysis of satellite-based 
rainfall products (SRPs) and gauge data to ascertain the reliability of using SRPs for daily rainfall measurements in Zambia. 
The four daily SRPs examined in this study include the following: The Tropical Applications of Meteorology using Satellite 
and ground-based observations version 3 (TAMSATv3), Precipitation Estimation from Remotely Sensed Information using 
Artificial Neural Networks (PERSIANN), the Climate Hazards group InfraRed Precipitation with Station data version 2 
(CHIRPSv2.0), and the African Rainfall Climatology Version 2 (ARCv2). SRPs were compared to rain gauge data from 35 
meteorological, agrometeorological, and climatological stations in Zambia for the period 1998–2015. Statistical analyses 
were extensively carried out at temporal scales inter alia daily, monthly, seasonal and annual. Comparisons were also done 
for three stations lying at the highest, middle and lowest elevations to examine the ability of SRPs to capture precipitation 
occurrences on complex topography. Strong coefficient of determination (> 0.9) of all the SRPs and gauge data were found 
at the monthly scale even over multifaceted topography. However, the ability of these products to capture rain gauge data 
at daily, seasonal and annual scales differs markedly. Specifically, PERSIANN outperforms all the other SRPs at all scales, 
CHIRPSv2.0 is rated second, followed by TAMSATv3 and ARCv2, respectively. These results suggest that PERSIANN can 
reliably be used in studies that seek to estimate rainfall in data-sparse regions of Zambia at any temporal scale and arrive at 
similar results to rain gauge data.
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Introduction

Disentangling the historical variability of precipitation is key 
to forecasting, water resources management and flood risk 
preparedness (Maggioni et al. 2013; Tarek et al. 2017). This 
is especially true in southern Africa where summer floods 

are described as ‘a way of life’. In fact, rainfall and water 
related disasters are documented as one of the most damag-
ing environmental risks of the twenty-first century (Miceli 
et al. 2008). To minimise these losses, accurate measure-
ment of precipitation before input into any hydrological or 
forecasting system is crucial. Although many meteorological 
variables require specialist know-how and skill to measure, 
difficulties with accurate measurements and forecasting are 
particularly acute with rainfall. This is because precipitation 
is intrinsically heterogeneous in space and time. Although 
there is a difference in the scientific definition of rainfall and 
precipitation (WMO 2010; Met Office 2018), they are used 
interchangeably in this study.

In many developing countries, access to quality data is 
a challenge (Awange et al. 2016; Mahmood et al. 2017). 
This is because meteorological and hydrological stations 
are usually characterised by low rain gauge distribution to 
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area ratios coupled with infrequent observations (Agnihotri 
et al. 2015; Basheer et al. 2018). This has also augmented 
hindrances of advances in climate science across many 
developing nations. Advancing the availability of climate 
data in developing countries has the potential of facilitating 
research that will respond to disastrous extreme events, cli-
mate-induced health hazards, and ultimately socio-economic 
development (Washington et al. 2006; Thomson et al. 2011).

While there are different types of rain gauges (see WMO 
2010), in Zambia, precipitation is generally measured using 
World Meteorological Organization (WMO) standard ordi-
nary rain gauges once every 24 h. These rain gauges are 
point based and record only the amount of rainfall falling 
over them. This poses a challenge to having a continuous 
quality-controlled data set because mostly, these gauges are 
sparsely located and apart from Provincial Meteorologi-
cal stations (PMSs), most of them are manned by only one 
observer (One-manned stations). It is important to note that 
the Zambia Meteorological Department (ZMD) a special-
ised organ of the government of the Republic of Zambia 
in charge of weather and climate monitoring only runs ten 
PMSs. Therefore, most of the remaining stations are manned 
by only one observer. This highlights the poor staffing lev-
els of ZMD like in many other developing countries. One-
manned stations hinder effective weather and climate moni-
toring especially in times of ill health. This in turn hampers 
operational water management and flood forecasting. To 
overcome this challenge, the use of automatic weather sta-
tions to supplement existing manned meteorological stations 
is being adopted in some countries across Africa (TAHMO 
2018). This has future potential to further climate research 
based on quality observational data sets. In the meantime, 
scientists employ satellite estimates in many studies around 
the world. For example, Stampoulis et al. (2013) used satel-
lite data to analyse heavy rainfall events over the Mediter-
ranean, and most recently, Zambrano-Bigiarini et al. (2017) 
studied the behaviour of satellite rainfall across the complex 
Chilean topography.

Many research organisations (e.g. The Climatic Research 
Unit of the University of East Anglia) have developed satel-
lite-based rainfall products (SRPs) to, in part, overcome the 
challenges of data-scarce regions. The usefulness of SRPs 
for water management and flood-risk preparedness requires 
an extensive validation process because generally, SRPs 
have uncertainties which may cause inaccuracies in flood 
forecasting and/or model simulations. Many scientists (e.g. 
Bajracharya et al. 2015; Tarek et al. 2017) have studied SRPs 
side by side with rain gauge data to understand their ability 
to capture rain gauge data trends in domains of their interest. 
These validation studies have also been done, because for 
effective water resources management and flood forecast-
ing, understanding the precise amount of water entering a 
catchment or region is crucial as this adds up to antecedent 

conditions which potentially leads to pluvial and fluvial 
flooding (Chen et al. 2010; Blanc et al. 2012). Therefore, 
accurate measurements of rainfall are a key contribution to 
the advancement of flood forecasting.

While SRPs validation studies have been done in many 
countries around the world, to our knowledge, none exist for 
the case of Zambia. To this end, the overall goal of this paper 
is to evaluate four daily SRPs (i.e. TAMSATv3, PERSIANN, 
CHIRPSv2.0, and ARCv2) covering the period 1998–2015. 
Daily SRP data sets were selected, because they provide 
vital information for decision making processes in flood 
forecasting (Kar et al. 2015; Tshimanga et al. 2016; Sonk-
oué et al. 2019) and food security (Stern et al. 1982; Watson 
and Challinor 2013) that cannot be realised with monthly 
data sets. This is because most hydrological and agricultural 
modelling approaches that are used require daily rainfall as 
an input (Challinor et al. 2004; Clark et al. 2011). These 
SRPs have been discussed at lengthy in “Data” of this paper. 
The study period was chosen, because it represents better 
consistence in station data availability. Results of this study 
will fill a critical research knowledge gap; particularly, they 
will strengthen our understanding of the suitability of using 
SRPs as cost-effective substitutes for daily precipitation 
measurements in Zambia. Of interest will be the ability of 
SRPs to mimic rain gauge data across the complex Zambian 
topography. The findings will also highlight strengths and 
weaknesses of SRPs (see “Data”) which will be useful for 
developers of these rainfall estimation products.

Study area and climatology

Zambia is a southern African country bounded by latitudes 
8°–18° S and longitudes 21.8°–34° E. It is land-linked and 
covers an area of 752,614 km2 (Limao and Venables 2001). 
Much of the country is on the central African plateau at an 
average altitude of 1200 m above mean sea level (Libanda 
et al. 2018). It has a population of nearly 15 million peo-
ple (CSO 2010). The inset in Fig. 1 shows the location of 
Zambia on the map of Africa, while the main figure shows 
the topographical map of the country. Table 1 presents the 
longitude, latitude, World Meteorological Organization Sta-
tion Number and observational frequency of each station.

Zambia experiences a sub-tropical climate. The year-to-
year mean accumulative rainfall varies greatly over the coun-
try with most areas receiving between 800 and 1200 mm 
(Hachigonta et al. 2008). The country receives most of these 
rains during the summer months of November to March with 
October and April being months of transition; the rain sea-
son is therefore, clearly defined.

Pioneering studies (e.g. Huygen 1989) on synoptic-scale 
mechanisms and local features affecting the behaviour of 
rainfall over Zambia suggest that water bodies, e.g. Lake 
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Mweru which covers 5120 km2 in the Northern half of the 
country, significantly contributes to boosting localised rain-
fall over some parts of northern Zambia. In similar studies 
elsewhere, potential evaporation has been documented to be 
directly correlated to the amount of water available (Majidi 
et al. 2015). Many studies have also highlighted the cause-
and-effect relationship of evaporation, cloud formation, and 
localised precipitation (Lee et al. 2015).

Data

Gauge data

The rain gauge data used in this study was kindly provided 
by the Zambia Meteorological Department (ZMD). ZMD 
is a specialised organ of the government of the Republic of 
Zambia in charge of weather and climate monitoring. Even 
though ZMD was officially recognised as a specialised organ 
of the Zambian government in January 1967, meteorological 
and climatological data collection and archiving started in 
the 1950s under the administration of the Federal Meteoro-
logical Services comprising of Nyasaland (Malawi), North-
ern Rhodesia (Zambia) and Southern Rhodesia (Zimbabwe; 
Mudenda and Nkonde 2018; ZMD 2020). Daily precipitation 
data (1998–2015) from 35 meteorological stations (Fig. 1 
and Table 1) archived by ZMD was studied sided by side 
with 4 satellite-based rainfall products (SRPs) to understand 

the possibility of using SRPs in future research lines to cover 
data-sparse regions of the country. From “ARCv2” to “PER-
SIANN”, we give an overview of these SRPs.

ARCv2

Africa Rainfall Climatology Version 2 (ARCv2) was 
obtained from the archives of the Climate Prediction Centre 
(CPC) an organ of the National Oceanic and Atmospheric 
Administration (NOAA); it is freely available here https​
://iridl​.ldeo.colum​bia.edu. This data set is a blend of geo-
stationary infrared (IR) data sourced from the European 
Organisation for the Exploitation of Meteorological Satel-
lites (EUMETSAT) and daily gauge data from the Global 
Telecommunication System (GTS). ARCv2 is gridded at a 
spatial resolution of 0.1° × 0.1°, and it is available, in netcdf 
format, for the period 1983–near present (Novella and Thiaw 
2013). It is important to note that as of March 2018, ARCv2 
contained 341 days with missing data. This creates a data 
gap in the evaluation period considered in this study. To 
facilitate ease comparisons of ARCv2 with other data sets, 
this gap was filled using Kriging as discussed in the meth-
odologies section.

CHIRPSv2.0

The Climate Hazards Group InfraRed Precipitation with 
Station data version 2 data set (CHIRPSv2.0: Funk et al. 

Fig. 1   Topographical (m) map 
of Zambia with red asterisks 
showing meteorological station 
density. Inset shows the location 
of Zambia (green square) on 
the Map of Africa. Topographi-
cal data are based on the 15 
arcsecond resolution (~ 500 m) 
SRTM15 Plus which is a fusion 
of Shuttle Radar Topogra-
phy Mission (SRTM) land 
topography with measured and 
estimated seafloor topography 
(Becker et al. 2009)

https://iridl.ldeo.columbia.edu
https://iridl.ldeo.columbia.edu
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(2015) was also used. This data set is a result of the com-
bined effort of the University of California and the United 
States Geological Survey (USGS). The data set covers lati-
tudes 50°S–50°N and all longitudes. CHIRPS is a merge of 
0.05° × 0.05° resolution satellite imagery and in situ gauge 
data. The satellite imagery is sourced from the Globally 
Gridded Satellite (GridSat) data set of the National Cli-
mate Centre of NOAA. As in ARCv2, in situ gauge data 
are sourced from the GTS. Some in situ gauge data are also 
contributed by the Southern Africa Service Centre for Cli-
mate Change and Adaptive Land Management (SASSCAL), 
Global Historical Climate Network (GHCN), and the Global 
Summary of the Day (GSOD). A detailed description of this 

data set is available in the work of Funk et al. (2015) and 
here: https​://chg.geog.ucsb.edu/data/chirp​s/.

TAMSATv3

TAMSATv3 (Tropical Applications of Meteorology using 
Satellite and ground-based observations), a product of the 
University of Reading was also evaluated in this study. It 
is gridded at a spatial resolution of 0.0375° × 0.0375° and 
covers the period 1983 to near-present. The primary sources 
of data for the development of TAMSAT are the Meteosat 
IR imagery from EUMETSAT and rainfall data from in situ 
rain gauges. The Meteosat imagery used was retrieved every 

Table 1   Stations used in the 
study with their longitude, 
latitude, elevation and WMO 
numbers

Obs freq is the frequency of observations as a percentage

WMO No Station Lat [°S] Lon [°E] Elev [m] Obs freq [%]

67403 Kawambwa Met − 9.793 29.076 1334 82
67413 Mbala Met − 9.028 31.553 1665 100
67441 Mwinilunga Met − 11.74 24.431 1365 100
67461 Mansa Met − 10.173 28.942 1257 100
67463 Samfya Marine-Met − 11.371 29.911 1194 85.27
67475 Kasama Met − 10.224 31.14 1384 100
67476 Misamfu Agro-Met − 10.171 31.225 1378 90.84
67477 Mpika Met − 11.901 31.433 1399 100
67531 Zambezi Met − 13.534 23.108 1065 100
67541 Kasempa Met − 13.457 26 1334 100
67543 Kabompo Met − 13.596 24.208 1090 100
67551 Solwezi Met − 12.171 26.367 1384 100
67561 Ndola Met − 12.994 28.659 1269 100
67563 Kafironda Agro-Met − 12.614 28.148 1220 100
67571 Serenje Agro-Met − 13.227 30.215 1390 100
67580 Msekera − 13.646 32.563 1011 100
67581 Chipata − 13.564 32.589 1025 100
67583 Lundazi − 12.294 33.175 1138 100
67599 Mfuwe − 13.255 31.931 557 81.68
67633 Mongu − 15.254 23.151 1048 100
67641 Kaoma − 14.795 24.804 1158 100
67655 Mumbwa − 15.078 27.189 1209 96.67
67659 Kafue Polder − 15.777 27.921 976 86
67662 Kabwe Agro-Met − 14.395 28.828 1175 92
67663 Kabwe Met − 14.448 28.302 1204 100
67665 Lusaka Int. Airport − 15.324 28.448 1153 100
67666 Lusaka City Airport − 15.417 28.321 1274 91.68
67667 Mt. Makulu − 15.548 28.248 1221 100
67673 Petauke − 14.251 31.339 1022 100
67731 Senanga − 16.111 23.298 1012 88.32
67741 Sesheke − 17.477 24.301 942 92
67743 Livingstone − 17.823 25.82 991 100
67751 Magoye − 15.998 27.617 1025 86.21
67753 Choma − 16.838 27.07 1275 100
67754 Chipepo − 16.795 27.879 488 88

https://chg.geog.ucsb.edu/data/chirps/
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30 min prior to mid-2006 and every 15 min thereafter. Maid-
ment et al. (2017) describes this data set in detail. Further 
information can also be found online at: https​://www.tamsa​
t.org.uk/data/archi​ve.

PERSIANN

Precipitation Estimation from Remotely Sensed Informa-
tion using Artificial Neural Networks-Climate Data Record 
(PERSIANN; Ashouri et al. 2015) was also examined. PER-
SIANN is a product of the National Climatic Data Center 
(NCDC), a technical organ of NOAA. This product is grid-
ded at a spatial resolution of 0.25° × 0.25° covering latitudes 
60° S and 60° N and all longitudes. The data set is available 
for the period 1983 to near-present. PERSIANN is a direct 
product of an artificial neural network model. To calibrate 
the model, hourly precipitation data were sourced from the 
National Center for Environment Prediction (NCEP) and 
to run it, IR imagery was sourced from GridSat. The final 
product was bias corrected using the Global Precipitation 
Climatology Project (GPCP) data set. The work of Ashouri 
et al. (2015) describes this data set in detail with additional 
information provided online at: https​://clima​tedat​aguid​
e.ucar.edu/clima​te-data/persi​ann-cdr-preci​pitat​ion-estim​
ation​-remot​ely-sense​d-infor​matio​n-using​-artif​icial​.

Statistical methodologies

The comparative methods employed herein involved the use 
of SRPs for only the grid cells containing rain gauges. To 
avoid augmenting errors, stations that had less than 80% 
observational frequency were excluded. SRPs data for 
these stations were also not considered. This brought the 
total number of stations that were used for further analyses 
to 35. The geographical location of these stations together 
with their elevation and frequency of observations is given 
in Table 1.

The 35 stations were then subjected to a standard normal 
homogeneity test (SNHT) with the aim of removing any 
influence that may have been exerted by inhomogeneities. 
Inhomogeneous data can be a result of changes in measure-
ment approaches, changes in instrumentation or location of 
observatory stations. Although, there are many methods of 
testing homogeneity, SNHT is the commonly used method in 
hydrometeorological research (Alexandersson et al. 1997). 
Mathematically, SNHT is given as:

where:

(1)Ty = yz1 + (n − y)z2, y = 1, 2,… , n

Ty is a statistic which is used to compare the mean of the 
first y years with the last of (n − y) years. Z1 and Z2 are the 
values of Zi during the first y years and the last (n − y) years, 
respectively. If the value of T is maximum, the year of y 
would be considered as having a break. The null hypothesis 
is rejected if the test

is greater than the critical value, which is dependent on the 
size of the sample under consideration (Kang et al. 2012). 
The hypothesis was tested at � = 0.05 as follows:

H0 is the Data are homogeneous, Ha is the there is a date 
at which there is a change in the data.

As part of data preparation and before any comparative 
analyses were done, Climate Data Operators (CDO) were 
employed in which Kriging was used as in Oliver et al. 
(1990) to temporally fill in the blanks of missing values. 
The temporal interpolation was done so that data sets with 
missing values e.g. ARCv2 would not be disadvantaged dur-
ing comparative analysis. Although there are many other 
interpolation methods, Kriging was chosen because previous 
literature (see for example: Creutin et al. 1982; Tabios et al. 
1985; Goovaerts 2000; Maidment et al. 2017) found it to be 
superior over other forms of interpolation. Kriging weights 
the surrounding measured values to derive a prediction for 
an unmeasured location. The general formula for kriging is 
given as:

where Z(si ) is the measured value at the ith location; �i is an 
unknown weight for the measured value at the ith location; 
s0 is the predicted location and N is the number of measured 
values.

Coefficient of determination (R2) was also explored to 
quantify the magnitude of how closely SRPs follow rain 
gauge data. R2 is mathematically defined as the regression 
sum of squares divided by the total sum of squares and is 
expressed as:

where SSres is the residual sum of squares and SStot is the 
total sum of squares with respect to the variance of the data. 
The grading of R2 varies between 0 and 1 with 0 denot-
ing that the predictor variable does not explain any of the 

(2)z1 =
1

y

n
∑

i=1

(Yi − Y)

S
and z2 =

1

n − y

n
∑

i=y+1

(Yi − Y)

S

(3)T0 = max Ty
1≤y≤n

(4)Ẑ
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https://www.tamsat.org.uk/data/archive
https://www.tamsat.org.uk/data/archive
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variation in the dependant variable, while 1 shows that the 
predictor variable accounts for all of the variation in the 
dependant variable (Basheer and Elagib 2018).

We further employed percent root-mean-square error 
(%RMSE) as used by Duan et al. (2012), to examine the reli-
ability of SRPs against rain gauge data. Basically, %RMSE 
returns values lower than 50% if the data are reliable and 
greater than 50% if found unreliable. Mathematically, RMSE 
is expressed as:

here Xobs is rain gauge data and Xmodel are the SRP data sets 
at time/place i (Chai et al. 2014). To calculate %RMSE, we 
divided the RMSE by the mean of rain gauge data. This 
approach is also available in the work of Duan et al. (2012) 
who studied the ability of Tropical Rainfall Measurement 
Mission (TRMM) to simulate rain gauge data in the Caspian 
Sea Region.

(6)RMSE =

�

∑n

i=1
(Xobs,i − Xmodel,i)

2

n

We employed two more statistical measures for annual 
rainfall estimates; these are the coefficient of variation (CV) 
and the median (M). The median is best defined as a measure 
of central tendency while the CV is the ratio of the standard 
deviation to the mean and as such a good measure of disper-
sion. It can take any value from zero variability to high vari-
ability. Mathematically, the CV is given as:

where Si is the ith rainfall estimation in mm, n is the number 
of data pairs, and s is the average of the rainfall estimates 
(Basheer and Elagib 2018).

Comparisons were also done for three stations lying at the 
highest, middle and lowest elevations to examine the ability of 
SRPs to capture precipitation occurrences on complex topog-
raphy. Mbala at 1665 m, Kabwe main at 1204 m and Chi-
pepo at 488 m were the highest, middle and lowest elevations, 
respectively (Table 1).

(7)CV(%) =

�

∑n

i
(si−s)

n−i

s
× 100

Fig. 2   Scatter plot of the average daily rainfall on an annual basis 
for rain gauge and SRPs data over Zambia, averaged over longitude 
21.8° E–34° E and latitudes 18° S and 8° S for the period 1998–2015. 

The blue solid lines represent the 1:1 while the red and dashed are the 
regression lines
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Methods used herein have been employed by several stud-
ies to investigate the possibility of using SRPs in data sparse 
regions around the world. For example, Bowman (2005) com-
pared TRMM rainfall retrievals with rain gauge data from the 
TAO/TRITON buoy array. In a similar study He et al. (2017), 
compared daily rainfall from Global Precipitation Measure-
ment (GPM) and TRMM over the Mekong river basin.

Results and discussion

Daily rainfall

Results of the homogeneity test showed that all stations 
were homogeneous apart from Lusitu, and it was therefore 
excluded from further analyses. Statistical results of how 
closely SRPs match rain gauge data are shown in Table 2. 
These results are presented as daily rainfall on an annual 
scale. Notably, SRPs were able to simulate daily means 
accurately with percent root-mean-square errors of lower 
than 50% in all cases. Figure 2 presents scatter plots of 

each SRP against rain gauge data. With an R2 value of 
0.96, PERSIANN was the highest performing SRP fol-
lowed by CHIRPSv2.0 and TAMSATv3.0, respectively. 
With an R2 value of 0.3, ARCv2 was the lowest performing 
product. RMSE results further confirm these findings with 
PERSIANN having lowest RMSE (0.07 mm) followed by 
CHIRPSv2.0 (0.25 mm), TAMSATv3.0 (0.26 mm) and 
ARCv2 (0.41 mm), respectively. These results suggest that 
experiments using daily average rainfall of PERSIANN 
data are expected to arrive at similar results as those using 
rain gauge data. The low performance found in ARCv2 has 
been highlighted by Novella and Thiaw (2013) who attrib-
uted it to decreased availability of in situ measurements 
which leads to a tendency of ARCv2 underestimating rain 
gauge data.

Although 3 of these SRPs (i.e.  PERSIANN, 
CHIRPSv2.0, and TAMSATv3.0) were able to mimic 
daily mean rainfall of rain gauge data with R2 values 
of > 0.5 (Fig. 2), problems were acute with reproducing 
daily maxima (Fig. 3). All the SRPs did not accurately 
capture the daily maxima of rainfall. Therefore, caution 

Fig. 3   Scatter plot of the maximum daily rainfall in each month for 
rain gauge and SRPs data over Zambia, averaged over longitude 
21.8° E–34° E and latitudes 18° S and 8° S during the period 1998–

2015. The blue solid lines represent the 1:1 while the red and dashed 
are the regression lines
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needs to be taken for experiments considering the use of 
peaks. It is highly recommended that such experiments 
take bias correction into account. Generally, SRPs seem 
to perform better on rainfall averages than maxima in the 
tropics. Similar results were found by Tarek et al. (2017) 
who assessed the performance of TRMM in Bangladesh 
and found good agreement on means and totals but over-
estimation on maximum values.

Monthly rainfall

In a developing country like Zambia, where both wet 
and dry spells are common (Hachigonta et al. 2006) and 
where most people depend on agriculture for a livelihood, 
a reliable understanding of monthly variations of rainfall 
is important. Perhaps more important than understanding 
the annual variations because an understanding of intra-
seasonal variations empowers farmers with knowledge that 
enables them to make informed decisions on sowing and 

harvesting dates (Hachigonta et al. 2008). It also furnishes 
hydrometeorologists with vital information for flood pre-
paredness. For these reasons, SRPs were also analysed 
in terms of their ability to capture the month to month 
cycle of total rain gauge data. Results (Fig. 4) indicate 
that all the SRPs were adequately able to reproduce the 
bimodal rainfall cycle of Zambia with dry periods dur-
ing the months of May to September and wetness from 
October to April.

Figure 5 presents the scatter plots of each of the four 
SRPs. These results indicate that all the SRPs mimicked 
gauge data with R2 > 0.9. To rank their performance, 
RMSE was examined and it was found that with a value of 
only 4.6 mm, PERSIANN outperformed the other 3 SRPs, 
followed by CHIRPSv2.0, TAMSATv3, and ARCv2, 
respectively. It’s the finding of this study therefore, that 
although PERSIANN outperforms the other SRPs, they 
are all reliably able to be used in studies that aim at using 
monthly rainfall.

Fig. 4   Average monthly rainfall over Zambia for: a rain gauge 
(blue) versus TAMSATv3 (grey), b rain gauge (blue) versus PER-
SIANN (black), c rain gauge (blue) versus CHIRPSv2.0 (orange) 

and d rain gauge (blue) versus ARCv2 (red), averaged over longitude 
21.8° E–34° E and latitudes 18° S and 8° S during the period 1998–
2015
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Seasonal rainfall

Even though rains in the dry season are not common, some 
occasional precipitation activities especially in the winter 
are experienced in Zambia. Exploratory analyses of rain 
gauge data further showed that these rains usually amount 
to less than a millimetre (trace) in 24 h but can accumulate 
up to 20 mm over the entire dry season. Dry seasons invari-
ably experience sporadic showers over Zambia especially if 
they follow a strong La Nina which tends to deposit excess 
moisture over the country.

SRPs were therefore investigated on how closely they 
follow gauge data during the wet and dry seasons. Results 
(Fig. 6 left panel) show that these products and rain gauge 
data are strongly correlated during the wet season with an 
R2 > 0.5 in all cases except ARCv2 which scored only 0.29. 
However, the occasional localised rains that fall during the 
dry season were poorly captured by all SRPs (Fig. 6 right 
panel) with R2 < 0.5 except PERSIANN which scored ~ 0.8. 
The observed R2 values are also in agreement with RMSE 
values i.e. well performing products score high on R2 but 

low on RMSE. Taken together, PERSIANN outperforms 
all products followed by CHIRPSv2.0, TAMSATv3 and 
ARCv2, respectively.

Annual rainfall

SRPs were also examined on their ability to capture vari-
ability on an annual basis for the period 1998–2015. Results 
(Fig. 7) show that all the products were generally able to 
pick the curves and inter-annual variations of gauge data. It 
is worth noting that apart from ARCv2, all products detected 
a downward trend in annual precipitation. At the station 
level, the trend of annual rainfall is variable, with marginal 
upward trends generally being statistically insignificant 
(Chabala et al. 2013) but taken together over Zambia, there 
is a statistically significant downward trend (Libanda et al. 
2018). The inability of ARCv2 to reproduce the decreasing 
trend of annual rainfall over Zambia is again reflected in the 
R2 value as it is the only product with a value less than 0.5 
and RMSE greater than 100 mm (Fig. 8d).

Fig. 5   Scatter plot of mean monthly rainfall over Zambia for: a rain 
gauge versus TAMSATv3, b rain gauge versus PERSIANN, c rain 
gauge versus CHIRPSv2.0, d rain gauge versus ARCv2, averaged 

over longitude 21.8° E–34° E and latitudes 18° S and 8° S during the 
period 1998–2015. The blue solid lines represent the 1:1 while the 
red and dashed are the regression lines
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It is notable that although the performance of SRPs at 
seasonal (Fig. 6) and annual (Fig. 8) scales is similar, R2 
values of annual rainfall compared to seasonal rainfall are 
lowered slightly while RMSE values increase owing to the 
general poor performance of SRPs during dry season.

Given the surprising results in terms of annual rainfall 
trend direction exhibited by ARCv2 (Fig. 7), two more sta-
tistical measures, coefficient of variation (CV) and median 
(M), were employed to assess all the SRPs at annual scales. 
CV is a measure of dispersion while median is a measure of 
central tendency when dealing with variable rainfall (Anan-
thakrishnan and Soman 1989). These statistical measures 
are widely used in validation studies of SRPs. For example, 
recently, Basheer and Elagib (2018) employed them to vali-
date SRPs in a data-scarce South Sudan. In this study, our 
findings (Table 3) indicate that PERSIANN outperforms all 
the other products. CHIRPSv2.0 is rated second followed by 
TAMSATv3 and lastly ARCv2.

SRPs were further studied on their ability to capture 
annual extreme events. This was done by removing influ-
ences of dispersion, computing and plotting normalised 
anomalies of both SRPs and rain gauge observations. 
Many studies have argued that normalised anomalies are 
a useful measure of how intense an event was (Ogwang 
et al. 2012; Chanda and Maity 2015; Libanda et al. 2019). 
Results (Fig. 9) show that all the SRPs are generally able to 
mimic the direction better than the magnitude. Rain gauges 
show that during the period 1998–2015, Zambia received 2 
extreme wet events i.e. rainfall ≥ 1 and 4 extreme dry events 
i.e. ≤ −  1. The extreme wet years were 2000 and 2006 while 
2002, 2005, 2013, and 2015 were generally extremely dry. 
We found that PERSIANN is the only data set that cap-
tures this pattern correctly. Other data sets e.g. ARCv2 and 
CHIRPSv2.0 show mixed signals; in some years, e.g. 2013, 
they underestimate rain gauge data by ~ 50% while in oth-
ers, e.g. 2001, they overestimate it. TAMSATv3 tends to 

Fig. 6   Scatter plot of seasonal rainfall over Zambia for left panel, 
rainy season and right panel, dry season, averaged over longitude 
21.8° E–34° E and latitudes 18° S and 8° S during the period 1998–

2015. The blue solid lines represent the 1:1 while the red and dashed 
are the regression lines
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overestimate rain gauges. For example, in 2004, it detects 
an extreme wet event while rain gauge data and PERSIANN 
do not. The tendency of TAMSATv3 to overestimate rain 
gauges mirrors the findings of other studies around the world 
that have highlighted that generally some SRPs overesti-
mate rain gauge data which results in false alarms (Nasrol-
lahi 2015). This is why many studies (e.g. Shen et al. 2010; 
AghaKouchak et al. 2012) have devoted time to the valida-
tion of satellite-based precipitation observations.

Overall, these findings indicate that PERSIANN, 
CHIRPSv2.0 and TAMSAT (in order of suitability) are suit-
able substitutes for rain gauge data for studies that are inter-
ested in mean annual rainfall variability over Zambia. Addi-
tionally, studies aiming at understanding annual extremes 
over the country would arrive at similar results as rain gauge 
data if they employed PERSIANN.

Complex topography

Generally, Zambia is a high plateau (Haberyan 2018). Much 
of the landmass falls between 910 and 1370 m above sea 

Fig. 7   Comparison of annual rainfall over Zambia for rain gauge 
data (thick red curve), TAMSATv3 (black), PERSIANN (grey), 
CHIRPSv2.0 (blue), and ARCv2 (green), averaged over longitude 
21.8° E–34° E and latitudes 18° S and 8° S during the period 1998–
2015

Fig. 8   Scatter plot of annual rainfall over Zambia over Zambia for left 
panel, rainy season and right panel, dry season, averaged over lon-
gitude 21.8° E–34° E and latitudes 18° S and 8° S during the period 

1998–2015. The blue solid lines represent the 1:1 while the red and 
dashed are the regression lines
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level. However, a few areas lie outside this range; for exam-
ple, areas about the Muchinga escarpment in the central 
province of Zambia exceed 1800 m. Some areas along the 
major rivers and in valleys lie below 500 m. This is evident 
in the north-eastern parts of the country were the high flat 
land is punctuated by the low-lying areas about the Luangwa 
river and in the southwestern portions of the country where 
the low-lying areas of the Kafue river punctuate the plateau. 
These two rivers flow from the Zambezi river which is the 
biggest watercourse in the country (Huygen 1989).

Precipitation is one of the most difficult meteorological 
variables to accurately quantify over rough terrain because 
of the contributions of convective and topographic influ-
ences. In high elevations, airflow gets altered and the amount 
of sunlight reaching the earth’s surface differs markedly 
within short distances; consequently, precipitation tends to 
be boosted in some areas and suppressed in others. This 
has been collaborated by other studies like Ogwang et al. 
(2014) who used the International Centre for Theoretical 
Physics Regional Climate Model to study the influence of 
topography on East African October to December Climate. 
Their findings indicated that generally mean rainfall tended 
to reduce with a reduction in topography while temperature 
was observed to generally increase.

SRPs were therefore, investigated on their ability to cap-
ture rain gauge data over varying topography. Three stations 
at the highest, medium and lowest topography were selected 
and used to carry out this analysis. These stations are Mbala 
at 1665 m, Kabwe main at 1204 m and Chipepo at 488 m 
(Table 2). Results (Fig. 10) indicate that there is reliable cap-
turing of all the curves at all stations. The wetter months of 
November–April and the drier months of May–October were 
accurately captured by all data sets. When R2 and RMSE 
metrics are taken into consideration, PERSIANN outper-
forms all the other SRPs. However, R2 of all the SRPs is 
greater than 0.9. This reaffirms the results highlighted in 
Fig. 5 that generally all the SRPs perform well at capturing 
the monthly cycle of precipitation.

These results further indicate that spatially, SRPs can 
adequately mimic rain gauge data. The spatial patterns also 
indicate that SRPs can accurately capture the drier areas of 
the southern parts of the country and the wetter northern 
half as observed by rain gauges and collaborated by previ-
ous studies (e.g. Hachigonta et al. 2008). This precipitation 
pattern is a major concern for hydrologists mainly because 
Lake Kariba, the world’s largest man-made lake by volume 
and Zambia’s main source of hydroelectricity, is located in 
the southern part of the country (Libanda et al. 2019). There-
fore, the ability of SRPs to pick this precipitation pattern 
shows that they can among other things, be used for observa-
tional and modelling studies that seek to enhance hydrologic 
impact assessments on hydroelectricity production.

Concluding remarks

The traditional means of rainfall estimation has always been 
the use of rain gauges. While their advantage of direct pre-
cipitation measurements is well documented (Stampoulis 
et al. 2013), they are often found to be of low density hence 
of poor spatial resolution. The inherent nature of these 
point-based gauges inhibits the capturing of the intensity 
and frequency of precipitation in unmeasured areas. Their 
uncertainty is also compounded by possible human errors 
and the effects of wind.

The advent of satellites-based rainfall products (SRPs) 
has to some extent addressed this problem. However, SRPs 
are not short of errors and uncertainties. Therefore, they 

Table 3   Coefficient of variation (CV) and median (M) for SRPs and rain gauge data, averaged over longitude 21.8° E–34° E and latitudes 18° S 
and 8° S during the period 1998–2015

TAMSATv3 PERSIANN CHIRPSv2.0 ARCv2 Rain gauge

CV (%) 8.8 9 9.4 11.3 9.1
Median (mm) 992.11 1075.69 993.19 967.26 1109.82

Fig. 9   Normalised anomalies for TAMSATv3 (black), PERSIANN 
(grey), CHIRPSv2.0 (blue), ARCv2 (green), and rain gauge (red), 
averaged over longitude 21.8° E–34° E and latitudes 18° S and 8° S 
during the period 1998–2015
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are better used following an extensive validation process 
(Scofield and Kuligowski 2003; Amitai et al. 2012; Derin 
et al. 2014; Janjai et al. 2015; Oreggioni et al. 2018). Zambia 
like many other developing countries is a highly data-scarce 
country with few and unevenly distributed meteorological 
stations. To this end, this study set out to investigate the skill 
of 4 SRPs (i.e. TAMSATv3.0, PERSIANN, CHIRPSv2.0, 
and ARCv2) in capturing precipitation patterns as observed 
by 35 rain gauges doted all over Zambia. The goal of the 
comparative analysis was to examine SRPs’ ability to be 
used in rain gauge sparse regions of Zambia. Several tem-
poral scales were used for the comparative analysis and they 
include daily, monthly, seasonal and annual. Investigations 
were also done on how well SRPs mimic rain gauge data in 
terms of average, maxima and total precipitation. A com-
parative analysis of SRPs and gauge data over a multifaceted 
terrain was also done to investigate their ability to capture 
rainfall variations over complex topography.

Results indicate that all the 4 SRPs adequately match rain 
gauge data at monthly scales even on complex topography. 
Taken together, the coefficient of determination between the 
individual SRPs and gauge data is generally > 0.9 at monthly 

scales. However, the ability of these products to capture rain 
gauge data at daily, seasonal and annual scales differs mark-
edly. Specifically, PERSIANN outperforms all the other 
SRPs at all scales, CHIRPSv2.0 is rated second, followed 
by TAMSATv3 and ARCv2, respectively. These results sug-
gest that PERSIANN can be used, reliably, in studies that 
seek to estimate rainfall in data sparse regions of Zambia. It 
is however worth noting the differences highlighted in this 
work and for optimum results, applying calibrations at the 
local scale.

While this study has shown the suitability of using PER-
SIANN as a substitute for daily rainfall measurements in 
Zambia, the enhancement and improvement of meteorologi-
cal station networks is still imperative. Further, while results 
embodied in this work are useful for the case of Zambia, 
they cannot be generalised to other regions. This is because 
generally, the behaviour of SRPs differs from one region to 
the other (Zeng et al. 2018).
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