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Abstract We examine the Foreign exchange (FX) spot price spreads with and without Last
Look on the transaction. We assume that brokers are risk-neutral and they quote spreads so
that losses to latency arbitrageurs are recovered from other traders in the FX market. These
losses are reduced if the broker can reject, ex-post, loss-making trades by enforcing the Last
Look option which is a feature of some trading venues in FX markets. For a given rejection
threshold the risk-neutral broker quotes a spread to the market so that her expected profits
are zero. When there is only one venue, we find that the Last Look option reduces quoted
spreads. If there are two venues we show that themarket reaches an equilibriumwhere traders
have no incentive to migrate. The equilibrium can be reached with both venues coexisting,
or with only one venue surviving. Moreover, when one venue enforces Last Look and the
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other one does not, counterintuitively, it may be the case that the Last Look venue quotes
larger spreads.

Keywords Last Look · Foreign exchange · Latency arbitrage · Spamming · Spraying · Stale
quotes · Algorithmic trading · Low latency traders · High-frequency trading

JEL Classification G12 · G13 · G14 · G28

1 Introduction

The Foreign Exchange (FX) marketplace has some unique structures which have lead to spe-
cific solutions for both exchanges and market makers. Unlike equities, there are less than 100
actively traded currencies and many can be traded across multiple platforms simultaneously.
As there is no central exchange framework in FX, many Electronic Crossing Networks
(ECNs) exist to service trading of currencies. The most common G10 currencies may be
available to trade in more than 20 ECNs with multiple liquidity providers. Additionally, most
major banks offer access to trade currencies through their own platforms either using an
application or over an application programming interface (API) as well as through many
ECNs.

In high-frequency trading, liquidity providers making markets on multiple streams are
exposed to many risks. The technology race to reduce latency between exchanges has created
an opportunity to extract value through latency arbitrage. This can manifest as a fast market
participant trading on prices shown by slower liquidity providers in a rapidly updatingmarket,
and is not necessarily malicious. However, when the market taker is intentionally trading
with the last liquidity provider to update her prices, or on stale quotes, then it may become
necessary for the liquidity provider to construct a form of protection to prevent the misuse
of her liquidity.

A second concern for market makers is that they frequently show larger liquidity than
what they have available. They do this because large market makers display prices/liquidity
on multiple ECNs in the fragmented FXmarketplace and at the same time provide streaming
prices to traders through APIs. This can mean that there exist thousands of potential streams
where they are exposed to some notional amount of liquidity. Instantaneously, this liquidity
does not represent the prices they are prepared to show in the full amount. Typically, however,
if one-sided liquidity starts to be accessed onmultiple venues simultaneously, then themarket
maker updates prices to all streams to reflect the new value of liquidity – and ideally to attract
traders to take them out of the risk by crossing some part of the spread. The risk therefore
lies on the ability of the market maker to update prices on all streams in a rapid manner and
thus is also at risk of latency arbitrage.

Generally, larger size trades have a larger bid-offer spread to represent the additional cost
in trading out of the risk. In order to reduce transaction costs some traders may choose to
split up a large order into smaller standard size amounts and hit liquidity on multiple venues
simultaneously. This reduces the cost for the trader, but exposes liquidity providers to the risk
that the market will run away from them as they try to exit this position. In FX this activity is
sometimes referred to as ‘spamming the market’.1 The trader may also be accessing the same

1 There seems to be no general term in the FX industry that refers to the activity when a trader takes liquidity
(same currency pair) in different venues at the same time. Here we use the term spamming or spraying for this
type of activity.
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underlying source of liquidity on multiple venues if the best price on the ECNs is offered by
the same provider. This is clearly a problem for the market maker.2

There are some measures that market makers and ECNs can take to limit the exposure to
latency arbitrage strategies and to market takers spamming the market. In FX, some ECNs
allow liquidity providers ‘Last Look’: after a trader has traded on a market maker’s price
then the ‘Last Look’ is a fixed period of time in which the market maker has an option to
reject the trade. Generally the trade is rejected if in this fixed period of time the trade moves
against the market maker beyond some threshold. The market maker is inferring that the
trader may be taking advantage of the liquidity and is essentially withdrawing the price they
made to market. Doing so can neutralize the effect of a latency arbitrage as well as providing
protection against market spamming, at least over the interval of time that Last Look is active,
typically measured in milliseconds. Market makers may also use Last Look trade rejections
on price streams provided to traders, particularly for traders who trade at a higher frequency.

In over-the-counter transactions FX brokers stream quotes to awide range of clients. A key
characteristic that differentiates clients is their ability to see quote updates, react to market
news, and trade on the most up-to-date public information. Having access to low latency
technology is expensive. FX brokers who stream prices recognize that not all clients have the
capability of seeing the most recent quote and may come to the market trying to execute a
trade on a stale quote at a price which could be advantageous to either the client or the broker.
Thus, it is not unusual for brokers to allow trades on stale quotes, despite having streamed
a new quote, because she wishes to attract order flow which could convey information that
she may use to update her quotes.

The broker cannot discern amongst the different strategies employed by an individual
trader, in particularwhether the trade is taking advantage of latency. For example, institutional
investors often employ many strategies, some of which may involve latency arbitrages. Thus,
Last Look is a measure designed for a type of strategy, not for a particular type of trader. In
this paper we classify trades as either a latency arbitrage or non-latency arbitrage.We allocate
the latency arbitrage trades as the activity emanating from latency arbitrageurs (LAs), and
the other trades as activity from slow traders (STs). Clearly, trades from market participants
who employ both types of strategies will sometimes be classified as coming from LAs and
others from STs. This slight abuse of nomenclature helps to clarify the setup of the model
and discussion of the Last Look option in the rest of the paper.

Last Look is a controversial topic in the FX marketplace with some ECNs actively adver-
tising that they do not allow Last Look liquidity providers on their platforms. However it does
protect market makers from more aggressive behavior and ultimately, prices offered on Last
Look platforms may have lower spreads than on non-Last Look markets. This means that
market participants who are not latency arbitraging the market maker are not penalized in
the prices they receive, but may still face rejection of some of their trades. For direct pricing
streams, employing trade rejection over Last Look also allows market makers to offer more
liquidity to traders than they could without such protection. The disadvantage for traders is
that they no longer have guaranteed fills when they go to market and, more pertinently, the
rejected trades generally are the ones that have gone in their favor, at least over the Last Look
time interval.

FX market makers are exposed to being picked-off if they do not update their quotes
quickly. However, some FX brokers willingly allow trades on stale quotes (e.g. in over-the-
counter and quote streaming set-ups), but this is not a free option available to liquidity takers.

2 If the trader were to request a quote for the full amount, rather than the child orders, the broker would quote
a wider spread than that quoted for smaller orders. Wider spreads for large size FX orders are equivalent to
large orders in equity markets walking the limit order book.
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FX brokers ‘charge’ for the option, to be hit/lifted on stale quotes, by rejecting trades through
the Last Look mechanism—see [2] who discuss firm quotes as free options given to market
takers.

Our paper and the contemporaneous work of [7] are the first to examine FX spot price
spreads with and without Last Look on the transaction, see also and [6]. We model latency
arbitrage by allowing the market taker to trade on a stale quote, which in FX markets is a
quote that is no longer valid either because the liquidity provider has sent an updated quote,
or because the market has moved since the liquidity provider made the price. We consider
the value to the liquidity provider of having the option to reject a quote over the Last Look
interval given that there is a target rejection threshold which affects all traders.

We assume that market makers or brokers are risk-neutral and competition drives spreads
so that expected profits from dealing in the FX market are zero. Brokers cannot observe
the type of trade they are facing, so rejection affects all traders: LAs, who only trade on
stale quotes which produce an immediate risk-less positive profit, and STs, who are not
(latency) arbitraging the market. The brokers reject trades that generate losses greater than a
predetermined threshold. These losses are calculated ex-post using the price update after the
trader executed his order. As expected, the right to cancel trades over the rejection window
caps brokers’ losses, so everything else equal, quoted spreads decrease.

We show that in markets where there is price momentum, i.e. price revisions are positively
correlated (such as what occurs when there is spamming in the market), the broker’s rejection
rule is more effective at singling out latency arbitrage trades. Thus, everything else equal,
when there is momentum in prices, spreads are tighter. Conversely, when price revisions are
negatively correlated, prices mean revert and it is more difficult for the broker to single out
loss-leading trades whose counterparty are LAs, hence spreads widen.

Tighter spreads have different effects onmarket participants. LAs havemore opportunities
to attempt an arbitrage (on stale quotes), because spreads are tighter and therefore LAs can
take advantage of smaller price movements, but they also face higher rejection rates and
overall they are worse off in markets with the Last Look option. On the other hand, the STs
benefit from lower spreads, but face rejection of their most profitable trades, so depending
on market parameters, how STs account for the foregone profits of rejected trades, and other
rejection costs, they will seek or avoid trading in venues with Last Look.

Is there an optimal spread? In a market where there is only one venue to trade, the risk-
neutral brokers are indifferent between making markets with or without the Last Look option
because spreads are determined by the zero expected profit condition. On the other hand,
when STs account for rejection costs, our results show that there is an optimal spread that
minimizes the STs’ costs of executing round-trip trades. In addition to the spread that STs pay
when executing trades, the rejection costs include: forgone profits; immediacy costs which
are high if the ST requires immediate and guaranteed execution; the additional cost arising
from returning to the market to execute the trade; and, arguably, the potential exposure to
front-running costs.

When there is more than one FX venue, traders migrate to those where they are better off:
LAs migrate to venues where the expected profit of a round-trip trade is highest, and STs to
those where the expected cost of a round-trip trade is lowest. Quoted spreads depend on a
number of factors which are specific to each venue: rejection rule, and proportion of LAs.
We show that there is an equilibrium region where there are no incentives to migrate and
also examine cases in which the equilibrium region is a corner solution where only one FX
venue survives, i.e. one venue attracts all order flow from both types of traders as well as all
market makers.
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In particular we discuss the two-venue case where in one venue brokers employ the Last
Look option, while the other venue does not allow market makers to enforce Last Look. We
show that there are two distinctive regions (defined by pairs of numbers of LAs and STs
trading in each venue), where traders have incentives to migrate and the equilibrium reached
is either both venues coexist or only one survives. When the market’s starting point is in
the region where the venue with Last Look starts off with a low proportion of LAs, then
equilibrium is reached when all traders exit the venue without Last Look, i.e. all order flow
occurs in the venue that employs a rejection rule.

The other region is one where the venue without Last Look starts with a low proportion
of LAs (so the venue with Last Look has a high proportion of LAs). In this case, LAs find
it optimal to migrate to the venue without Last Look. Thus the brokers in the venue without
Last Look increase spreads to recover the losses to LAs, but this increases the STs’ trading
costs, so some of them migrate to the venue with Last Look, but do so at a rate lower than
that at which LAs flow into the venue without Last Look. Equilibrium is reached at a point
where both venues coexist (apart from very extreme cases where the starting point is one
where most LAs are concentrated in one venue). Interestingly, when both venues coexist the
Last Look venue does not always quote the lowest spread.

When traders switch between venues they incur a fixed cost. In the over-the-counter FX
market, this fixed cost includes ‘reputational’ costs to build a relationship with the market
maker, and software set-up costs to connect to other exchanges and counterparties. We show
that when migration costs are very low, the market settles to an equilibrium where only one
venue survives and this outcome depends on the starting point, but in most cases all traders
migrate to the venue which enforces Last Look.

Finally, the Last Look feature in FX markets is in the spotlight of regulators and finan-
cial authorities. This paper provides a framework to analyze the provision of liquidity and
immediacy in a market where some venues enforce rejection of trades. For example, in a
recent consultation document, the Bank of England (joint with the HM Treasury and the
Financial Conduct Authority) express the concern raised by some market participants who
“have argued that such practices may also incentivize market makers to delay a decision
for longer periods in order to observe market moves and reject unprofitable trades or even
engage in front-running of orders.”, [1]. This paper provides a framework to understand how
FX venues with different rejection rules set spreads to the market, thus providing a price for
immediacy in the market, and how market participants choose venues for their trades.

The remainder of this paper is organized as follows. In Sect. 2 we present the model for
the dynamics of exchange rates and show how a risk-neutral broker sets optimal spreads in
a market consisting of LAs and STs. In Sect. 3 we develop the model further to allow the
broker to enforce the Last Look option to cancel trades ex-post and determine the optimal
spread quoted in the market. In Sect. 4 we model how STs impute costs to rejected trades and
compute the optimal spread (hence the rejection threshold) that minimizes the costs that STs
are exposed to. In Sect. 6 we discuss how the market reaches equilibrium when there is more
than one FX venue. Finally, Sect. 7 concludes and proofs are collected in the “Appendix”.

2 Optimal spreads without Last Look

We assume that brokers are risk-neutral and operate in a competitive market, so that the
expected profits of round-trip trades is zero. In addition, brokers do not incur any fees or
other variable costs to operate in the market. The midprice, i.e. the exchange rate between
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two currencies, follows a stochastic process which is observed by all market participants.
There are three time markers i = 0, 1, 2, the midprice is denoted by Pi , Pa

i denotes the ask,
Pb

i the bid. The spread is given by � = Pa
i − Pb

i ≥ 0 and is determined by the brokers’
zero-expected profit condition. Point i = 0 corresponds to the initial time when the broker
posts a quote, i = 1 corresponds to the time when the broker updates the quote, and i = 2
corresponds to the time at which the broker decides whether to accept or reject the trade if
there is a Last Look option. All trades are of one unit.

Throughout this paper the spread arises from the brokers’ need to break-evenwhen trading
with market participants who arbitrage stale quotes.3 In general, the difference between the
bid and ask is explained by the various risks that the market maker or broker faces when
intermediating trades, e.g. adverse selection and inventory risk, see for instance [3–5]. Here,
we focus on the effect that LAs have on spreads, and one could include these other effects,
which would widen the spreads.

Innovations in the midprice are given by

Pi+1 − Pi = σ Zi+1 ,

where σ is a positive constant, the price revisions Z1 and Z2 are correlated standard normal
random variables, with correlation coefficient ρ, and we write,(

Z1

Z2

)
∼ N

((
0
0

)
,

(
1 ρ

ρ 1

))
.

Positive correlation, ρ > 0, corresponds to a period of trading where prices are trending
up/down, while negative correlation, ρ < 0, corresponds to a time of mean-reversion of
prices. Naturally, there is no trend in prices when correlation is zero. In this section the broker
does not have the Last Look option to veto trades ex-post, so the second price increment is
irrelevant, it will however play an important role when this option is incorporated in Sect. 3.

When there is spamming in the market, i.e. when an LA takes liquidity from multiple
venues simultaneously, price updates reflect this type of market activity by moving in the
direction of the trade. Consider the case of an LA submitting buy orders over multiple
venues (and possibly from different brokers) simultaneously. Several brokers will then be
left with excessive short positions that they must unwind. To do so, the brokers will either
take liquidity and thus add to overall buying pressure in the market resulting in upward price
movements; and/or adjust their bids (and hence also asks) upwards to entice other traders
to offset their short position. The end result is that prices move upwards and this pressure
can persist over multiple periods depending on the size of the total short position the brokers
found themselves in. A similar argument follows if the LA submits sell orders over multiple
venues simultaneously, resulting in a downward trend in prices. Overall, spamming in the
market induces positive correlation between price increments.

All brokers send quote updates at the beginning of every period i and traders decide if
they want to trade. The market is populated by two types of traders: STs and LAs. STs do
not possess the technology to always observe the updates that the brokers post. LAs have the
speed and technology to see, and act on, all quote updates to the market.

The brokers cannot differentiate trader type, but know that a proportion α ∈ [0, 1] of
traders are LAs, and know that STs observe the updated quote (at i = 1) with probability β.
The brokers wish to do business with STs, so they allow all market participants to trade on
stale quotes. This may happen in two ways. (i) At time i = 1 a broker updates her quotes to

3 When the trader hits the liquidity provider’s most up-to-date quote, but the market has moved, may also be
considered as a trade on a stale quote.
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Fig. 1 A sequence of bid-ask
price updates. The first quote is at
i = 0, the updated quote at i = 1,
and the third update at i = 2 is
used to determine the Last Look
rejection. a Case I: Pb

1 > Pa
0 . b

Case II: Pa
1 > Pb

0 . c Case III:
P1 − P0 ∈ [−�,�]

P a
0

P b
0

P a
1

P b
1

P a
2

P b
2

P a
0

P b
0

P a
1

P b
1

P a
2

P b
2

P a
0

P b
0

P a
1

P b
1

P a
2

P b
2

(a)

(b)

(c)

Pa
1 = P1 + �

2 and Pb
1 = P1 − �

2 , but will honor trades at the stale quotes Pa,b
0 . (ii) At time

i = 1 the market has moved and a broker did not update her quotes and will honor trades
at the stale quotes Pa,b

0 . In the sequel, a trade on a stale quote refers to either one of these
cases. Throughout we refer to α as the proportion of traders, but could also be interpreted as
the ratio of latency arbitrage trades to the total number of trades in the FX market.

An ST always trades at the quotes he sees, whether stale or not. LAs will always trade at
the most favorable quote for him, stale or new. Thus, brokers are exposed to ‘latency losses’
when trading with LAs who take advantage of stale quotes. In equilibrium, brokers set the
spread � to recover these losses.

2.1 Optimal spread

The broker determines the quoted spread so that the expected profit of each round-trip trade,
in any given period, is zero. When the broker enters a position at time i = 1 the expected
profit of the round-trip is calculated using the price at which the first leg of the trade is entered,
and the price of the leg to close out the position. The former depends on whether the broker
accepted the trade on a stale or updated quote. The latter is either Pb

1 , if first leg was a sell,
or Pa

1 , if the first leg was a buy.
Figure 1 shows quote updates. The size of the spread and the midprice change determine if

the LA trades on a stale quote. Cases I and II show arbitrage opportunities executed by LAs.
Panel (c) depicts the cases where the midprice change is small enough to preclude latency
losses to the broker.

To determine the broker’s optimal spread we first look at the trades where the counterparty
is an ST and then when it is an LA.
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Trading with STs

Recall that the ST sees the updated quote at t = 1 with probability β.

• If the ST receives the updated quote, then the profit to the broker of a round-trip trade is
the spread �.

• If the ST does not receive the updated quote, and therefore trades on the stale quote, the
profit to the broker of a round-trip trade is

P1 − P0 + � .

Clearly, when the ST trades on a stale quote it will be, unbeknownst to him, at a profit or
at a loss.

Trading with LAs

Trades on stale quotes result from options provided by the broker to liquidity takers who
exercise them. In equity markets, firm quotes in the limit order book are ‘free’ options given
to liquidity takers to pick-off stale quotes. In FX markets with Last Look these options are
not free because the broker may reject trades.

Here we list the midprice revisions which expose the broker to latency losses:

• Case I: If Pb
1 > Pa

0 , the LA executes a buy at the stale quote, followed by (an instant
later) a sell at the updated quote, and the LA receives a net profit of(

Pb
1 − Pa

0

)
+ ,

where (x)+ = max(0, x).
• Case II: If Pa

1 < Pb
0 , the LA executes a sell at the stale quote, followed by (an instant

later) a buy at the updated quote, and the LA receives a net profit of(
Pb
0 − Pa

1

)
+ .

And midprice revisions which do not lead to latency losses:

• Case III: If P1−P0 ∈ [−�,�], the LA cannot profit from a round-trip trade and therefore
makes no trades.

Putting the above scenarios together, the broker’s expected profits stemming from trading
with STs and LAs, respectively, are:

�ST = β � + (1 − β)E0[P1 − P0 + �] , (1)

and

�L A = E0

[(
Pb
1 − Pa

0

)
+ +

(
Pb
0 − Pa

1

)
+

]
, (2)

where E0 is the expectation operator conditioned on information at time i = 0.
Thus, the broker’s expected profits at time i = 0 are given by

� = (1 − α)�ST − α �L A . (3)

Next, we determine the balancing equation that the spread must satisfy. Recall the broker
is risk-neutral and does not incur any fees or other variable costs to make markets. Thus, in
equilibrium, the broker sets a spread where the expected profit is zero. We seek the optimal
spread by conditioning on type of trader.
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First, due to themartingale nature of the price movement over the first period, the expected
profit from trading with STs is

�ST = β � + (1 − β)E0[P1 − P0 + �] = � .

Second, we can rewrite the expected profits from trading with LAs as follows:

�L A =E0

[(
Pb
1 − Pa

0

)
+ +

(
Pb
0 − Pa

1

)
+

]

=E0

[
(P1 − P0 − �)+ + (P0 − P1 − �)+

]

= 2E0

[
(P1 − (P0 + �))+

]
.

In this form, we can interpret the expected profits from trading with LAs as two call options
on the midprice struck at the arrival price plus the spread, or alternatively as a single stran-
gle option at the same strike. Since we assume prices are arithmetic, and increments are
symmetric, these two options have the same value.

Proposition 1 Losses to Latency Arbitrageurs without Last Look. The broker’s expected
losses to LAs are given by

�L A = 2 σ φ

(
�

σ

)
− 2�	

(
−�

σ

)
, (4)

where φ(·) and 	(·) denote the standard normal pdf and cdf, respectively.

Proof See “Appendix A.1”. ��
In equilibrium, the broker must break-even so the losses she incurs from trading with LAs

must be offset by the gains obtained from trading with STs. Thus, the broker must quote
a spread to the market so that � = 0, so using (3), the zero-expected profit condition is
α �L A = (1 − α)�ST . This is shown in the following corollary.

Corollary 2 Optimal SpreadBalancingEquationwithout Last Look.The risk-neutral broker
charges a spread �∗ = σ x∗, where x∗ is a solution of the non-linear equation

φ (x) − x 	(−x) = 1 − α

2α
x . (5)

Proof Setting the broker’s expected profits to zero � = (1 − α)�ST − α �L A = 0, and
rearranging, leads directly to the above balancing equation. ��
Moreover, the proposition below shows that there is a unique optimal spread where (5) holds.

Proposition 3 There exists a unique finite solution x ∈ [0,+∞) to the non-linear equation
(5) if and only if α ∈ [0, 1).
Proof See “Appendix A.2”. ��

It is clear that STs bear the costs imposed on the market by the LAs who trade on stale
quotes. Figure 2 shows a plot of the optimal spread �∗ as a function of the percentage α of
LAs in the market. As expected, this optimal spread is increasing in α. The diagram stops at
�∗ = 2 σ , however, there is indeed a vertical asymptote at α = 1; it is simple to see that as
α → 1, the solution of (5) is x∗ → ∞.
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Fig. 2 The optimal spread �∗
(relative to σ ) which renders the
broker’s expected losses to LAs
equal to her expected gains from
STs. Recall that α is the
percentage of LAs in the market

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

α
Δ

∗ /
σ

Exact
Asym

Proposition 4 AsymptoticOptimalSpread.When the proportion of LAs trading in the market
is small, i.e. α is small, the asymptotic solution of the optimal spread is

�∗

σ
=

√
2

π
α + o(α) , (6)

to first order.

Proof See “Appendix A.3”. ��

The dashed line in Fig. 2 shows the asymptotic solution. This asymptotic form has a con-

nection to the [4] (GM) model. To see this, note that E [|Z |] =
√

2
π
, where Z is a standard

normal random variable, so that if we identify
√

2
π

σ ∼ (
V − V

)
where V , V are the two

possible price outcomes in the GM model, then from (6), we have �∗ ∼ α
(
V − V

)
. This

result corresponds to the spread in the GM approach when α represents the percentage of
informed traders in the market.

3 Optimal spread with Last Look

In this sectionwe employ the same framework as the one developed above. As before, brokers
allow market participants to trade on stale quotes, but brokers have the option of cancelling
trades ex-post. Recall that brokers do not know the type of trader they are doing business
with, so trades are rejected when the losses to the broker exceed a predetermined threshold
which is the same for all brokers. The sequence of events is as follows.

LAs will only trade if midprice updates are such that they canmake an immediate risk-less
profit (Cases I and II in Fig. 1), which requires the first trade of their latency arbitrage to be
on the stale quote—the second leg of their arbitrage is at the current quote Pa,b

1 . STs on the
other hand, trade on stale quotes only when they did not receive the updated quote. In either
case, let Pe denote the midprice at which the trader executed his first trade. Then the broker
employs the following ex-post rejection rule at time i = 2. If the trader sells to the broker,
the broker rejects the trade if −Pe + P2 ≤ ξ (with the threshold ξ < 0), while if the trader
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buys from the broker, the broker rejects the trade if Pe − P2 ≤ ξ , i.e. the broker rejects trades
when her losses are larger than the threshold |ξ | net of the spread cost that they pick up.4

Here we assume that there is only one venue and the rejection threshold is set by the
venue. The choice of threshold does not affect the brokers’ business because, conditioned on
the threshold ξ , brokers set spreads to break even. In addition, the choice of threshold does
not alter the fraction of LAs and STs that the brokers face because there is only one venue
to trade. Later, in Sect. 6 we examine in detail what happens when there is more than one
venue.

In the following subsection we discuss the ST’s costs of round-trip trades conditioned
on the fact that they were accepted, and in Sect. 4 we discuss how STs calculate costs of
round-trip trades by also imputing a cost to rejected trades.

3.1 The slow trader’s cost

If the ST receives the updated quote (with probability β), then a round-trip trade costs him
the spread �. If he buys (which we assume occurs 50% of the time), his trade will only be
accepted if Pe − P2 = P1 − P2 > ξ . Similarly, if he sells, his trade will only be accepted if
P2 − Pe = P2 − P1 > ξ . In all, the ST’s expected cost of a round-trip trade when he receives
the updated quote is

�ST | updated = 1
2 �P [P1 − P2 > ξ ] + 1

2 �P [P2 − P1 > ξ ] = � 	

(
− ξ

σ

)
. (7)

If the ST does not receive the updated quote, then a round-trip trade costs him
(
P0 + �

2

)−(
P1 − �

2

)
if he buys (then sells), and his trade is accepted only if Pe − P2 = P0 − P2 > ξ .

Similarly for the case when the trader sells (then buys). In all, the ST’s expected cost, given
that he does not receive the updated quote, is

�ST | stale = 1
2 E

[
(P0 − P1 + �) 1{P0−P2>ξ}

] + 1
2 E

[
(P1 − P0 + �) 1{P2−P0>ξ}

]

= σ

√
1 + ρ

2
φ

(
1√

2(1 + ρ)

ξ

σ

)
+ � 	

(
− 1√

2(1 + ρ)

ξ

σ

)
. (8)

See “Appendix A.4” for the detailed computation.

Proposition 5 Cost to Slow Traders with Last Look. The cost of a round-trip trade by an
ST when the broker has the Last Look option is

�ST = σ (1 − β)

√
1 + ρ

2
φ

(
1√

2(1 + ρ)

ξ

σ

)

+ �

{
β 	

(
− ξ

σ

)
+ (1 − β)	

(
− 1√

2(1 + ρ)

ξ

σ

)}
.

(9)

Proof This follows immediately from (7) and (8). ��
Proposition 6 Probability of a Slow Trader’s Execution. The probability that the ST’s trade
is executed equals

�ST = P[Pe − P2 > ξ ] = β 	

(
− ξ

σ

)
+ (1 − β)	

(
− ξ

σ
√
2(1 + ρ)

)
. (10)

4 When the broker receives a buy order, she sells the asset so her cash increases by Pe plus the half-spread,
and at period i = 2 she uses the midprice P2 minus the half-spread to decide if the trade is rejected. Thus, the
broker rejects the trade if her losses to this round-trip trade are less than ξ − �. So if the trader buys a share
on the quote at i = 1, then the broker rejects it if (Pe + �/2) − (P2 − �/2) ≤ ξ + �.
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Proof See “Appendix A.5”. ��
This probability is independent of the quoted spread because STs are not attempting to latency
arbitrage the broker by trading on stale quotes.

3.2 The latency arbitrageur’s profit

The LA uses the same strategy as he did without the Last Look clause. He only trades if,
relative to the stale quote, he can make a risk-less and profitable round-trip trade. Thus,
whenever the LA executes a trade he always does the first leg at the bid or ask posted in the
previous period, i.e. Pa,b

0 . However, since the broker rejects trades, the LA’s expected profit
of a round-trip trade is

�L A = 2E0
[

(P1 − P0 − �)+ 1{ P0−P2>ξ }
]

, (11)

which is as (2), but including the indicator function 1{ P0−P2>ξ } to account only for accepted
trades.

Proposition 7 Losses to Latency Arbitrageurs with Last Look. The expected losses that the
broker, who employs the Last Look option, incurs when trading with LAs is

�L A = 2 (B(�̃) − A(�̃) �̃) σ , (12)

where �̃ = �
σ

, ξ̃ = ξ
σ

,

A(�̃) := P[ P1 − P0 > �, P0 − P2 > ξ ]

= 	

(
− ξ̃√

2(1 + ρ)

)
− 	√

1+ρ
2

(
�̃ , − ξ̃√

2(1 + ρ)

)
, (13)

and

B(�̃) := E0
[ 1

σ
(P1 − P0)1{ P1−P0>� , P0−P2>ξ }

]

= φ(�̃)	

(
− ξ̃ + (1 + ρ)�̃√

1 − ρ2

)
−

√
1 + ρ

2
φ

(
ξ̃√

2(1 + ρ)

)
	

(
− ξ̃ + 2 �̃√

2(1 − ρ)

)
.

(14)

Proof See “Appendix A.6”. ��
3.3 Optimal spread with Last Look

Figure 3 shows the optimal spread as a function of the rejection threshold ξ . Recall that the
optimal spread is set such that the broker has zero expected profit and satisfies

(1 − α)�ST (�) − α �L A(�) = 0 , (15)

and all brokers use the same threshold ξ , which is determined by the venue.
The left panel shows how the optimal spread (normalized by the volatility parameter σ )

depends on the percentage α of LAs trading in the market (correlation is fixed at ρ = 0.5)
and the rejection threshold imposed by the venue. The right panel shows how the optimal
spread depends on the correlation between the shocks to the midprice (percentage of LAs
is fixed at α = 0.1). In both panels the optimal spread decreases as the cutoff ξ increases.
This result reflects the fact that LAs make less profits from the broker because as ξ increases,
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Fig. 3 Optimal spread�∗ (relative to σ ) which renders the broker’s expected loss to LAs equal to her expected
gains from STs. Recall that α is the percentage of LAs in the market. Here, β = 0.8, in the left panel ρ = 0.5,
and in the right panel α = 0.1

more trades are rejected – the broker transfers less losses to the STs by charging a smaller
spread to the market. Furthermore, it is clear that the optimal spread is bounded above (this
bound is obtained when ξ → −∞) by the optimal spread in the absence of the Last Look
option.

The figure also shows that there is a critical cutoff level ξ∗ which renders the optimal
spread equal to zero, and as the percentage of LAs increases, the optimal spread increases—
this is natural, as the broker must recover the costs that the additional LAs impose on her.
With the Last Look option, brokers can remove the cost to STs entirely (i.e. spread is set
at zero) because they are able to recover those costs by rejecting trades from the LAs. Note
however, that with the Last Look option the costs of only accepted trades from STs is reduced
to zero, but the most profitable trades executed by the ST are cancelled—we return to this
point in Sect. 4 where the ST internalizes the costs of rejected trades.

Finally, we observe that when there are trends or momentum in the market, the Last Look
feature singles out a higher proportion of LAs’ trades. For example, as correlation between
midprice revisions increases, when an LA profits in the first increment, this profit will also be
reflected in the increment over the second period, which is when brokers enforce the ex-post
rejection option, and hence the rejection rule will pick them out better. The same argument
shows that when correlation is negative, prices mean revert, it is more difficult for brokers to
use the ex-post price to decide when to reject loss-leading trades executed by LAs, so spreads
for a fixed rejection threshold are wider.

Next, we investigate how effective is the Last Look option at rejecting trades fromLAs and
not those stemming from STs. For this, we need the two results in the following propositions.

Proposition 8 Probability of a Latency Arbitrageur’s Execution. The probability that the
LA’s trade is executed is

�L A = P

[
(P0 − P2) > ξ

∣∣∣ (P1 − P0) > �
]

= A

	
(

�
σ

) ,

where A(·) is given in (13).

Proof Due to symmetry, we need only look at the case when the sell is at the stale and
buy at the updated quote. The result above then follows immediately from the definition of
conditional probabilities and using the result in (13). ��
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Fig. 4 The probability that a
trader was an LA given that the
trade was rejected
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Proposition 9 Rejecting Latency Arbitrageur’s Execution. The probability that a trader was
an LA given that the trade was rejected is

ϒ = P[LA | reject ] = α
1 − �L A

1 − (α �L A + (1 − α)�ST )
.

Proof A straightforward application of Bayes’ Theorem implies that

P[LA | trade rejected ] =α
P[reject | trade LA ]
P[reject | trade] , (16)

and the result follows. ��
In Fig. 4, we plot the probability that the agent was an LA, given that the tradewas rejected,

as a function of the cutoff ξ . For each level of ξ , we first determine the optimal spread as in
Fig. 3, and then compute ϒ from Proposition 9. The plot shows this is a decreasing function
of ξ , and can be interpreted as follows: as the rejection threshold ξ increases, so that more
trades are rejected, it is more difficult to assess whether the trade was emanating from an LA
or an ST because the rule rejects trades that are modestly profitable. That is, as the broker
increases the value of ξ and rejects more trades, she is risking rejecting trades from STs and
not only those of the LAs.

4 Optimal spread for a slow trader and value of order flow

As seen in the last section, if the venue selects a cutoff level ξ , then there is a unique optimal
spread �∗ which earns the risk-neutral broker zero-expected profit. In other words, there is
an optimal spread such that the brokers’ expected revenue from trading with STs equal the
expected losses from trading with LAs. Moreover, although the broker is indifferent to the
choice of ξ , increasing the cutoff, increases the probability that the rejected trade stems from
an ST and not an LA, see Fig. 4.

Hence, what is the optimal cutoff ξ∗ and the corresponding optimal spread? To answer
this question, we view the problem from the perspective of an ST and the different costs that
accrue to the ST. In addition to the expected roundtrip cost �ST , other costs are: forgone
profitswhich should have accrued to the ST; immediacy costswhich are high if the ST requires
immediate and guaranteed execution—for example costs that stem from a trading objective
that could not be realized (trade could be part of larger operation); and more importantly, the
ST must return to the market to complete the trade which, if executed, is expected to be at a
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Fig. 5 The effective cost to the
ST accounting for the cost of
rejected trades. β = 0.8,
δ = 0.5 |ξ |, ρ = 0.5, α = 0.15
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worse price because rejections occur when prices move in favor of (against) the ST (broker);
and, arguably, the ST is exposed to being frontrun.5 Thus the ‘effective cost’ to the ST is
given by

�̂ST = �ST + CST (α, β,�, σ, θST ) , (17)

where �ST is the cost to the ST due to the spread and the potential rejection of trades due
to Last Look as given in Proposition 5, CST is the additional cost, where θST is a set of
idiosyncratic parameters.

We remark that the ST’s effective cost is not necessarily lower than the cost that he would
incur if trading in a venue without the Last Look option. Thus, depending on the value of
the additional cost CST , the ST will prefer to trade in a venue with Last Look if �̂ST < �0,
where �0 is the spread without Last Look, i.e. ξ = −∞. If the proportion α of LAs in the
market is not too large, so that we can use the simpler expression for the spread without Last
Look in Proposition 4, then STs prefer venues with Last Look as long as their effective costs
are such that

�̂ST <

√
2

π
α σ . (18)

Moreover, when the ST prefers venues with Last Look, our results also help to determine
the rejection threshold which minimizes the ST’s effective cost. Figure 5 shows the ST’s
effective cost with

CST (α, β,�, σ, θST ) = δ (1 − �ST ) , (19)

where δ = 0.5 |ξ |, and recall �ST is the probability that the ST’s trade is accepted and given
in (10), β = 0.8, and α = 0.15. This choice of δ is such that every time the ST’s profitable
trade is rejected, he imputes a cost of half the broker’s rejection threshold which is less than
half of the forgone profits. For this choice of parameters it is clear that there is an optimal
spread where the costs to the ST are minimized. The ST’s effective cost is minimized at
ξ∗/σ = − 2.49 which corresponds to an optimal spread of �∗]/σ = 0.065, (one can also
trace this optimal spread by looking at the left panel in Fig. 2). Finally, this spread is about
50% of the spread that the broker charges in the absence of the Last Look option, which is
�/σ = 0.12 (see spreads as ξ/σ goes to −∞ in the left panel of Fig. 3).

5 Frontrunning is an illegal activity, but FX market participants have argued that Last Look exposes them to
frontrunning, see [1].
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In our model we assume that the broker does not know the type of trader she is facing,
but when FX transactions are over-the-counter (instead of an ECN where the counterparty
is anonymous) the broker has more information about the identity and strategies of her
counterparties. For example, the broker might know if she is facing a trader who executes
latency arbitrage trades and she is still willing to trade (and reject) some of the trades. LAs
may also be considered informed traders so the broker benefits from observing the order flow
from informed traders. Recall that liquidity providers make prices to their over-the-counter
clients and also post quotes on other venues and ECNs. Thus, observing order flow from
informed traders is valuable. We could include this in our model in the same way that we
included the additional cost that the STs incur, but in this case the broker imputes a positive
revenue to executing trades with LAs. Thus, the broker’s effective losses to LAs are

�̂L A = �L A − CL A(α, β,�, σ, θL A) , (20)

where CL A ≥ 0 is the benefit that the broker imputes to learning from LAs’ order flow.

5 Asymptotic expressions: spread, profit, and cost

When the proportion of LAs in the market is small, the expressions for: the optimal spread
(with Last Look), expected profit and cost of a round-trip trade for LAs and STs, can be
approximated to first order. Later, in Sect. 6 we employ these expressions to show the equi-
librium quantities when there are multiple venues.

Proposition 10 Asymptotic Optimal Spread with Last Look. When the proportion of LAs
trading in the market is small, the asymptotic solution of the optimal spread is given by

�∗

σ
= �̃0 + �̃1 α + o(α) , (21)

where

�̃0 = −
(1 − β)

√
1+ρ
2 φ

(
ξ̃√

2(1+ρ)

)

β 	
(
−ξ̃

)
+ (1 − β)	

(
− ξ̃√

2(1+ρ)

) , (22)

and

�̃1 = 2
B(�̃0) − �̃0 A(�̃0)

β 	
(
−ξ̃

)
+ (1 − β)	

(
− ξ̃√

2(1+ρ)

) , (23)

and A(·) and B(·) are defined in (13) and (14), respectively.

Proof See “Appendix A.7”. ��
Proposition 11 Asymptotic Cost to STs. When the proportion of LAs trading in the market
is small, the broker sets spreads to make zero net profit according to (15), and CST is as in
(19), the expected (asymptotic) costs of a round-trip trade to STs are

�̂ST = η0 σ + η1 σ α + o(α) , (24)

where

η0 = δ

σ
(1 − �ST ) , and η1 = 2 (B(�̃0) − �̃0 A(�̃0)) .
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Proof See “Appendix A.8”. ��
Proposition 12 Asymptotic Profit to LAs. When the proportion of LAs trading in the market
is small, the expected (asymptotic) profit of a round-trip trade to LAs is

�L A = γ0 σ + γ1 σ α + o(α) , (25)

where

γ0 = 2
(

B(�̃0) − �̃0 A(�̃0)
)

, γ1 = 2
(

B ′(�̃0) − A(�̃0) − �̃0 A′(�̃0)
)

,

A(·) and B(·) are as in (13) and (14) respectively, and A′(·) and B ′(·) denote derivatives
w.r.t. �̃:

A′(�̃) = −
√
1 − ρ2 φ(�̃)	

(
− ξ̃√

2(1 + ρ)

)
, (26)

and

B ′(�̃) = −
{

1 + ρ√
1 − ρ2

φ

(
− ξ̃ + (1 + ρ)�̃√

1 − ρ2

)
+ �̃ 	

(
− ξ̃ + (1 + ρ)�̃√

1 − ρ2

)}
φ(�̃)

+
√
1 + ρ

1 − ρ
φ

(
ξ̃√

2(1 + ρ)

)
φ

(
− ξ̃ + 2 �̃√

2(1 − ρ)

)
.

(27)

Proof See “Appendix A.9”. ��

6 Equilibrium: trading in multiple venues

When there is more than one venue to trade, STs will migrate to the one where the expected
losses of a round-trip trade are lowest, and LAs will migrate to the one where the expected
gains are highest. Thus, the market is in equilibrium when there are no incentives for either
type of trader to migrate to a different venue. On the other hand, brokers have no preference
for a particular venue because spreads are set so that expected profits are zero. Moreover,
recall that we assume that brokers do not pay any costs from entering/exiting a venue.

Assume there are n venues to trade and each venue chooses a rejection threshold ξi ,
i = 1, 2, . . . n. Brokers and market makers in all venues are as the one described above:
risk-neutral and quote spreads using the zero expected profit condition so that losses to LAs
are recovered from STs, i.e. in each venue spreads are set so that α �L A = (1 − α)�ST .
When traders switch between venues they incur a fixed cost denoted by c ≥ 0. This includes
customized connection costs and the costs associated with building a relationship with the
broker in the over-the-counter FX market.

Definition 13 Equilibrium Across Venues. Let c denote the fixed migration costs between
venues and ξi denote the rejection threshold of venue i . In a market with n venues, an
equilibrium (no incentives to migrate) are pairs (αi , �i ) for i = 1, 2, · · · n such that all of
the following are (simultaneously) satisfied:∣∣∣ �̂i

ST (αi , �i ) − �̂
j
ST (α j , � j )

∣∣∣ ≤ c , (28a)

and ∣∣∣ �i
L A(αi , �i ) − �

j
L A(α j , � j )

∣∣∣ ≤ c , (28b)
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for i 
= j , and

(1 − αi )�i
ST (αi ,�i ) = αi �i

L A(αi ,�i ) (28c)

for all i , where superscripts label the venue.
In addition, the population preserving relationships must be satisfied:

αi = Ni
L A

Ni
L A + Ni

ST

, (28d)

NL A =
n∑
i

N i
L A , (28e)

NST =
n∑
i

N i
ST , (28f)

and the constraints

Ni
ST , Ni

L A ≥ 0 . (28g)

In this definitionwe assume that traders decide tomigrate if the gains fromone trade exceed
the fixed migration costs. An alternative is to calculate the migration gains employing the
number of transactions that the trader expects to execute in the new venue, in which case the
left-hand side of inequalities (28a), (28b) is premultiplied by the expected number of trades.

6.1 Equilibrium across two FX trading venues

Assume there are two venues which employ rejection thresholds ξ1 and ξ2. Let NL A and NST

denote the total number of LAs and STs in the market. These traders choose which venue to
trade in and decide to migrate if they are better off in the other venue. As discussed above,
the venues are in equilibrium if the expected costs for STs and expected profits for LAs, net
of the migration cost c, are the same across both venues—so the marginal trader, whether ST
or LA, has no incentives to migrate.

To obtain the equilibrium region we proceed as follows. For each venue we find the pairs
(αi , �i ) such that STs do not have an incentive to migrate and the region where LAs do not
have an incentive to migrate. That is, we find the regions where (28a) and (28b) (together
with the population constraints and the brokers’ zero expected profit condition) both hold.
Thus, the intersection between these two regions define the equilibrium where traders do not
migrate to the other venue.

To obtain the regionswhere the two types of traders are indifferent between the two venues,
we can use the closed-form formulae derived above for the optimal spread, LA’s expected
profits and ST’s expected costs. Alternatively, if the proportion of LAs in each venue is
small, we can employ the expressions in Propositions 10, 11, and 12. Either approach will
result in approximately the same equilibrium region. There are two advantages to employing
the small α approximations: (i) computations are extremely fast, (ii) we can characterize
the equilibrium region in closed-form. For the parameters we used, there is no discernable
difference between the exact and approximate equilibrium regions, nor the optimal spreads
implied by them.

Figure 6 shows the equilibrium region for Venue 1, when migration costs are c = 0.05
(left-hand panel), and c = 0.025 (right-hand panel). The additional costs incurred by the STs
are as in (19) with δ = 0.5 |ξ |. The other parameters are: total number of LAs NL A = 200,
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Fig. 6 Equilibrium region (dark gray) in Venue 1 with ξ1 = − 3.5 and Venue 2 (not shown) has no Last Look.
Left panel migration cost is c = 0.05, and right panel c = 0.025. The other parameters are σ = 1, β = 0.8,
ρ = 0.5, and δ = 0.5 |ξ |. Red lines bound the equilibrium region for LAs, blue lines bound the equilibrium
region for STs. (Color figure online)

total number of STs NST = 800, rejection threshold in Venue 1 is fixed at ξ1 = −3.5,
and there is no Last Look in Venue 2. The equilibrium region is obtained using the small α

formulae.
In the left panel of the figure the equilibrium region (dark gray) clearly shows that both

venues can co-exist but the number of traders that each venue supports can vary from very
few traders to nearly all traders. At all points in this equilibrium, neither STs nor LAs find
it optimal to migrate to the other venue. The region between the blue lines (which includes
the dark gray region) is where STs are indifferent between the two venues. Similarly, the
region between the red lines is where LAs are indifferent between the two venues. Here we
assume that venues can survive with little order flow or that there is no value to brokers from
observing flow. In more realistic scenarios, where brokers impute value to order flow (so
their profit function is different from the one assumed above), these results will very likely
differ—see discussion leading to Eq. (20).

If the market is at a point outside the equilibrium region there are incentives to flow
between the two venues until it is suboptimal for any type of trader to migrate. The path that
traders take from disequilibrium to an equilibrium depends on how quickly they spot, and can
act on, better opportunities. Note that as soon as one trader changes venue, the proportion of
LAs in both venues changes and brokers must adjust the quoted spreads to break-even. These
changes in both quoted spreads and proportion of LAs, affect the profitability of round-trip
trades for LAs and the costs borne by STs, so both types reassess whether they should remain
in their current venue or migrate to the other one.

Another interesting feature to observe is that the equilibrium region shrinks as migration
costs to trades become smaller. In the right panel of the figure the migration cost is c = 0.025
and we observe that the market cannot reach an equilibrium. Clearly, in markets where
migration is costly there are less incentives for traders to switch venues. Similarly, in markets
where traders can easily switch venueswill showmore traffic of traders between thembecause
traders can exploit any discrepancy, however small, between the costs and profits of trading
in the two venues.

6.2 Analytical characterization of equilibrium region

When the asymptotic forms of the value to LAs and costs to STs provided in Propositions 11
and 12 are used, we can characterize the equilibrium region for the two-venue case in a
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compact form. Both constraints (28a) and (28b) reduce to the same form and only differ in
the coefficients that appear. Hence, we focus only on rewriting (28a) subject to the condition
(28c) and the population preserving constraints.

First, using Proposition 11, (28a) subject to the broker setting the spread to make zero
expected profits, i.e. that (28c) is satisfied, reduces to

∣∣H0 + η11 α1 − η21 α2
∣∣ ≤ c ,

where H0 = η10 − η20. Imposing the population constraint further implies that

∣∣∣∣H0 + η11
x

x + y
− η21

M − x

N − (x + y)

∣∣∣∣ ≤ c ,

where x and y represent the number of LAs and STs, respectively, in Venue 1, N is total
population size, M is the total number of LAs, and the constant H0 = η10−η20. The population
constraints also impose the conditions 0 ≤ x ≤ M and 0 ≤ x + y ≤ N which implies that
the numerator and denominator of each of the fractions appearing above are all non-negative.
We can rewrite this inequality as the following pair of inequalities

H0 + η11
x

x + y
− η21

M − x

N − (x + y)
� ±c .

Multiplying by (x + y)(N − (x + y)), which is positive due to the population constraints,
we obtain, after some tedious algebra,

(η21 − η11 − ζ±) x2 + (η21 − η11 − 2 ζ±) x y − ζ± y2

+ ((ζ± + η11) N − η21 M) x + (ζ± N − η21 M) y � 0 ,
(29)

where the constants

ζ± = H0 ∓ c .

If the inequalities above are replaced by equality, then (29) represent conic sections. A
standard result shows that, after a rotation and a translation, there are three cases (when
non-degenerate). Letting ω± = B2 − 4 A C , where A, B and C are the coefficients of x2, xy
and y2, respectively, then if

1. ω± < 0, the conic section is an ellipse,
2. ω± > 0, the conic section is a hyperbola, and
3. ω± = 0, the conic section is a parabola.

From (29), we see that

ω± = (
η21 − η11 − 2 ζ±

)2 + 4
(
η21 − η11 − ζ±

)
ζ± = (

η21 − η11
)2 ≥ 0 ,

hence the conics are rotated and translated hyperbolae or parabolas. For example, parabolas
appear when η21 = η11—one such case is when the two venues are identical. Moreover, by
direct substitution into (29), we see that the hyperbolae go through the origin (x, y) = 0 as
well as the corner (x, y) = (M, N )—i.e. either there are no traders in Venue 1 (and no flow
into that venue), or all traders are in Venue 1 (and there is no flow out of that venue).
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6.3 Path to equilibrium between two venues

Here we illustrate how traders migrate between two venues until they reach an equilibrium.
We use the closed-form formulae derived above to obtain the equilibrium pairs (α, �). We
assume that there are two venueswhere the proportion of LAs and quoted spreads are such that
in each individual venue the broker makes zero net expected profits from trading, however,
there may be incentives for traders to migrate. We assume that traders, whether an LA or an
ST,move between venues at a rate proportional to the gain in expected value, after accounting
for switching costs, they receive from making the migration only if these gains are positive.
To this end, let nL A(t) and nST (t) denote the number of LAs and STs in Venue 1, and let
NL A, NST , and N denote the total number of LAs, STs, and total participants in the market,
we assume the dynamic flow

dnL A

dt
= κL A

σ

{(
�1

L A

(
nL A

nST +nL A

)
− �2

L A

(
NL A−nL A

N−(nST +nL A)

)
− cL A

)
+1{nL A<NL A}

−
(
�2

L A

(
NL A−nL A

N−(nST +nL A)

)
− �1

L A

(
nL A

nST +nL A

)
− cL A

)
+1{nL A>0}

}
,

(30a)

dnST

dt
= κST

σ

{(
�̂1

ST

(
nL A

nST +nL A

)
− �̂2

ST

(
NL A−nL A

N−(nST +nL A)

)
− cST

)
+1{nST <NST }

−
(
�̂2

ST

(
NL A−nL A

N−(nST +nL A)

)
− �̂1

ST

(
nL A

nST +nL A

)
− cST

)
+1{nST <0}

}
,

(30b)

where we have suppressed the explicit dependence on t for compactness, the superscripts
label the venues, recall that (x)+ = max(x, 0), κL A, κST > 0 are constants which transform
the migration gains into rates, and cL A, cST ≥ 0 are the costs of switching from one venue
to the other.

Throughout we assume that all market makers know exactly the parameters in the model
and react immediately to the flow of traders, however, in reality this information would be
corrupted by noise. To account for this, we could add in Brownian motion components to
(30), which changes the ordinary differential equations (ODEs) into stochastic differential
equations and no equilibria would exist, instead the flow would approach the noise free
equilibrium regions, but fluctuate around them.

The above equations define a system of coupled non-linear ODEs and we cannot hope to
solve them in general. There are, however, a few simple features of this dynamic flow that
we can glean. In the equilibrium region, the right-hand sides of (30) are both zero and there
is no migration between venues. In the region where LAs have no incentive to migrate, but
the STs do, (e.g., the region between the red lines in Fig. 6), then there is flow in only nST . In
the region where STs have no incentive to migrate, but the LAs do, (e.g., the region between
the blue lines in Fig. 6), then there is flow in only nL A.

To illustrate how the market reaches an equilibrium we first look at an example where
there are two venues that start at a particular point outside the equilibrium region and traders
migrate between venues until an equilibrium point is reached. After this example we examine
the general case by considering all possible starting points and employ the coupled system
of ODEs to show the path that traders take until an equilibrium is reached.

Assume that Venue 1 fixes a rejection threshold, Venue 2 does not have the Last Look
option, and each venue starts with a given number of LAs and STs.6 In our first example
migration between venues is sequential: at every step, one trader of each type may migrate to

6 Traders who know σ , β, ξ , and ρ can infer the proportions of LAs, in each venue, from posted spreads.
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Table 1 Equilibrium across
venues, fixed rejection thresholds
and varying spreads, β = 0.8,
σ = 1, ρ = 0.5, δ = 0.5 |ξ |,
c = 0.05

α Initial Final

25.0% 15.0% 21.1% 19.0%

ξ1 = − 4, ξ2 = − ∞ (no Last Look)

N 500 500 469 531

NL A 125 75 99 101

NST 375 425 370 430

�∗ 0.19 0.12 0.16 0.15

�̂ST 0.20 0.12 0.17 0.15

�L A 0.58 0.68 0.61 0.65

α Initial Final

25.0% 15.0% 18.6% 21.1%

ξ1 = − 3.5, ξ2 = −∞ (no Last Look)

N 500 500 456 544

NL A 125 75 85 115

NST 375 425 371 429

�∗ 0.18 0.12 0.13 0.17

�̂ST 0.19 0.12 0.14 0.17

�L A 0.55 0.68 0.59 0.64

the other venue. Brokers and traders can always observe the number of LAs and STs trading
in the venue. Thus, immediately after migration, brokers in both venues calculate the new
break-even spreads, traders also calculate the new expected costs and profits of round-trip
trades and reassess whether they should stay or migrate, and so on. This is repeated until
there are no incentives to migrate.

Moreover, at the beginning, in Venue 1 there are N 1
L A = 125 and N 1

ST = 375, so α1 =
25%. And the starting point in Venue 2 is N 2

L A = 75 and N 2
ST = 425 so α2 = 15%. Recall

that Venue 2 does not have the Last Look option. Table 1 shows the starting and equilibrium
configuration for two examples: in the left-hand panel Venue 1 employs a rejection threshold
ξ1 = −4 and in the right-hand panel it employs a stricter rejection threshold of ξ1 = − 3.5.

The two panels in the table show how the market reaches an equilibrium where a venue
without Last Look coexists with one where brokers have the right to reject trades. With the
assumption that only one trader of each type may migrate at each time-step, we see that
equilibrium is reached where the proportion of LAs in each venue is close to 20%, despite
the fact that the starting points were 25% and 15%. We observe that in the left-hand side
panel, the lowest expected cost of a round-trip for an ST is in the venuewithout Last Look, but
in the right-hand panel STs are better off in the venue with the Last Look option. Moreover,
it is also interesting to observe the equilibrium spreads: in the left panel, the venue without
Last Look quotes a tighter spread than the venue with Last Look—whereas in the right panel
we see that the venue with Last Look quotes a tighter spread than the venue without Last
Look.

Now we examine the general case where we consider all possible starting points in each
venue and use the migration dynamics described by (30) to show the path to equilibrium.
LAs are faster than other market participants, so they migrate between venues at a faster rate,
i.e. κL A > κST , and in particular we use κL A = 40, κST = 20. Figure 7 shows the migration
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Fig. 7 Equilibrium region (dark gray) in Venue 1 with ξ1 = − 3.5 and Venue 2 (not shown) without Last
Look, and c = 0.05 and 0.025 in the left and right panels. The other parameters are σ = 1, β = 0.8, ρ = 0.5,
κL A = 40, κST = 20, and δ = 0.5 |ξ |. Black lines indicate the migration of traders. Blue arrows indicate the
direction of the migration. Red lines bound the equilibrium region for LAs, blue lines bound the equilibrium
region for STs. (Color figure online)

paths seen in Venue 1 when migration costs are c = 0.05 (left panel) and c = 0.025 (right
panel). Figure 7 is the same as Fig. 6 but it also shows, in black lines, the migration path of
traders, and the blue arrows show the direction of the migration. Moreover, recall that the
region between red lines is where the LAs do not have incentives to migrate to the other
venue, and the region between blue lines is where the STs do not have incentives to migrate.

In the left panel, where migration costs are c = 0.05, we observe that when the starting
point is in the ‘lower triangular’ white area, both STs and LAs have incentives to migrate to
Venue 2 (they are better off in Venue 2 which has no Last Look) and equilibrium is eventually
reached. In contrast, for any starting point in the ‘upper triangular’ white area, the equilibrium
point is where Venue 1 attracts all the traders in the market—the Venue without Last Look
loses all flow to Venue 1.

The picture in the right-hand panel shows that when migration costs are low, so that there
is no equilibrium region as already discussed above, traders migrate to two corner solutions:
all traders are inVenue 1 or are inVenue 2, i.e. only one FX venue survives in themarketplace.
Note that only when the starting point is in the lower triangular region and the number of STs
is small, do we see that all traders exit Venue 1 and prefer to trade in Venue 2 without Last
Look. In all other cases, migration occurs until all traders leave Venue 2 in favor of Venue 1
with the Last Look option.

Moreover, themigration flows shown in the paths that start in the lower triangular area, and
that end up where all traders are in Venue 1, follow an interesting pattern. First we observe
that LAs exit Venue 1 and there is not much change in the population of STs. This pattern is
seen until the market reaches the region where the STs are in equilibrium (between the blue
lines) and at that point STs stop flowing and LAs continue flowing out of Venue 1. Then, the
flow reaches the region between the two equilibrium regions. In this region, LAs flow out of
Venue 1, while STs flow into Venue 1, causing the flow to get closer to the region where LAs
are in equilibrium (between the red lines). Once the flow is in the region where LAs are in
equilibrium, they do not flow out of Venue 1 anymore, but STs continue flowing into Venue
1. Then the flow exits the LA equilibrium region and both STs and LAs flow into Venue
1 at a rate which prevents the flow from entering the LA equilibrium region. The reason is
that there is migration pressure from STs into Venue 1 within the LA equilibrium region.
Interestingly, all these paths lead to an equilibrium where the venue without Last Look loses
all its traders.
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Recall that in our model α may also be interpreted as the ratio of latency arbitrage trades to
all trades in the market. Thus, the results above may be interpreted as spreads and equilibria
across venues attracting trades. For example, an ST could require different immediacy for
her trades (which would be reflected in the effective cost component CST for each trade) and
this determines on which venue the ST executes the trade. Trades that require guaranteed
execution have a high CST , so are executed on venues with lenient or no rejection threshold.
Finally, although we do not model the flow of market makers between venues, in our set-up
brokers will cease to provide liquidity in venues that disappear and will make markets in
other venues. Similarly, venues that do not cease to exist but lose order flow, will also see
brokers switch to venues that gained order flow.

7 Conclusions

We show that risk-neutral market makers or brokers quote tighter spreads to the market when
they reject loss-leading trades using the Last Look option. The Last Look option helps market
makers to mitigate their losses to latency arbitrageurs and also reduces the wealth transfer
between slow traders and those who arbitrage the market by trading on stale quotes. In our
setup the market maker sets spreads so that she makes zero expected profits.

The Last Look option consists of a time frame and a rejection threshold used by the broker
to reject trades ex-post. Since the market maker cannot distinguish the type of trader behind
the trades, latency arbitrageur or slow trader, the Last Look option is enforced across all
trades. Our results show that brokers are indifferent between different rejection thresholds
because they set optimal spreads so that her losses to latency arbitrageurs are covered by the
other traders in the market.

We show how effective is the Last Look option as a function of the rejection threshold
which determines the market maker’s tolerance to losses on a trade-by-trade basis. When the
venue sets a very strict threshold (i.e. any trade that yields a modest profit to the traders is
cancelled by the broker), slow traders end up being penalized too often. On the other hand, if
the rejection threshold is set so that only tradeswhich result in large losses to themarketmaker
are rejected, the Last Look option becomes very effective at singling out latency arbitrageurs
given the fact that the trade is rejected.

At first sight it seems that a ‘relaxed’ threshold is better because the probability that
a rejected trade came from a latency arbitrageur is higher. The flip side, however, is that
rejection rarely happens, hence losses to latency arbitrage are high, and this results in higher
quoted spreads.

Moreover, since the risk-neutral market maker determines the spread so that expected
profits are zero, there is a one-to-one mapping between optimal spreads and rejection thresh-
olds which are set by the venue. Strict thresholds lead to tight spreads, and lenient thresholds
lead to large spreads. The extreme case is when the threshold is so lenient that no trades are
rejected which is equivalent to trading in a venue without Last Look. Therefore, when there is
only one FX venue, the market maker is indifferent between different levels of the threshold.

Slow traders, on the other hand, are not indifferent between rejection thresholds. Slow
traders benefit from the Last Look option because market makers cap their losses to latency
arbitrageurs, but slow traders’ most profitable trades are also cancelled. Thus, when slow
traders account for forgone earnings (due to rejected trades), immediacy costs, and the costs
from returning to themarket to complete the trade, there is an optimal threshold thatminimizes
their costs of trading in the venue with Last Look. If there is only one FX venue, this optimal
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threshold could be the extreme where market makers never reject trades. In other words,
depending on: the proportion of latency arbitrageurs acting in the market, and on the latency
of the slow traders, slow traders will seek or avoid venues with Last Look.

When there is more than one FX venue, market makers still post spreads that ensure that
losses to LAs are recovered from STs. Competition across venues, however, incentivizes
traders to migrate to those where they are better off. We show that there is an equilibrium
regionwhere there are no incentives tomigrate. If themarket starts outside this region, traders
will migrate until an equilibrium is reached. This equilibrium could be onewhere both venues
coexist or one where only one venue survives.

Interestingly, we show that when there are two venues, one with and one without Last
Look, the equilibrium reached by themarket is chiefly dependent on the proportion of latency
arbitrageurs trading in eachmarket.When the noLast Look venue starts with a low proportion
of latency arbitrageurs (i.e. a high proportion of latency arbitrageurs in the Last Look venue)
the market reaches an equilibrium where both venues coexist. If the market’s starting point,
however, is one where the venue with Last Look has a low proportion of latency arbitrageurs,
the market reaches an equilibrium where the venue enforcing Last Look attracts all order
flow, i.e. only the Last Look venue survives.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A Proof of results

Appendix A.1 Proof of Proposition 1

The result follows from a straightforward computation of the expectation:

E0
[
(P1 − (P0 + �))+

] =
∫ ∞

−∞
(σ z − �)1{σ z−�>0}

e− 1
2 z2

√
2π

dz

= −σ
e− 1

2 z2

√
2π

∣∣∣∣∣
∞

�
σ

− �	

(
�

σ

)

= σ φ

(
�

σ

)
− �	

(
�

σ

)
.

��
Appendix A.2 Proof of Proposition 3

It is easy to check that f (x) = φ (x) − x 	(−x) is decreasing and convex on x ∈ [0,+∞).
In particular, we have

f ′(x) = −	(−x) ≤ 0 , f ′′(x) = φ (x) > 0 , ∀x ≥ 0 .

Moreover, f (0) =
√

2
π
, f ′(0) = − 1

2 , f ′′(0) > 0 and limx→∞ f ′(x) = 0. Let g denote

the line g(x) = 1−α
α

x . Clearly, g(0) < f (0) and since f is convex, we must have f ′(x) ≤
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limx→+∞ f ′(x) = 0. Together with the fact that f ′(0) = − 1
2 and f ′′(0) > 0, we see that

there must exist a single intersection point of f and g on x ∈ [0,+∞) if and only if the slope
of the line g is greater than the asymptotic slope of f , i.e. as long as the slope is positive.
This occurs if and only if α ∈ [0, 1]. ��
Appendix A.3 Proof of Proposition 4

First, rearrange the root of (5) to write

2α
(
φ

(
x∗(α)

) − x∗(α)	
(−x∗(α)

)) = (1 − α) x∗(α) ,

and note the explicit dependence on α. Clearly, in the limit α ↓ 0, x∗(α) ↓ 0. With this
observation, next, write

x∗(α) = c α + o(α) ,

and aim to find the constant c. Inserting this expansion into the previous expression and
expanding in α we find that

2α
[(

φ(0) + c α φ′(0)
) − c α {	(0) − c α φ(0)}] = (1 − α) c α + o(α) ,

so that c = 2φ(0) =
√

2
π
and the result follows. ��

Appendix A.4 Computation of (8)

To derive this result, first note that due to symmetry both expectations are equal and therefore,

�ST | stale = −E
[
(P1 − P0 − �) 1{P0−P2>ξ}

]
.

Next, separate the two terms in the expectation into twopieces: A=E
[
(P1 − P0) 1{P0−P2>ξ}

]
and B = E

[
�1{P0−P2>ξ}

]
.

The computation of B is straightforward. Since

P0 − P2 = σ(Z1 + Z2)
d= σ

(
Z1 + ρ Z1 +

√
1 − ρ2 Z⊥

1

)
,

where Z⊥
1 is a standard normal independent of Z1. Therefore, P0 − P2 is normal with mean

0 and standard deviation
√

(1 + ρ)2 + (1 − ρ2) = √
2(1 + ρ), and so

B = �	

(
ξ√

2(1 + ρ)

)
.

Next, we need the following expectation to compute A:

E
[
Z1 1{Z1+Z2>c}

] = E

[
Z1 1

{
(1+ρ) Z1+

√
1−ρ2 Z⊥

1 >c
}
]

=
∫ ∞

−∞

∫ ∞

a−b ζ1

ζ1 e− 1
2 ζ 21 − 1

2 ζ 22
dζ2√
2π

dζ1√
2π

,

where c is an arbitrary constant, a = c√
1−ρ2

and b = 1−ρ√
1−ρ2

. Continuing the computation,

E
[
Z1 1{Z1+Z2>c}

] =
∫ ∞

−∞
ζ1 	(b ζ1 − a) e− 1

2 ζ 21
dζ1√
2π

= b√
2π

∫ ∞

−∞
e− 1

2 ζ 21 − 1
2 (b ζ1−a)2 dζ1√

2π
(integration by parts)
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= b√
2π

e
− 1

2
a2

1+b2

∫ ∞

−∞
e
− 1+b2

2

(
ζ1− a b

1+b2

)2 dζ1√
2π

(completing squares)

= b√
1 + b2

φ

(
a2

1 + b2

)

=
√
1 − ρ

2
φ

(
c√

2(1 − ρ)

)
. (inserting a and b)

Thus, we use the above results to obtain

A = E

[
σ Z1 1{Z1+Z2>

ξ
σ

}
]

,

and the previous result for B, and we arrive at (8).

Appendix A.5 Proof of Proposition 6

By conditioning on whether the trader receives the update or not, we have

P[Pe − P2 > ξ ] = β P
[
Pe − P2 > ξ | update] + (1 − β)P [Pe − P2 > ξ | stale] (A.1)

= β P [P1 − P2 > ξ ] + (1 − β)P [P0 − P2 > ξ ] , (A.2)

and the result follows from computing these unconditional probabilities.

Appendix A.6 Proof of Proposition 7

To compute this we derive each term separately. Firstly,

�L A | buy =E
[

(P1 − P0 − �)+ 1{ P0−P2>ξ}
]

=E
[

(P1 − P0)1{ P1−P0>� , P0−P2>ξ }
]

(A.3)

− � P [ P1 − P0 > �, P0 − P2 > ξ ] . (A.4)

Let σ B denote the first term above (A.3) and � A denote the second term above (A.4).
First, focus on computing A, so we have

A = P [ P1 − P0 > �, P0 − P2 > ξ ]

= P

[
Z1 > �̃ , Z1 + Z2 < −ξ̃

]

= P

[
Z1 > �̃ ,

(1 + ρ) Z1 + √
1 − ρ2 Z⊥

1√
2(1 + ρ)

< − ξ̃√
2(1 + ρ)

]

= P

[
Z1 > �̃ , Z3 < − ξ̃√

2(1 + ρ)

]

= P

[
Z3 < − ξ̃√

2(1 + ρ)

]
− P

[
Z1 < �̃ , Z3 < − ξ̃√

2(1 + ρ)

]
,

where Z⊥
1 is a standard normal r.v. independent of Z1, and Z3 is standard normal r.v. cor-

related with Z1 with correlation
√

(1 + ρ)/2. The expression for A in (13) now follows
immediately.

123



28 Math Finan Econ (2019) 13:1–30

Next, for B we have

B =E

[
Z1 1{Z1>�̃ , Z2<−ξ̃}

]

=E

[
Z1 1

{
Z1>�̃ , (1+ρ)Z1+

√
1−ρ2Z⊥

1 <−ξ̃
}
]

=
∫ ∞

�̃

ζ 	 (a − b ζ ) e− 1
2 ζ 2 dζ√

2π
,

where a = −ξ̃ /
√
1 − ρ2 and b = (1 + ρ)/

√
1 − ρ2. Continuing the computation,

B = − b√
2π

∫ ∞

�̃

e− 1
2 (a−b ζ )2 e− 1

2 ζ 2 dζ√
2π

+ φ(�̃) 	(a − b�̃) (integration by parts)

= − b√
2π

e
− 1

2
a2

1+b2

∫ ∞

�̃

e
− 1+b2

2 (ζ− a b
1+b2

)2 dζ√
2π

+ φ(�̃) 	(a − b�̃) (completing squares)

= − b√
1 + b2

φ

(
a2

1 + b2

)
	

(
a b√
1 + b2

− �̃
√
1 + b2

)
+ φ(�̃) 	(a − b�̃) .

The expression for B in (14) follows by substituting the expression for a and b in the above.
��

Appendix A.7 Proof of Proposition 10

First, from the expression for �ST in (9) we have

�ST (�̃) = σ
(

aST + �̃ bST

)
, (A.5)

where

aST = (1 − β)

√
1+ρ
2 φ

(
1√

2(1+ρ)

ξ
σ

)
,

and

bST = β 	
(
− ξ

σ

)
+ (1 − β)	

(
− 1√

2(1+ρ)

ξ
σ

)
,

and �̃ = �/σ .
Next, from (12),

�L A(�̃) = 2 (B(�̃) − A(�̃) �̃) σ ,

where

A(�̃) = aL A − 	ρ̃

(
�̃ , ξ̂

)
,

with the constants

aL A = 	
(
− ξ̃√

2(1+ρ)

)
, ξ̂ = − ξ̃√

2(1+ρ)
, ρ̃ =

√
1+ρ
2 ,

and

B(�̃) = φ(�̃)	
(
ξ̌ − ρ̌ �̃

)
− bL A 	

(
ξ̆ − ρ̆ �̃

)
,

with constants

ξ̌ = − ξ̃√
1−ρ2

, ρ̌ = 1+ρ√
1−ρ2

, bL A = ρ̃ φ
(

ξ̃√
2(1+ρ)

)
, ξ̆ = − ξ̃√

2(1−ρ)
, ρ̆ = 2√

2(1−ρ)
.
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The optimal spread (relative to volatility) is defined as the solution to

(1 − α)�ST (�̃∗) − α �L A(�̃∗) = 0 ,

and writing �̃∗ = �̃0 + �̃1 α + o(α), we need to solve (keeping terms to o(α)):

(1 − α)
(
�ST (�̃0) + α �̃1 �′

ST (�̃0)
)

− α �L A(�̃0) = o(α) ,

and collecting terms of equal orders we have

�ST (�̃0) + α
{
�̃1 �′

ST (�̃0) − �ST (�̃0) − �L A(�0)
}

= o(α) .

Solving first for �̃0 by setting the first term above to zero and using (A.5), we arrive at
�̃0 = aST

bST
and (22) follows.

Hence, the above equation becomes

α
{
�̃1 �′

ST (�̃0) + �L A(�0)
}

= o(α) .

Finally, since �′
ST (�̃) = bST , setting the terms in the braces to zero leads to �̃1 = �L A(�̃0)

bST
and (23) follows immediately. ��
Appendix A.8 Proof of Proposition 11

From the proof of Proposition 10 in Appendix A.7, and since �ST is independent of α

and therefore �, when the broker sets spreads at their optimal level according to (15), we
immediately have that

�̂ST =�ST (�̃∗) + δ (1 − �ST )

= σ(aST + bST (�̃0 + α �̃1)) + δ (1 − �ST ) + o(α)

= σ α bST �̃1 + δ (1 − �ST ) + o(α) ,

and using �̃1 = �L A(�̃0)
bST

, the proof is complete. ��
Appendix A.9 Proof of Proposition 12

Using the same notation as in the proof of Proposition 10 in “Appendix A.7”, we have

�L A(�̃) = 2
(

B(�̃) − A(�̃) �̃
)

σ ,

where

A(�̃) = aL A − 	ρ̃

(
�̃ , ξ̂

)
,

and

B(�̃) = φ(�̃)	
(
ξ̌ − ρ̌ �̃

)
− bL A 	

(
ξ̆ − ρ̆ �̃

)
.

When the broker sets spreads at their optimal level so that her expected profit and loss is
zero, we have

1

2σ
�L A(�̃∗) =

{
B(�̃0 + α �̃1) − A(�̃0 + α �̃1) (�̃0 + α �̃1)

}
+ o(α)

=
{

B(�̃0) − A(�̃0) �̃0

}
+

{
B ′(�̃0) − A(�̃0) − A′(�̃0) �̃0

}
α + o(α) .
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Next, by direct computations

B ′(x) = −x φ(x)	
(
ξ̌ − ρ̌ x

)
− ρ̌ φ(x) φ

(
ξ̌ − ρ̌x

)
+ ρ̆ bL A 	

(
ξ̆ − ρ̆ x

)
,

and

A′(x) = −∂1	ρ̃

(
�̃, ξ̂

)
.

Further, standard computations show that

∂1	c(x, y) =
∫ y

−∞
φc(x, y) dx dy

=
∫ y

−∞
exp

{
− 1

2(1−c2)

(
x2 − 2c x u + u2)} dx dy

2π

= 1√
2π

e− 1
2 x2

∫ y−c x√
1−c2

−∞
e− 1

2 z2 dz√
2π

=
√
1 − c2 φ(x)	

(
y − c x√
1 − ρ2

)
.

Inserting the explicit expressions for the various constants completes the proof. ��
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