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Abstract
Let G be a finite group whose order is divisible by e primes (counting repetitions).
Then the automorphism group of G has Prüfer rank at most e2, meaning that each
subgroup of the automorphism group of G can be generated by at most e2 elements.
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1 Introduction

If G is a finite group, then d(G) denotes its minimal number of generators, e(G)

the number of prime divisors (counting repetitions) of its order |G| and rk(G) its
rank; that is, the maximum of the d(X) as X ranges over the subgroups of G. Clearly
d(G) ≤ rk(G) ≤ e(G). Also [r] denotes the largest integer not exceeding the real
number r .

Theorem 1 If G is a finite group, then always rk(Aut(G)) ≤ e(G) + [e(G)2/2] ≤
e(G)2.

I mention and use rk(Aut(G)) ≤ e(G)2 in [12] as if it is well-known. It seems
this is not the case and I have failed to find any proof or indeed any mention of it in
the literature. Thus I feel now the need to publish a proof. My proof is in the main
elementary. The only really non-elementary facts I use are that if S is a finite perfect
simple group, then d(S) = 2, rk(Out(S)) ≤ 5, |S| is divisible by 4 and e(S) ≥ 4 (even
5 unless S = Alt(5)). I also use results from [5,8], see below for details, although
these can be avoided at the expense of substantially lengthening the proof by using
Theorem 2 below to reduce to the soluble case.
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Clearly rk(G) ≤ e(G) and it is easy to prove that |Aut(G)| ≤ |G|d(G) ≤ |G|e(G),
but these easy facts seem to be of no help in proving the theorem. Note also that
rk(Aut(G)) need not be bounded by (rk(G))2, though in significant special cases
(e.g. G elementary abelian) it is. As an obvious counter example, the cyclic group
G of order 8 has rk(G) = 1 and rk(Aut(G)) = 2. More generally it is easy to see
that if G is the direct product of r cyclic groups of order 2 f for f ≥ 3 and r ≥ 1,
then Aut(G) contains an elementary abelian subgroup of rank r2 + r . Hence here
rk(G) = r while rk(Aut(G)) ≥ r2 + r > r2. (Also e(G)2/2 = ( f r)2/2 > r2 + r of
course.)

Our second theorem belowwe originally used in the proof of Theorem 1 essentially
to reduce to the soluble case, but thanks to [5,8], which only very recentlywere brought
to my attention, we no longer need to do this (At the end of this paper we sketch this
alternative approach to Theorem 1). However, I think Theorem 2 is of independent
interest.

Theorem 2 Let G be a finite subgroup of GL(n, F), where n is a positive integer and
F is a field of positive characteristic p. Suppose G has a soluble normal subgroup S
such that G/S is a direct product of r perfect simple groups. Then r ≤ [n/2].

Clearly this bound is attained for all n and all F with |F | > 3; recall GL(2, 2) and
GL(2, 3) are soluble.

2 Proof of the results

By a theorem of Guralnick and Lucchini (independently), see [5,8], the rank of a finite
group is bounded by one more than the maximum of the ranks of its Sylow subgroups.
The following lemma is the analogue of Theorems 1 and 2 for the symmetric groups.

Lemma 1 For each positive integer n we have rk(Sym(n)) ≤ 1 + [n/2]. Further
rk(Sym(n)) is 0 if n = 1 and 1 if n = 2. If G is a subgroup of Sym(n) with a soluble
normal subgroup S such that G/S is the direct product of s perfect simple groups,
then s ≤ [n/4].
Proof The rank of a Sylow p-subgroup of Sym(n) is [n/p] for any prime p, see
the Proposition of [10]. Thus the first claim follows from this and Guralnick and
Lucchini’s theorem. Clearly G/S involves an elementary abelian 2-group of rank 2s
and by the Proposition of [10] again a Sylow 2-subgroup of Sym(n) has rank [n/2].
Therefore s ≤ [n/4] (A very simple proof by induction on n shows that at least
rk(Sym(n)) ≤ [n2/4], which would actually suffice for our purposes). ��

Note that Guralnick and Lucchini’s theorem together with bounds in [10] yield that
in Theorem 2 we have r ≤ 3n/4 if p > 2 and r ≤ 2n if p = 2. These are weaker than
the claims of Theorem 2; also they do not seem to help with its proof.

Proof of Theorem 2 If n = 1 we have r = 0. Suppose n = 2. If G is metabelian then
r = 0. If not then G is absolutely irreducible and hence is isomorphic to a subgroup
of GL(2, p f ) for some f (e.g. [2] 29.21). Thus from Dickson’s list of the subgroups
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of PSL(2, p f ), see [6] II.8.27, we have r ≤ 1. Let G be a counter example to the
theorem with n minimal. Then n ≥ 3 and r ≥ 2. Hence G = G1G2 . . .Gr , where the
Gi are normal subgroups of G, the Gi/Si are perfect simple for Si = Gi ∩ S and G/S
is the direct product of the Gi S/S. We break the proof into a number of sublemmas.

(a) If N is a normal subgroup of G, then G/N and N have the same structure as G.
Specifically NS/N is soluble and G/NS is the direct product of the Gi N S/NS
(each being isomorphic to Gi S/S or 〈1〉). Also N ∩ S is soluble, N/(N ∩ S) 	
NS/S and the latter is the direct product of the (NS ∩ Gi S)/S (again each of
which is isomorphic to Gi S/S or 〈1〉).

(b) We may assume that (Gi )
′ = Gi for each i .

Now Gi is soluble-by-simple. Let Hi be the soluble residual of Gi , so (Hi )
′ = Hi

andGi = Hi Si . Also Ti = Hi ∩ S is the soluble radical of Hi and Hi/Ti 	 Gi/Si .
Thus if H = H1H2 . . . Ht and T = H ∩ S, then

H/T = H1T /T × · · · × HrT /T 	 H1/T1 × · · · × Hr/Tr .

Thus we may replace G by H . Equivalently we may assume that (Gi )
′ = Gi for

each i .
(c) We may assume F is algebraically closed. Then G is absolutely irreducible.

The first claim is obvious. Let V = F (n) taken as a right GL(n, F)-module in the
obvious way and let W be an FG-submodule of V with {0} < W < V . If G is a
subgroup of CG(W )S ∩ CG(V /W )S, then G acts as a soluble group on both W
and V /W and hence acts as a soluble group on V . But Gi is not soluble. Thus
each Gi/Si is avoided by at least one of CG(W ) and CG(V /W ) and then by the
minimal choice of n we have

r ≤ (dimFW )/2 + (dimF (V /W ))/2 = n/2.

This contradiction shows that G is irreducible.
(d) G is primitive.

Suppose V = V1 ⊕ · · · ⊕ Vt is a system of imprimitivity of G with t ≥ 2. Set
N = ⋂

j NG(Vj ). Then G permutes the Vi transitively and G/N embeds into
Sym(t). Hence G/N involves at most [t/4] of the Gi/Si by Lemma 1 and thus
N must involve the remaining Gi/Si , of which there are say r1 ≥ r − [t/4].
Let I denote the set of all such i . Then N/(N ∩ S) is the direct product over I
of the (Gi S ∩ N )/(N ∩ S). For each i in I the group Gi S ∩ N cannot act as a
soluble group on all the Vi and hence there exists j with Gi S∩ N not contained in
CN (Vi)(N ∩ S). Now the Gi are normal in G and G permutes the Vi transitively.
Thus Gi S ∩ N is not contained in CN (V1)(N ∩ S) for each i in I and therefore
r1 = |I | ≤ (dimF (V1))/2. Now t ≥ 2 and n = t .dimFV1, so

r ≤ r1 + [t/4] ≤ (dimFV1)/2 + t/4 ≤ n/2.

This final contradiction yields that G is primitive.
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(e) E(G), the subgroup of G generated by the subnormal quasi-simple subgroups of
G is non-trivial.
For suppose E(G) = 〈1〉. Set N = Fitt(G), the Fitting subgroup ofG. Now every
abelian normal subgroup of G lies in Z = F∗1n ∩ G by c), d) and [9] 1.13. (F∗
denotes the multiplicative group of F .) Also N ≥ Z = CG(N ) (e.g. see [11] 6.2
or [1] 31.13). Suppose N is nilpotent of class c ≥ 3. Then, with {γ i (N )} denoting
the lower central series of N , (γ c−1(N ))′ ≤ γ 2c−2(N ) = 〈1〉, so γ c−1(N ) ≤ Z
and N is not nilpotent of class C .
Consequently c ≤ 2. In fact c = 2, since if N is abelian, then N = Z = CG(N ) =
G and r = 0 ≤ [n/2]. If q is some prime and if x and y are elements of N of order
q2 modulo Z , then [xq , yq ] = [x, yq.q ] = 1. Hence 〈xq : x ∈ N , |x Z | = q2〉 is
abelian and therefore lies in Z . Consequently every Sylow subgroup of N/Z is
elementary abelian.
Since G is primitive, N is homogeneous ([9] 1.7). Therefore (N : Z) = (n′)2 for
some divisor n′ of n, see [9] 3.2. Suppose n′ = pe(1)1 pe(2)2 . . . pe(t)t , where the pi
are distinct primes. Set K = CG(N/Z). Then K ′ ≤ CG(N ) = Z and so K is
soluble. Also G/K embeds into the direct product of the t-groups GL(2e(i), pi ).
Now GL(2, 2) is soluble and GL(4, 2) 	 Alt(8). Neither involves the direct
product of 2 perfect simple groups (|Alt(8)| = 2.60.168 and is not divisible
by 52) and trivially 1 ≤ [n/2]. Then n′ �= 2 or 4 and so

∑
i 2.e(i) < n and

r ≤ ∑
i e(i) < n/2. This final contradiction yields that E(G) �= 〈1〉.

(f) E(G).S �= G.
If E(G).S = G, then E(G) = E1E2 . . . Et = E say, where the Ei are the
subnormal quasi-simple subgroups of G. Thus we can work with E instead of G.
If r = 0 trivially r ≤ [n/2]. If r = 1 clearly n ≥ 2 and again r ≤ [n/2]. Thus
r ≥ 2. If E is reducible, then r ≤ [n/2], cf. c) above. Therefore E is irreducible.
Set E0 = E1E2 . . . Er−1 and consider an irreducible FE0-submodule U of V .
Now [E0, Er ] = 〈1〉, see [1,11] again, soUx 	 U as FE0-module for all x ∈ Er

and clearly UEr = UE = V . Thus E0 is homogeneous and therefore E0 acts
faithfully on U .
Suppose dimF (V /U ) ≥ 2. By the minimal choice of n we have r −1 ≤ (n−2)/2
and hence r ≤ [n/2]. Consequently dimF (V /U ) ≤ 1. If dimF (V /U ) = 1, then
since E0 is homogeneous and U is irreducible we have dimFU = 1. But then E0
is diagonalizable and so abelian, which is false since r > 1. Hence U = V . But
then Er ≤ CE (E0) ≤ F∗1n (Schur’s Lemma) and yet Er is not abelian. This final
contradiction completes the proof of f).

(g) The completion of the proof of Theorem 2.

Again set E = E(G) and define K ≤ G by S ≤ K and G/S = K/S × ES/S. By
(e) and (f) we have S < K < G. Also [K , E] ≤ E ∩ S ≤ Z = F∗1n ∩ G by (d).
Then K stabilizes the series 〈1〉 ≤ Z ≤ EZ , so if C = CG(E), then K ′ ≤ C . Hence
G = K EW = K ′ES = CES and C/(C ∩ S) involves G/ES.

Neither E nor C is abelian. Thus if U is an irreducible FE-submodule of V , then
V is a direct sum of copies of U by (d), so 1 < m = dimF (U ) < n and n = mk for
some integer k < n. Further, by (c), (d) and [9] 1.15 the group G is isomorphic to a
subgroup of (GL(m, F)×GL(k, F))/A, where A is a central subgroup of this direct
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product. Since m < n and k < n, by the choice of n we have r ≤ m/2 + k/2 ≤ n/2.
This final contradiction completes the proof of Theorem 2. ��

If Sq is a Sylow q-subgroup GL(n, p), p prime, for some prime q, then rkS, is at
most n if 2 < q �= p, is at most [3n/2] if q = 2 �= p and is at most (less than if n > 2)
n(n − 1)/2 if q = p, see [10]. We define the integer function s(n, p) of the positive
integer variables n and p, p prime, as follows. Set s(1, p) = 1 and s(2, 2) = 2. If
p > 2 set s(2, p) = 4, s(3, p) = 5 and s(4, p) = 7. For all other values of n and p
set s(n, p) = n(n − 1)/2. Notice that s(n, p) ≤ n + [n2/2] ≤ n2 for all n and p and
s(n, p) < [n2/2] if n > 3 or if p = 2 < n.

Lemma 2 We have rk(GL(n, p)) ≤ s(n, p) for all n ≥ 1 and primes p.

Proof Clearly rk(GL(1, p)) = 1 and rk(GL(2, 2)) = rk(Sym(3)) = 2, while
rk(GL(2, p)) ≤ 4; just check Dickson’s list of the subgroups of PSL(2, p), see
[6] II.8.27. The theorem from [5,8] together with the results from [10] quoted above
yield the lemma. ��

It is easy to see that always rk(GL(n, p)) ≥ [n2/4] and that rk(GL(n, p)) ≥
[3n/2] if p > 2. Lemma 2 is effectively the special case of the theorem where G is
elementary abelian.

Proof of Theorem 1 Set e = e(G). We induct on e. If e ≤ 1 the claim is clear, so
assume e ≥ 2. We have to prove that rk(Aut(G)) ≤ e + [e2/2]. Suppose N is a
characteristic subgroup of G with 〈1〉 < N < G. There is an obvious homomorphism
of Aut(G) into the direct product of Aut(N ) and Aut(G/N )with say kernel K , where
by stability theory K is isomorphic to a section of Ne(G/N ), e.g. see [7] 1.C.3. Then
e(K ) ≤ e(N ).e(G/N ) and e = e(N ) + e(G/N ). Induction on e now yields that

rk(Aut(G)) ≤ e(N ) + [e(N )2/2] + e(G/N ) + [e(G/N )2/2]
+ e(N ) · e(G/N ) ≤

e + (e(N ) + e(G/N ))2/2 = e + e2/2.

But rk(Aut(G)) is an integer, so rk(Aut(G)) ≤ e + e[e2/2].
If no such N exists then either G is elementary abelian of rank e, when

rk(Aut(G)) ≤ e + [e2/2] by Lemma 2, or G is a direct sum of say t copies of a
perfect simple group S. Assume the latter case. Now d(S) = 2, rk(Out(S)) ≤ 5,
rk(S) ≤ e(S) and e(S) ≥ 4. Then rk(Aut(S)) ≤ e(S) + 5 < e(S) + [e(S)2/2]. This
settes the case t = 1.

Assume t ≥ 2. Then Aut(G) is isomorphic to the wreath product of Aut(S)

by Sym(t), where Aut(G) permutes transitively the copies of S in the given direct
decomposition of G. Therefore Lemma 1 yields that rk(Aut(G)) ≤ (e(S) + 5)t +
1 + [t/2]. Now e = e(S)t , e(S) ≥ 4, t ≥ 2 and e ≥ 8. Hence

rk(Aut(G)) ≤ e + 5e/4 + e/8 + e/8 ≤ 5e/2 ≤ 5e2/16.

The theorem follows. ��
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3 Final remarks

We conclude with a sketch of a proof of Lemma 2 and hence of Theorem 1 that
uses Theorem 2 but avoids using [5,8]. Let G be a subgroup of GL(n, p). As in the
first sentence of the proof of Lemma 2 above we may assume n ≥ 3. By results of
Roggenkamp, see [3] 7.8, 7.9(i) and 7.20, there exists a Sylow subgroup S of G with
d(G) ≤ pr(G)+1+rk(S), where pr(G) denotes the presentation rank of G. Thus if
pr(G) = 0 (e.g. if G is soluble, see [3] 6.9), then d(G) is bounded using the bounds
for rk(S) in [10].

Let N denote the soluble radical of G. If pr(G) �= 0, then d(G/N ) = d(G) by
Theorem B(ii) of [4]. Clearly H = G/N has trivial soluble radical. Then there exists
a normal subgroup E(H) = S1× S2× . . . Sr = E say of H withCH (E) = 〈1〉, where
the Si are perfect simple groups and 1 ≤ r ≤ n/2 by Theorem 2. Now H permutes
the Si by conjugation. Applying the arguments from the final two paragraphs of the
above proof of Theorem 1, but now to each orbit of H in this action, and using the
weak bound [n2/4] in Lemma 1, whose proof does not use [5,8], we can again bound
d(G). Specifically we obtain d(G) ≤ 2t + 5r +[r2/4], where t is the number of such
orbits.

Using 1 ≤ t ≤ r ≤ [n/2] we obtain d(G) ≤ n + [n2/2] for all n ≥ 3 except when
n = 4 = 2r . If n = 4 = 2r we only obtain in this way that d(G) ≤ 15 < n2. To
obtain the better bound when n = 4 = 2r we need a more delicate study of the simple
groups S1 and S2. But in this elementary way we have at least bound rk(GL(n, p))
independently of [5,8] by n2 always and by n + [n2/2] for all n �= 4.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
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