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Abstract

With the growth of new energy economy, proton exchange membrane fuel cell (PEMFC) has great potential to be success.
However, the lack of high-performance catalyst layer (CL) especially at cathode limits its applications. It is becoming increas-
ingly important to understand interface property during electrocatalytic oxygen reduction reaction (ORR). Here, the rotating disk
electrode (RDE) method is developed to study the temperature and Nafion ionomer content effects on interface formed between
Nafion and Pt/C. The results show that the temperature has the significant influence on electrochemical active sites, charging
double capacitance, and reaction polarization resistance at low Nafion content region. Excess Nafion loaded in CLs will turn to
self-reunion and increase the exposed active sites. We find that the optimum Nafion loading is in the range of 30 to 40 wt.%. The
highest specific activity we achieve is 107.8 pA/cm? p, at 60 °C with 0.4 of ionomer/catalyst weight ratio, corresponding to the
kinetic current 283.5 pA at 0.9 V. This finding provides new insights into enhancing the Pt utilization and designing

high-efficiency catalysts for ORR.
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Introduction

The first truly commercial fuel cell vehicle “Mirai” was re-
leased by Toyota in 2014 which means polymer electrolyte
membrane fuel cell (PEMFC) vehicles have successfully en-
tered the market introduction period [1]. However, for
large-scale commercial applications, PEMFCs still need to
solve the large amount platinum cost at cathode because of
sluggish oxygen reduction reaction (ORR) [2]. It is signifi-
cantly important to optimize the configuration of the catalyst
layer (CL) and achieve the efficient delivery of reactants and
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products in reaction interface [3, 4]. Over the last decade,
extensive efforts have been paid to reducing the catalyst cost
by using low Pt loading in the cathode, resulting in the decease
of active sites and the increase of oxygen transfer resistance
for ORR [5-8]. Meanwhile, the Nafion ionomer is widely
used in the CL to stabilize the Pt-based catalyst and to improve
the reaction interface for proton conductivity. However, this
ionomer exists the sulfonate group which has been proposed
to block Pt active sites [9, 10]. As a Teflon-based polymer,
Nafion is demonstrated as an electron and anion insulator.
Therefore, it is necessary to understand the ionomer roles dur-
ing ORR and to optimize the Nafion content in CL for en-
hancing Pt utilization.

Nafion is used as a proton conductor and a binder in the CL
created the three-phase interface (TPI) for the electrocatalytic
reaction. Various studies show that the Nafion content and
contribution have a strong impact on the microstructure and
performance of the resulting CL. It is found that the optimized
loading of Nafion, depending on the Pt loading and MEA
fabricating process, ranges from 20 to 50 wt.% in membrane
electrode assembly (MEA) [11-20]. However, few researches
are reported to study the formation mechanism of CL micro-
structure. It is thus difficult to understand the interfacial inter-
action between the catalyst and Nafion ionomer. According to

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11581-018-2533-3&domain=pdf
https://doi.org/10.1007/s11581-018-2533-3
mailto:panmu@whut.edu.cn

3906

lonics (2018) 24:3905-3914

Ma et al., Nafion is more likely to adsorb onto the surface of
carbon support than the Pt surface. At low Nafion concentra-
tion, the adsorption behavior by hydrophilic bonding follows
a Langmuir isotherm. The adsorption equilibrium constant
depends on the properties of the catalyst surface [21].
Unfortunately, it is not possible to gain the comprehensive
insights into the Nafion roles when conducting ORR opera-
tion due to the lack of electrochemical observations. Andersen
et al. found that the catalyst surface exposure (CSE) will be
decreased with increasing the amount of the Nafion up to
30 wt.%, and further increasing Nafion content will turn out
to increase CSE due to Nafion aggregation. They emphasized
that the proper content of Nafion covered catalyst surface is
crucial to form an optimal electrode structure [22]. Actually,
the coverage and morphology of Nafion are sensitive to the
surface energy of the applied catalysts. It is widely accepted
that systematic study of the ionomer phase in the electrode
structure can be highly valuable to maximize the Pt utilization
[23-26]. Tt is also worth noting that in the realistic MEA,
ultrathin Nafion films used have completely different physical
properties from the bulk material, including hydrophobicity,
proton conductivity, water swelling properties, etc. [27-29].
Meanwhile, considering the variety of operational temperature
in PEMFC, it is necessary to screen the temperature effect of
on the formed Nafion phase.

Rotating disk electrode (RDE) as an electrochemical tool
have shown its strong power to evaluate the catalyst perfor-
mance with minimum testing time and cost assumption.
Typically, it uses only a minimum amount of catalyst loaded
into a small-area disk electrode in a three-clectrode system
[30]. Compared with the measurements conducted in a fuel
cell, the RDE method has the advantage of low mass transport
influence, feasibility of electrochemical impedance spectros-
copy (EIS), and reliable results of the material intrinsic perfor-
mance [19]. Moreover, the temperature distribution on the CL
will be uniform, and it is easy to control the testing tempera-
ture by heating the bulk electrolyte solution.

In this study, the CLs loaded with a wide range of ionomer
content were prepared on the RDE electrode. The electro-
chemical performance were systematically characterized in a
variety of temperature. The calculated Nafion thickness in the
CLs were evaluated by closely packed structural theory.

Experiments

Catalysts, chemicals, and reactant gases

20 wt.% Platinum on Vulcan XC 72 (Carbon) was purchased
from Johnson Matthey. Deionized (DI) water (> 18.2 M(2-cm)
was used for acid dilutions and glassware cleaning. The fol-

lowing chemicals were used in electrolyte preparation and ink
formulation: isopropanol (IPA, CHROMASOLV® Plus, for

@ Springer

HPLC, 99.9%, Sigma-Aldrich), Nafion solution (DE520,
EW1000, 5%, 0.924 g~mL71, Sigma-Aldrich), 50 nm alumina
powder (Buehler Inc.), 70% perchloric acid Veritas® Doubly
Distilled (GFS chemicals). All electrochemical measurements
were carried out in 0.1 M HCIO,. Gases used in this study
were all classified as ultrapure grade (N,, 99.9999%, O,
99.9999%, Wuhan Xiangyun Gas).

Instruments

A microbalance (OHAUS) and bath sonicator (FS30H, Fisher
Scientific, output 42 kHz, 100 W) were employed in the prep-
aration of catalyst inks. CHI660E operated with electrochem-
ical analyzer/workstation was used to obtain cyclic voltammo-
grams (CVs), ORR, and EIS curves, and the IR correction was
applied in each scanning. RDE rotators, PTFE rotator shatfts,
and GC tips (5 mm in diameter, 0.196 cmz, embedded in a
PTFE cylinder) were obtained from Pine Instruments. An op-
tical microscope (AM4815ZT DinoLite Edge, Dino-Lite
Digital Microscope) was routinely used to facilitate inspection
of catalyst layers on GC. A JEOL JSM-7000F Field Emission
Microscope was employed to obtain SEM images.

As shown in Fig. 1, the five ports electrochemical cell setup
has the Pt counter electrode (CE), the saturated calomel elec-
trode (SCE) as reference electrode (RE), and the RDE work-
ing electrode (WE) with the CLs. The SCE was calibrated by
the reversible hydrogen electrode (RHE). The detailed
cleaning procedure is described in our previous work [31].

Catalyst ink and CL fabrication

Inks were prepared by mixing 5 mg 20 wt.% Pt/C catalysts
with 100 uL DI water, 900 uL IPA, and various volumes 5 wt.
% Nafion solution. In this work, the studied ionomer/carbon
(I/C) weight ratios included 0, 0.2, 0.4, 0.8, 1.6, 2.4, and 3.2.
To form uniform dispersion, the catalyst ink was sonicated for
20 mins in an ice bath system. Six microliters of the inks was
subsequently pipetted onto the GC disk (~30.6 pg p/cm?)
followed by oven-drying in air at room temperature. The test-
ing temperature was heated by a water bath. The morphology
of catalyst layer was inspected to make sure a good dispersion
during drying process.

Electrochemical testing

Considering the variable temperatures and the leak of C1™ ions
in Ag/AgCl reference electrode, the SCE was chosen as the
reference electrode used in our experiments. Prior to charac-
terization, the SCE was calibrated by the RHE at 26 °C as
shown in Fig. 2. For catalyst layer conditioning, potential
cycling was conducted in the range — 0.3 to 0.9 V (vs SCE)
at 500 mV-s ' for 50-100 cycles. The charge of hydrogen
underpotential deposition (Hypp) was obtained from the third
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Fig. 1 Five ports electrochemical
cell setup and the schematic

cycle of CV measured in — 0.3 t0 0.9 V (vs SCE) at 50 mV-s !
under N, atmosphere. The electrochemical active surface area
(ECSA) was estimated using 210 mC-em 2 p, [10] and the
double-layer capacitance (Cg4) was determined from 0.15 to
0.25 V (vs SCE). ORR curves were measured from — 0.3 to
0.9 V (vs SCE) at 10 mV-s " and 1600 rpm under 100 kPa O,
atmosphere. Correction for background currents was applied
to all ORR curves measured with in situ correction of solution
resistance. The apparent activity current /, and limiting current
1; were reported at 0.9 and 0.4 V in the plots (Fig. S5-S8). In
this study, all plot data of the SCE potentials were converted to
RHE potentials based on Eqgs. 1 and 2 [32].

Ve = Vscewsnie(T) + 0.059 x pH (1)

Back scany
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Current(mA)
A

S P PRI
f omn o a0 cmn o e e e e e e e o

6
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Fig. 2 The SCE was calibrated by RHE at 26 °C in H,-saturated 0.1 M
HCIOy in a three-electrode systems, including Pt network working elec-
trode, Pt wire counter electrode, and SCE as the reference electrode [32]

HCIO, electrolyte

8 J

Vscrsnie(T) = 0.2412-6.61 x 107(7-25°C)-1.75
x 107(7-25°C)*~9

x 1070(7-25°C)’ (2)

Where Vg represents the potential of reversible hydrogen
electrode, Vscr vs v represents the standard potential of Hg/
Hg,Cl, which was strongly depended on the temperature 7 (°
O) [32].

It is well known that the mass-normalized capacitance (Cg)
was obtained by the following Eq. 3 and the ECSA was ob-
tained by Eq. 4, where the ORR kinetic currents /; was
corrected by Eq. 5.

VJi/d,
Ca = zj(v/ifv) = ijv ®)
. c
Secsa (/8 ) = 210(HC/cm2th)(>< )Mpt(mg/ ) @
I — I;Lilf)o (5)

Where V; and V, are the cutoff potentials in CV, i is the
instantaneous charge current, v is the scan rate, O(C) is the
integral area between current and voltage related to hydrogen
ion desorption from Pt surface. Mp, is the catalyst loading in
mass as constant quantity approach to 30.6 ug p/cm>.

For EIS testing, the frequency range 1-10° Hz and the
voltage slightly lower than the open circuit potential for
ORR were applied with 100 kPa O, atmosphere for eliminat-
ing the mass transport effect as much as possible and studying
the charge transfer resistance R, in the CL. The perturbation
voltage as 5 mV was set up for EIS testing. The proper equiv-
alent circuit diagram as described in next discussion section
was selected for obtaining the fitting data.

@ Springer
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Results and discussion
Morphology of CLs

In CLs, the Nafion as the binder covered on the Pt/C needs to
be well dispersed for the uniformity which has significant
impact on ORR performance [30, 33]. Figure 3a shows that
an optical microscope image of the CL on the GC with 0.8 of
I/C ratio which is popular applied in MEAs [34]. The image
shows that the GC was almost completely covered by the CL,
although slightly coarse surface can be observed. Other pro-
portions might have the similar images due to the same pre-
pared process. Because of the particle size of carbon (around
40 nm) is nearly 10 times than Pt (2 nm to 5 nm), carbon can
regard as the framework structure in the CL which determines
the thickness [35]. Thus, based on the carbon loading, we can
estimate that the thickness of the CL formed on the RDE is
about 3.6 um under the assumption of the whole covered on
GC and evenly dispersed [36]. This estimation is empirical
and has taken into account the practical porosity of the CL.
As shown in Fig. 3b, the thickness observed by SEM on the
fault is approximately the same with the predicted thickness.
Therefore, it is believed that the prepared CLs have uniform
dispersity and the deviation of preparation can be excluded.

ESCA and Cg, by cyclic voltammetry

The temperature effect on the ECSA was investigated in
various Nafion content CLs. Figure 4a shows that as in-
creasing the Nafion content, the ECSA of the CLs slowly
increased and then decreased sharply. By varying temper-
ature, there is an irregular change that could be found and
ECAS seemed to be suppressed by increasing temperature
(Fig. S1-S4). It is explained that the increase of ECSA
with increasing Nafion loading under the low loading re-
sults from the improved TPI network [11, 35]. Based on
EIS results, Singh et al. found the same trend in low
Nafion content region (I/C <0.6) [19]. In principal, the
ECSA is determined by Hypp where only enough number
of hydrogen ions can support the H* deposition process

Fig.3 The optical microscopy (a)
and SEM (b) image of CL with
0.8 I/C
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nearby Pt surface covered by Nafion. Otherwise, the Pt
sites will not be detected without Nafion ionomer. In
high-speed rotating RDE will form a local turbulence,
resulting in no direct contact with electrolyte solution.
When no Nafion is available to provide the proton re-
sources, the catalyst near GC has no hydrogen ions to
finish the adsorption and desorption process [37]. In con-
trast, sulfonate in wetting Nafion can provide hydrogen
ions to build the proton channel. With higher Nafion con-
tent, the ECSA decreased sharply due to the electron
channel in CLs were destroyed [37]. However,
Kazuma’s work indicated that the ESCA was insensitive
with the Nafion content even if the value of I/C increases
to 1.4 [30]. This difference may due to the discrepancy of
Pt/C catalysts and very low loading used in their work,
leading to few effects on the diffusion of H" in the reac-
tion interface. Meanwhile, we observed that the tempera-
ture increase resulted in the reduction of ECSA. It is
suspected that the adsorption of sulfonate groups on the
Pt surface can induce the H,O, product at the Nafion-Pt/C
interface when performing the CV scanning. Moreover,
the H,O, product rate increases with applied temperature
[38]. Obviously, the H,O, may oxidize Pt atoms, which
significantly suppresses the electron transport and avail-
able active site.

The temperature effect on the double layer capacitance was
also analyzed by the CV curves as shown in Fig. 4b. With the
similar trend to ECSA, Cy, has a slow increase and then a
sharp decrease as increasing ionomer content. It looks to be
amore regular change in the studied temperature range. Singh
etal. [19] pointed out that the presence of Nafion could reduce
the double layer capacitance and raised up the mass transport
resistance. Our results are obviously different, because it is
observed that the Cg increased with Nafion introducing to
the CLs in the low loading range. The reason can be ascribed
to the much larger current density under ORR in Singh’s work
where the mass transport in the reaction interface is a more
limited factor. Meanwhile, our work presented that the more
OH bonds of water molecules point toward the Pt surface with
increasing temperature to form Pt-H covalent bond, leading to

500um §®
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the increase of the charging capacitance. Such observation has
been rationalized by the simulating result of the water/Pt (111)
interface [39].

ORR performance by linear scanning voltammetry

The details on the roles of temperature Nafion content CLs
have shown in Fig. 5. Both temperature and Nafion loading
had a significant effect on the ORR performance, which can
be reflected by kinetic activity current I and limiting current
I im in Fig. S5-S8.

0 0
00 05 10 15 20 25 3.0 35 00 05 1.0 15 20 25 3.0 35

lonomer/Carbon weight ratio

Both in the low Nafion content region, the ORR activity of
the CLs is the lowest at 40 °C, and the highest at 60 °C. It is
casy to understand that the I increased with temperature by
Butler-Volmer equation [40]. Unexpectedly, the ORR activity
of the CLs were obviously suppressed by the temperature of
40 °C when adding Nafion. This anomalous results are pre-
sumably due to the Nafion-Pt/C interface property change
with temperature according to Paul’s work [29]. It was pre-
sented that the mobility of Nafion film is dependent on ther-
mal annealing and its thickness. The blocking of Pt surface by
the hydrophobic component of Nafion will lead to significant
inhibition of ORR when the temperature increase from 20 to

Fig. 5 The temperature effect on 400 H /A """""""" 7T —B—Knetic current at 26°C |
ORR performance in various < | 1| =@ Knetic current at40C
Nafion content CLs (ORR kinetic = i /‘I ' —A— Knetic current at 60°C
activity I at 0.9 V vs RHE and ER 300 grorHHH I
limiting current Iy ;,, at 0.4 V vs ﬁ
RHE, the simplified sketch on the £ 200 B FH
electrode structure reprinted from g ERE_ ! i
reference [22]. Copyright 2016 S 100 B/ e $=: . i i mE
= . t bl Eeng bl R s —hA
Elsevier) « J~upNEEEREEEE mImiIgITiA HH
X o ENe=@ LT i "*I.P‘Ls_;_-.;_—-!ﬂj- A
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40 °C. Our observation confirmed that it is easier to form
hydrophobic structure caused by Nafion reconstruction on
the reaction interface at 40 °C. However, when the reaction
temperature further increase to 60 °C, the appearance of PtO
or PtOH on the surface of Pt leads to a turnover of Nafion
structure. As a result, more hydrophilic sulfonic groups direct-
ly contact with Pt which will be benefit for more TPIs
established [41-45]. Meanwhile, it is clear to observe that
the high and over region showed a similar ORR trend as low
region.

To further investigate the temperature effect on oxygen
mass transport properties in CLs, the limiting current Iy ;,
was expressed in Fig. 5. Unlike Iy, the limiting current de-
creased significantly when the Nafion introduced into CLs,
indicating the oxygen transport was blocked by Nafion [10,
19, 30]. With the same Nafion content, the Iy ;,, in CLs also
reduced with increasing temperature. It can be understood that
the ability of adsorb ions on the Pt surface becomes stronger,
resulting in an extra resistance for oxygen transport to the Pt
surface. In addition, an important factor cannot be ignored that

the solubility of oxygen in aqueous solution will decrease with
temperature increase [46]. Thus, low oxygen concentration
will lead to slow oxygen transport in CLs and accordingly,
decrease the limiting current.

To further analyze the electrochemical features, the Nafion
loading in CLs could be classified by three stages as low
region, high region, and over region. The boundary line can
be found in Fig. 5. The results show that the highest specific
activity was 107.8 nA/ecm? p at 60 °C corresponding to the
kinetic current of electrode 283.5mA @0.9V vs RHE when the
I/C weight ratio was 0.4. If the density of Nafion resin was
assumed as approximately 2.0 g/cm >, the optimal Nafion
loading to maximize the Pt utilization could be determined
in the range of 30-40 wt.%. This result was consistent well
with the vast majority reports in the literatures [12, 15, 17, 21,
34, 35, 47].

As illustrated at the left corner in Fig. 5, an over sim-
plified sketch on the electrode structure depending on
ionomer content was presented schematically through
the axis scale. It indicates that a proper Nafion content
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Fig. 6 The temperature effect on EIS patterns and related resistance in different Nafion content CLs (a 26 °C;b 40 °C; ¢ 60 °C; d temperature effect on
electrical resistance Rg; e temperature effect on charge transfer resistance R.; f temperature effect on oxygen mass transport resistance Wy.)
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will contribute to good surface coverage on Pt and high
ORR performance. And the CSE is observed as a strong
function of the operation temperature.

Charge transfer resistance and mass transfer
resistance by EIS

The EIS patterns are shown to study the charge and mass
transfer resistance in Fig. 6. It was operated under constant
voltage mode slightly lower than the open circuit voltage (V =
0.66 V vs SCE) to minimize the impact of mass transfer in
saturated oxygen atmosphere, [19]. The results were fitted by
ZView® software provided by Scribner Associates Inc. A
typical equivalent circuit for ORR at Pt/Nafion interface was
established to simulate the experimental data as show in
Fig. 6a. Rg, R.; .na W, represent the ohmic resistance, charge
transfer resistance, and finite-length Warburg impedance for
oxygen transmission capacity, respectively. The conventional
double-layer capacitance is replaced by a constant phase ele-
ment (CPE) to account for non-uniform diffusion in pore
structure CLs [48, 49].

Combining Table 1 with Fig. 6d, a slight decrease of Ry
was found, indicating the ionic activity increased with the
temperature. Meanwhile, the CPE exponent ¢ (Fig. S9) can
be suggested as a capacitor [50]. In Fig. 6e, the R decreases

with the increase of temperature, when the range of I/C is from
0 to 1.6, and there is a minimum of R, (10 €2) at I/C =0 and
60 °C. The results indicate that the higher temperature can
improve ORR kinetic. In the range of /C=1.6 to 3.2, the
R, increases with Nafion content, and the highest value is
achieved at 40 °C. This could be explained that the
over-region Nafion content has the larger impact on kinetic
process at this temperature. Compared with the low region and
high region, the kinetic process at the over region become
slower, possibly because the CL was wrapped by Nafion
and the mass transfer process become dominated. Moreover,
the hydrophobic surface could form easily at 40 °C because
there exists confinement effect of oxygen inside layers of
Nafion at low Pt loading CL [51]. As shown in Fig. 6f, the
W results demonstrate that the oxygen transport capability can
meet requirements for the kinetic-controlled process when
Nafion content is in the range of I/C =0 to 1.6. While in the
over region of I/C = 1.6 to 3.2, the oxygen transmission capac-
ity is drastically reduced. Furthermore, the higher temperature
results in the decrease of Wy. This may be due to the presence of
excessive Nafion, resulting in ionomer agglomeration which
wrapped the catalyst surface. In this case, the numbers of elec-
tron transport channel, TPI and available Pt active sites will be
decreased significantly. In addition, the higher temperature will
lead to the stronger interaction between the Pt/C catalyst and

Table 1 The RDE

electrochemical performance of Temperature I/C weightratio  ECSA Ca Ikatoov  Iiim Ry Ryt Wg
20 wt.% Pt/C CLs with various O (nA) at04v () © 10
Nafion contents under different m’g ') (uF) (HA)
temperatures (26 °C, 40 °C, 60 °C)
26 0 64.44 58.0 425 1117.3 6.339 18.14 7.197
0.2 86.83 67.6  135.1 1043.3 6.335 17.42 112
0.4 83.33 68.9 93.2 1004.1 6.511 16.06 35.17
0.8 91.59 70.7 74.7 975.5 6.444 16.1 40.97
1.6 80.95 60.1 16.2 1008.3 6.428 17.21 69.27
24 59.21 45.2 5.9 867.9 5.61 19.57 93.83
3.2 25.08 31.2 0.4 540.1 6.011 24.56 417.7
40 0 55.08 65.9 40.02 1179.5 5.948 12.8 39.71
0.2 74.76 78.5 18.2 945.6 5.97 13.81 40.84
0.4 67.94 85.8 16.8 923.1 5.648 14.22 55.48
0.8 76.67 86.5 56.8 974.9 5.886 13.9 62.78
1.6 63.81 77.2 9.5 999.7 5.916 13.76 86.4
24 61.59 60.5 49 727.5 5.472 28.32 86.4
32 49.84 42.1 1.5 552.2 5.802 4532 818.1
60 0 56.83 85.6 2835 1069.8 4.937 10.13 43.25
0.2 55.71 95.1 3542 780.3 4.769 10.08 35.81
0.4 80.63 87.3 4167 942.2 4.6369 10.61 70.72
0.8 88.73 94.4 80.8 867 4.695 10.29 40.06
1.6 53.97 81.5 50.7 800.2 4.566 11.32 5891
2.4 23.97 48.3 67.1 8274  4.17 22.79 269.2
32 12.06 32.7 19.8 492.7 4.707 2723 1610
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Fig. 7 The schematic diagram of
the predicated interface and
structure models of different
Nafion content CLs under various
temperatures

Solution
Surrounded

‘j Pt/C catalyst

Bonding Interface property| Oxygen hinded
/Covered change may at40°C  impact by Nafion

Nafion ionomer, and the oxygen transport into the reaction
interface will become more difficult [52].

Structural model of reaction interface for ORR

The above statement shows that the temperature has an im-
portant effect on the resulting reaction interface, as combined
results of the catalyst utilization and mass transport. To further
illustrate the impact of temperature and Nafion contents, the
interface and its structural model are schematically represent-
ed in Fig. 7.

The structural model is constructed using a crystal-like
face-centered cubic stacking structure according to a closely
packed structural theory [53]. The basic material parameters
can be found, including specific surface area S0, Of Vulcan
XC-72 (about 220 m* g '), and the diameter of the Pt particles
(about 3 nm), the Pt specific surface area Sp, (93 m? gfl), and
the dry Nafion density (2.0 g cm °) [34]. Then, the theoretical
thickness dnafon Of Nafion adsorbed on the surface of the
catalyst can be calculated by various I/C weigh ratios
(Table S1). We found that the theoretical thickness of Nafion
does not exceed 10 nm even at over region, which is not
consistent with the thickness of the observed Nafion on the
real catalyst surface [23]. This indicates that Nafion extremely
prone to agglomerate in CLs structures. Thus, surface energy
changes with temperature has a great possibility to change the
nature of Nafion-Pt/C interface.

As shown in Fig. 7, Nafion consists of hydrophobic
polytetrafluoroethylene (PTFE) backbone and hydrophilic
side chain with SO5™ group [26]. With increasing Nafion con-
tent, the amount of Nafion filled in the stack gap become
more. Ultimately, the continuity of the carbon sphere skeleton
can be destroyed, result in the loss of TPI and poor perfor-
mance. In low region, the Nafion serves as the bonding agent
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and slightly covers on Pt/C surface. For Nafion-free CL, there
is only electrolyte solution surrounded on RDE and the tem-
perature effect is limited. But with adding Nafion, the temper-
ature become the dominant effect for ORR performance espe-
cially at 40 °C, due to Nafion migration into CL surface. It is
speculated that the much more hydrophobic PTFE backbones
turn to face the Pt surface when Pt/C fully covered by
nano-thin Nafion film. In the high region, this phenomenon
is not obvious due to the thickness and aggregation increase of
Nafion and the catalyst exposure is more than that in low
region. The Nafion ionomer tends to from an agglomerated
particle in contact with Pt/C [22]. In general, the Nafion cov-
ered the catalyst surface will hinder the oxygen transfer to
reaction interface, which has become the major bottleneck
for low Pt loading and high current density of PEMFCs [4,
7, 8]. As our knowledge, it is the first time to investigate the
temperature effect on interface property with various Nafion
contents in RDE system.

Conclusions

The temperature and Nafion content showed a strong effect on
interface property and electrochemical performance for ORR.
At low Nafion content region, the catalyst exposure may de-
crease due to the cover of nano-thin Nafion film and temper-
ature has the significant influence on electrochemical active
sites, charging double capacitance, and reaction polarization
resistance. Both ECSA and Cg show a slow increase with
Nafion content in RDE system. Unlike complicated ECSA,
Cq has the regular and reasonable change in the studied tem-
perature range. The addition of Nafion will inhibit the activity
of the catalyst especially at 40 °C which may due to the easier
formation of hydrophobic structure caused by Nafion
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reconstruction on the reaction interface. Excess Nafion will
tend to self-reunion and increase the exposed active sites.
The optimum Nafion loading can be found in our work is in
the range of 30 to 40 wt.%. Additionally, the highest specific
activity we can achieve is 107.8 nA/cm? pat 60 °C with 0.4 of
ionomer/catalyst weight ratio, corresponding to the kinetic
current 283.5 nA at 0.9 V. This finding provides new insights
into enhancing the Pt utilization and designing high-efficiency
catalysts for ORR.
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