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Abstract

Let G be a finite group whose order is divisible by e primes (counting repetitions).
Then the automorphism group of G has Priifer rank at most e?, meaning that each
subgroup of the automorphism group of G can be generated by at most e elements.
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1 Introduction

If G is a finite group, then d(G) denotes its minimal number of generators, ¢(G)
the number of prime divisors (counting repetitions) of its order |G| and rk(G) its
rank; that is, the maximum of the d(X) as X ranges over the subgroups of G. Clearly
d(G) < rk(G) < e(G). Also [r] denotes the largest integer not exceeding the real
number r.

Theorem 1 If G is a finite group, then always rk(Aut(G)) < e(G) + [e(G)2/2] <
e(G)2.

I mention and use rk(Aut(G)) < e(G)? in [12] as if it is well-known. It seems
this is not the case and I have failed to find any proof or indeed any mention of it in
the literature. Thus I feel now the need to publish a proof. My proof is in the main
elementary. The only really non-elementary facts I use are that if S is a finite perfect
simple group, thend (S) = 2,rk(Out(S)) < 5,|S|isdivisible by 4 and e(S) > 4 (even
5 unless S = Alt(5)). I also use results from [5,8], see below for details, although
these can be avoided at the expense of substantially lengthening the proof by using
Theorem 2 below to reduce to the soluble case.
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Clearly rk(G) < e(G) and it is easy to prove that |Aut(G)| < |G|4©) < |G|¢D,
but these easy facts seem to be of no help in proving the theorem. Note also that
rk(Aut(G)) need not be bounded by (rk(G))?, though in significant special cases
(e.g. G elementary abelian) it is. As an obvious counter example, the cyclic group
G of order 8 has rk(G) = 1 and rk(Aut(G)) = 2. More generally it is easy to see
that if G is the direct product of r cyclic groups of order 2/ for f > 3 and r > 1,
then Aur(G) contains an elementary abelian subgroup of rank r> + r. Hence here
rk(G) = r while rk(Aut(G)) = r*> +r > r2. (Also e(G)?/2 = (fr)?/2 > r> +r of
course.)

Our second theorem below we originally used in the proof of Theorem 1 essentially
to reduce to the soluble case, but thanks to [5,8], which only very recently were brought
to my attention, we no longer need to do this (At the end of this paper we sketch this
alternative approach to Theorem 1). However, I think Theorem 2 is of independent
interest.

Theorem 2 Let G be a finite subgroup of GL(n, F), where n is a positive integer and
F is a field of positive characteristic p. Suppose G has a soluble normal subgroup S
such that G /S is a direct product of v perfect simple groups. Thenr < [n/2].

Clearly this bound is attained for all n and all F with |F| > 3; recall GL(2, 2) and
GL(2, 3) are soluble.

2 Proof of the results

By a theorem of Guralnick and Lucchini (independently), see [5,8], the rank of a finite
group is bounded by one more than the maximum of the ranks of its Sylow subgroups.
The following lemma is the analogue of Theorems 1 and 2 for the symmetric groups.

Lemma 1 For each positive integer n we have rk(Sym(n)) < 1+ [n/2]. Further
rk(Sym(n)) is0ifn = 1 and 1 ifn = 2. If G is a subgroup of Sym(n) with a soluble
normal subgroup S such that G/S is the direct product of s perfect simple groups,
then s < [n/4].

Proof The rank of a Sylow p-subgroup of Sym(n) is [n/p] for any prime p, see
the Proposition of [10]. Thus the first claim follows from this and Guralnick and
Lucchini’s theorem. Clearly G/S involves an elementary abelian 2-group of rank 2s
and by the Proposition of [10] again a Sylow 2-subgroup of Sym(n) has rank [n/2].
Therefore s < [n/4] (A very simple proof by induction on n shows that at least
rk(Sym(n)) < [n? /4], which would actually suffice for our purposes). O

Note that Guralnick and Lucchini’s theorem together with bounds in [10] yield that
in Theorem 2 we have r < 3n/4if p > 2 andr < 2n if p = 2. These are weaker than
the claims of Theorem 2; also they do not seem to help with its proof.

Proof of Theorem 2 1f n = 1 we have r = 0. Suppose n = 2. If G is metabelian then
r = 0. If not then G is absolutely irreducible and hence is isomorphic to a subgroup
of GL(2, p/) for some f (e.g. [2] 29.21). Thus from Dickson’s list of the subgroups
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of PSL(2, pf), see [6] I1.8.27, we have r < 1. Let G be a counter example to the
theorem with n minimal. Thenn > 3 andr > 2. Hence G = GG ... G, where the
G are normal subgroups of G, the G;/S; are perfect simple for S; = G; NS and G/S
is the direct product of the G;S/S. We break the proof into a number of sublemmas.

(a)

(b)

(©

(d)

If N is a normal subgroup of G, then G/N and N have the same structure as G.
Specifically NS/N is soluble and G/N S is the direct product of the G;NS/N S
(each being isomorphic to G;S/S or (1)). Also N N S is soluble, N/(N N S) =~
NS/S and the latter is the direct product of the (NS N G;S)/S (again each of
which is isomorphic to G;S/S or (1)).

We may assume that (G;)’ = G; for each i.

Now G; is soluble-by-simple. Let H; be the soluble residual of G;, so (H;) = H;
and G; = H;S;. Also T; = H; N S is the soluble radical of H; and H; /T; >~ G;/S;.
Thusif H=H H,...H and T = H N S, then

H/T = HT/T x - x H.TT ~ H/T; x -+ x H,/T,.

Thus we may replace G by H. Equivalently we may assume that (G;)’ = G; for
each i.

We may assume F is algebraically closed. Then G is absolutely irreducible.

The first claim is obvious. Let V = F® taken as a right GL(n, F)-module in the
obvious way and let W be an F'G-submodule of V with {0} < W < V.IfGisa
subgroup of Cg(W)S N Cg(V/W)S, then G acts as a soluble group on both W
and V /W and hence acts as a soluble group on V. But G; is not soluble. Thus
each G;/S§; is avoided by at least one of Cg(W) and Cg(V /W) and then by the
minimal choice of n we have

r < dimpW)/2+ (dimp(V/W))/2 = n/2.

This contradiction shows that G is irreducible.

G is primitive.

Suppose V. = V1 & --- @ V; is a system of imprimitivity of G with t > 2. Set
N = j Ng(V;). Then G permutes the V; transitively and G/N embeds into
Sym(t). Hence G/N involves at most [z/4] of the G;/S; by Lemma 1 and thus
N must involve the remaining G;/S;, of which there are say r| > r — [t/4].
Let I denote the set of all such i. Then N/(N N §) is the direct product over /
of the (G;S N N)/(N N S). For each i in I the group G;S N N cannot act as a
soluble group on all the V; and hence there exists j with G; S N N not contained in
Cn(Vi)(N N S). Now the G; are normal in G and G permutes the V; transitively.
Thus G;S N N is not contained in Cy (V1)(N N S) for each i in I and therefore
ri =\ <(dimp(Vy))/2.Nowt >2andn = t.dimpVy, so

r=ri+[t/4] = dimpV1)/2 +1/4 <n/2.

This final contradiction yields that G is primitive.
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(e) E(G), the subgroup of G generated by the subnormal quasi-simple subgroups of
G is non-trivial.
For suppose E(G) = (1).Set N = Fitt(G), the Fitting subgroup of G. Now every
abelian normal subgroup of G lies in Z = F*1, N G by ¢), d) and [9] 1.13. (F*
denotes the multiplicative group of F.) Also N > Z = Cg(N) (e.g. see [11] 6.2
or [1]31.13). Suppose N is nilpotent of class ¢ > 3. Then, with {y/(N)} denoting
the lower central series of N, (y~1(N))’ < y*~2(N) = (1), s0 y*"}(N) < Z
and N is not nilpotent of class C.
Consequently ¢ < 2.Infactc = 2, sinceif N is abelian,then N = Z = Cg(N) =
G andr = 0 < [n/2].If g is some prime and if x and y are elements of N of order
q2 modulo Z, then [x7, y?] = [x, y99] = 1. Hence (x? : x € N, [xZ| = q2) is
abelian and therefore lies in Z. Consequently every Sylow subgroup of N/Z is
elementary abelian.
Since G is primitive, N is homogeneous ([9] 1.7). Therefore (N : Z) = (n')? for
some divisor n’ of n, see [9] 3.2. Suppose n’ = pf(l)pg(z) . pf(t), where the p;
are distinct primes. Set K = Cg(N/Z). Then K’ < Cg(N) = Z and so K is
soluble. Also G/K embeds into the direct product of the ¢-groups G L(2¢(i), p;).
Now GL(2,2) is soluble and GL(4,2) ~ Alt(8). Neither involves the direct
product of 2 perfect simple groups (|Al#(8)] = 2.60.168 and is not divisible
by 52) and trivially 1 < [n/2]. Then n’ # 2 or 4 and so ), 2.e(i) < n and
r <Y ;e(i) < n/2. This final contradiction yields that E(G) # (1).

f) E(G).S #G.
If E(G).S = G, then E(G) = E(Ey...E; = E say, where the E; are the
subnormal quasi-simple subgroups of G. Thus we can work with E instead of G.
If r = 0 trivially r < [n/2]. If r = 1 clearly n > 2 and again r < [n/2]. Thus
r > 2.If E is reducible, then r < [n/2], cf. ¢) above. Therefore E is irreducible.
Set Eg = E{E>...E,_1 and consider an irreducible F Ep-submodule U of V.
Now [Ey, E,] = (1), see [1,11] again, so Ux ~ U as F Eg-module for all x € E,
and clearly UE, = UE = V. Thus E( is homogeneous and therefore E( acts
faithfully on U.
Suppose dimp(V /U) > 2. By the minimal choice of n we haver — 1 < (n —2)/2
and hence r < [n/2]. Consequently dimp(V/U) < 1.If dimp(V/U) = 1, then
since E( is homogeneous and U is irreducible we have dim pU = 1. But then Ej
is diagonalizable and so abelian, which is false since » > 1. Hence U = V. But
then E, < Cg(Ep) < F*1, (Schur’s Lemma) and yet E, is not abelian. This final
contradiction completes the proof of f).

(g) The completion of the proof of Theorem 2.

Again set E = E(G) and define K < Gby S < K and G/S = K/S x ES/S. By
(e) and (f) we have S < K < G. Also [K,E] < ENS < Z = F*1, NG by (d).
Then K stabilizes the series (1) < Z < EZ, soif C = Cg(E), then K’ < C. Hence
G=KEW =K'ES=CESand C/(CNS)involves G/ES.

Neither E nor C is abelian. Thus if U is an irreducible F E-submodule of V, then
V is a direct sum of copies of U by (d),so 1 <m = dimp(U) < n and n = mk for
some integer k < n. Further, by (c), (d) and [9] 1.15 the group G is isomorphic to a
subgroup of (GL(m, F) x GL(k, F))/A, where A is a central subgroup of this direct
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product. Since m < n and k < n, by the choice of n we have r <m /2 + k/2 < n/2.
This final contradiction completes the proof of Theorem 2. O

If S, is a Sylow g-subgroup GL (n, p), p prime, for some prime g, then rk S, is at
mostn if2 < g # p,isatmost [3n/2]if g = 2 # p and is at most (less thanifn > 2)
n(n —1)/2if g = p, see [10]. We define the integer function s(n, p) of the positive
integer variables n and p, p prime, as follows. Set s(1, p) = 1 and 5(2,2) = 2. If
p > 2sets(2,p) =4, 53, p) =5and s(4, p) = 7. For all other values of n and p
set s(n, p) =n(n — 1)/2. Notice that s(n, p) <n + [n2/2] < n? for all n and p and
s(n, p) < [n?/2)ifn >3orif p=2 <n.

Lemma2 We have rk(GL(n, p)) < s(n, p) for alln > 1 and primes p.

Proof Clearly rk(GL(1, p)) = 1 and rk(GL(2,2)) = rk(Sym(3)) = 2, while
rk(GL(2, p)) < 4; just check Dickson’s list of the subgroups of PSL(2, p), see
[6] 11.8.27. The theorem from [5,8] together with the results from [10] quoted above
yield the lemma. O

It is easy to see that always rk(GL(n, p)) > [n2/4] and that rk(GL(n, p)) >
[3n/2] if p > 2. Lemma 2 is effectively the special case of the theorem where G is
elementary abelian.

Proof of Theorem 1 Set ¢ = e(G). We induct on e. If e < 1 the claim is clear, so
assume e > 2. We have to prove that rk(Aut(G)) < e + [e2/2]. Suppose N is a
characteristic subgroup of G with (1) < N < G. There is an obvious homomorphism
of Aut(G) into the direct product of Aut(N) and Aut(G/N) with say kernel K, where
by stability theory K is isomorphic to a section of N¢(°/N) ¢ g see [7] 1.C.3. Then
e(K) <e(N).e(G/N)and e = e¢(N) + e(G/N). Induction on e now yields that

rk(Aut(G)) < e(N) + [e(N)?/2] + e(G/N) + [e(G/N)*/2]
+e(N)-e(G/N) <
e+ (e(N)+e(G/N)?/2 = e+ &*)2.

But rk(Aut(G)) is an integer, so rk(Aut(G)) < e + e[e2/2].

If no such N exists then either G is elementary abelian of rank e, when
rk(Aut(G)) < e + [62/2] by Lemma 2, or G is a direct sum of say ¢ copies of a
perfect simple group S. Assume the latter case. Now d(S) = 2, rk(Out(S)) < 5,
rk(S) < e(S) and e(S) > 4. Then rk(Aut(S)) < e(S) + 5 < e(S) + [e(S)?/2]. This
settes the case t = 1.

Assume t > 2. Then Aut(G) is isomorphic to the wreath product of Auz(S)
by Sym(t), where Aut(G) permutes transitively the copies of S in the given direct
decomposition of G. Therefore Lemma 1 yields that rk(Aut(G)) < (e(S) + 5t +
1+ [t/2]. Now e = e(S)t, e(S) > 4,t > 2 and e > 8. Hence

rk(Aut(G)) <e+Se/4+¢/8+e/8 <5¢/2 < 5e2/16.
The theorem follows. O
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3 Final remarks

We conclude with a sketch of a proof of Lemma 2 and hence of Theorem 1 that
uses Theorem 2 but avoids using [5,8]. Let G be a subgroup of GL(n, p). As in the
first sentence of the proof of Lemma 2 above we may assume n > 3. By results of
Roggenkamp, see [3] 7.8, 7.9(i) and 7.20, there exists a Sylow subgroup S of G with
d(G) < pr(G)+1+rk(S), where pr(G) denotes the presentation rank of G. Thus if
pr(G) =0 (e.g. if G is soluble, see [3] 6.9), then d(G) is bounded using the bounds
for rk(S) in [10].

Let N denote the soluble radical of G. If pr(G) # 0, then d(G/N) = d(G) by
Theorem B(ii) of [4]. Clearly H = G/N has trivial soluble radical. Then there exists
anormal subgroup E(H) = S; x $2 x... S, = E say of H with Cy(E) = (1), where
the S; are perfect simple groups and 1 < r < n/2 by Theorem 2. Now H permutes
the S; by conjugation. Applying the arguments from the final two paragraphs of the
above proof of Theorem 1, but now to each orbit of H in this action, and using the
weak bound [1? /4] in Lemma 1, whose proof does not use [5,8], we can again bound
d(G). Specifically we obtain d(G) < 2t + 5r + [r% /4], where  is the number of such
orbits.

Using 1 <t <r <[n/2] weobtaind(G) <n+ [n2/2] for all n > 3 except when
n=4=2.1fn =4 = 2r we only obtain in this way that d(G) < 15 < n?. To
obtain the better bound when n = 4 = 2r we need a more delicate study of the simple
groups S; and S>. But in this elementary way we have at least bound rk(G L (n, p))
independently of [5,8] by n? always and by n 4 [n?/2] for all n # 4.
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