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Abstract
Purpose This study aims to adapt and evaluate the performance of different state-of-the-art deep learning object detection
methods to automatically identify esophageal adenocarcinoma (EAC) regions from high-definition white light endoscopy
(HD-WLE) images.
Method Several state-of-the-art object detection methods using Convolutional Neural Networks (CNNs) were adapted to
automatically detect abnormal regions in the esophagus HD-WLE images, utilizing VGG’16 as the backbone architecture for
feature extraction. Those methods are Regional-based Convolutional Neural Network (R-CNN), Fast R-CNN, Faster R-CNN
and Single-Shot Multibox Detector (SSD). For the evaluation of the different methods, 100 images from 39 patients that have
been manually annotated by five experienced clinicians as ground truth have been tested.
Results Experimental results illustrate that the SSD and Faster R-CNN networks show promising results, and the SSD
outperforms other methods achieving a sensitivity of 0.96, specificity of 0.92 and F-measure of 0.94. Additionally, the
Average Recall Rate of the Faster R-CNN in locating the EAC region accurately is 0.83.
Conclusion In this paper, recent deep learning object detection methods are adapted to detect esophageal abnormalities
automatically. The evaluation of the methods proved its ability to locate abnormal regions in the esophagus from endoscopic
images. The automatic detection is a crucial step that may help early detection and treatment of EAC and also can improve
automatic tumor segmentation to monitor its growth and treatment outcome.

Keywords Deep learning · Esophageal adenocarcinoma detection · Barrett’s esophagus · HD-WLE

Introduction

Amajor health problem that has been emerging is esophageal
adenocarcinoma (EAC) which is considered the early stage
of esophageal cancer. Studies show that esophageal cancer
patients hold a 5-year survival rate of only 18.8% [1]. The pri-
mary premalignant cause of reaching esophagealmalignancy
is Barrett’s esophagus (BE) [2,3], where the development of
healthy cells in the esophagus lining into columnar mucosa
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through metaplastic change leads to EAC [4]. The early
detection and treatment of EAC may help in increasing the
survival chance of the patient [5].

The process of detection is done through endoscopic
examination, high-definition white light endoscopy (HD-
WLE) is the primary tool used [6], and the cell deformation
stages are confirmed by taking biopsy samples from the
surface of the esophagus lining [7]. The appearance and
properties of the BE or EAC have challenges in the detec-
tion process as it can be located randomly throughout the
esophagus tube [8]. Also, the accurate detection requires
a physician with significant experience and they are often
overlooked during endoscopy surveillance [9]. In addition to
that, patients are required to have regular follow-ups through
endoscopy examination to control the development of abnor-
malities into later stages. With the increase in the number
of patients, computer-aided detection (CAD) systems have
grabbed attention more frequently. There exists an amount
of research available in the literature for automatic detec-
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tion, segmentation and classification that employs several
endoscopies such as white light endoscopy (WLE), nar-
row band imaging (NBI), volumetric laser endomicroscopy
(VLE), confocal laser endomicroscopy (CLE) and chro-
moendoscopy; these methods are summarized and discussed
in [10,11]. In the next section, an overview of the pre-
vious studies on EAC detection from HD-WLE will be
discussed.

Recently, deep learning (DL) has been tremendously
useful in a wide range of different applications, such as com-
puter vision, natural language processing, medical imaging
analysis and much more [12]. Deep learning, specifically,
Convolutional Neural Networks (CNNs), has become a con-
ventional technique in medical image analysis (detection,
classification, segmentation, etc.) [13]. In this work, we take
advantage of recent development in object detectionmethods
that utilize CNNs to locate EAC abnormalities in esophagus
endoscopic images by employing the state-of-the-art CNN
methods and evaluating them on our dataset. To the best of
our knowledge, no work has been addressed before to com-
prehensively assess the performance of different CNN-based
detection methods for detecting tumors in esophageal endo-
scopic images.

The rest of the paper is organized as follows: the sec-
ond section represents the related work of EAC detection
from HD-WLE images. In the third section the materials and
methods are discussed, where a brief description of state-of-
the-art deep learning object detection methods is presented,
and the dataset used is described, while the experimental
results are demonstrated in the fourth section. Finally, the
evaluated results are discussed in the fifth section and con-
cluded in the sixth section.

Related work

Different studies have been conducted in the literature that
focused on the detection of BE and EAC using several
endoscopic tools. These methods are discussed in [10,11].
In this section, we will only discuss previous methods
that address the detection of EAC abnormalities using the
same HD-WLE images dataset that we used in our evalua-
tion.

An evaluation of different texture features extracted from
HD-WLE Barrett’s esophagus images was proposed by Ses-
tio et al. [14] and Sommen [15]. This study extracted the
following features: texture spectrum, histogram of oriented
gradients (HOG), local binary pattern (LBP), Gray Level
Co-occurrence Matrix (GLCM), fourier feature, dominant
neighbor structure (DNS) and gabor features to compare
between them on the effect of EAC detection. As a pre-
processing phase, the irrelevant textures tiles have been
discarded before applying the classifier. Additionally, the

principal component analysis (PCA) was used for reduc-
ing the features dimension, and they were classified using
the support vector machine (SVM). After testing different
combinations, this comparison concluded that the merge
between gabor and color features achieved the best results
compared to other combination of extracted features achiev-
ing an overall accuracy of 96.48%. Based on the con-
clusion in [14,15], Sommen et al. [9] proposed a CAD
system to detect and annotate EAC regions in HD-WLE.
Using a Leave-One-Patient-Out Cross-Validation (LOPO-
CV) approach the experiments had an 85.7% accuracy
compared to the annotation of the specialist with a recall
of 0.95 and precision of 0.75 using the SVM classifier on
the extracted gabor and color features. More tests were
conducted in [16] with the same model on a more sub-
stantial dataset that resulted in a sensitivity of 0.86 and a
specificity of 0.87 when using SVM and 0.90 and 0.75 for
the precision when classified using the Random forest in
[17].

Souza Jr. et al. [18] proposed an investigation of the fea-
sibility of the SVM to classify lesions in Barrett’s esophagus
based on Speed-Up Robust Features (SURF) descriptors.
Two experiments were carried out by extracting the SURF
features from the full image and another from the EAC
ground truth regions annotated by experts. The results based
on full images analysis showed a sensitivity of 0.77 and speci-
ficity of 0.82, while the abnormal region-based approach
has a sensitivity of 0.89 and specificity of 0.95. These
results were analyzed based on the LOPO-CV approach and
SVM classifier. Later on, Souza Jr. et al. [19] proposed an
Optimum-Path Forest (OPF) classifier to identify BE and
adenocarcinoma HD-WLE images. Features were extracted
from the images using the Scale-Invariant Feature Transform
(SIFT) and the SURF to design a bag of visual words (BoW)
to be an input for the OPF and SVM classifiers. Results
showed that the OPF outperformed the SVM with sensitiv-
ity of 73.2% (SURF)–73.5% (SIFT), specificity of 78.2%
(SURF)–80.6% (SIFT) and accuracy of 73.8% (SURF)–
73.2% (SIFT).

Mendel et al. [20] studied the analysis of BE using CNN
to classify patches in an HD-WLE image into cancerous and
non-cancerous. Regarding the experiments, the image was
first divided into non-overlapping 224 × 224 patches and
sampled as cancerous and non-cancerous based on a certain
threshold t. Each patch has an output probability that was
compared to the value t to decide whether it is a cancer-
ous region or not. The deep residual network (ResNet) [21]
was used as the deep learning method for feature extraction
and classification from each patch. After testing the perfor-
mance of classification at seven different values for threshold
t, the best performance was achieved at t = 0.8 resulting in
a sensitivity of 0.94, specificity of 0.88 and F-measure of
0.91.
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Fig. 1 General architecture of the R-CNN. The selective search algorithm is firstly applied to find abnormal candidate regions. The SVM is then
used to classify the class based on the feature map from the CNN applied to candidate regions, and the linear regression is used to adjust the
bounding box location

Materials andmethods

Traditional object detection methods usually rely on hand-
crafted features by studying the performance of extract-
ing different features and applying a proposed classifica-
tion/search method [22]. Deep learning, especially CNNs,
has proved its efficiency in various fields such as detection,
classification and segmentation [13,23–25]. There exist vari-
ous state-of-the-art object detection methods that use deep
learning. In this paper, we adopt the following methods
Regional-based Convolutional Neural Network (R-CNN),
Fast R-CNN, Faster R-CNN and Single-Shot Multibox
Detector (SSD) to detect EAC abnormalities. Each of these
methods is explained briefly in the following subsection.
Additionally, the dataset utilized in the current evaluation
is described in details.

Object detection CNN-basedmethods

Regional-based Convolutional Neural Network (R-CNN):

Girshick et al. [26] first proposed a Regional-based Convo-
lutional Neural Network (R-CNN) as a leading framework
for general object detection method using deep learning. The
R-CNN method is composed of three main steps as shown
in Fig. 1. First, the input image is scanned to generate over
2000 region proposals that might contain objects based on
a selective search algorithm [27]. The goal of the selective
search algorithm is to provide several candidate regions that
belong to an object. It starts by generating an initial sub-
segmentation to find a small set of independent class objects.
Then it keeps repeating combining the similar regions into
larger ones using the greedy algorithm to find the most simi-
lar ones. Finally, it outputs candidate regions called proposals

that contain objects. After that, a CNN is run over each of
the proposal to extract features from this region. Finally, the
extracted features from the previous step are fed into an SVM
classifier to classify this region into a suspected object and
a Linear regressor is used to refine the bounding box if the
object exists. Themethodmerged between the original region
proposal methods with CNNs, but it was considered slow for
real-time processing and computationally expensive in the
training process.

Fast R-CNN

To overcome the R-CNN drawbacks, Girshick proposed the
Fast R-CNN [28] through two main modifications. Firstly,
the CNN feature extraction is performed over the image itself
rather than over the proposed regions. Therefore, the gener-
ated region proposals are based on the last feature map from
the network, and the CNN is only trained once on the full
image. Secondly, the SVM classifier is replaced with a sin-
gle softmax layer that outputs a class probability instead of
running multiple SVMs for various object classes. Addition-
ally, an ROI pooling layer is added to the last convolutional
layer to unify the feature vector size before applying the soft-
max classification. The performance of the Fast R-CNN was
improved regarding the speed compared to the R-CNN, but
the executed selective search algorithm still caused a con-
siderable overhead. The architecture of the Fast R-CNN is
illustrated in Fig. 2.

Faster R-CNN

Ren et al. [29] suggested combining a proposed Region Pro-
posal Network (RPN) instead of the selective search into
the Fast R-CNN leading to a more real-time method called
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Fig. 2 General architecture of the Fast R-CNN. The CNN is applied to the input image to extract the feature map, and the selective search algorithm
is performed to find abnormal candidate regions. The ROI is applied after that to unify the feature vector size for classification using Softmax
classifier

Fig. 3 An example of different anchor boxes with different sizes and ratios for a specific location in the RPN stage

Faster R-CNN. The proposed RPN generates region propos-
als for each location using the last feature map produced
from the CNN based on anchor boxes. The anchor boxes are
detections boxes that have different sizes and ratios that are
compared to the ground truth during the training process. For
each location in the feature map, there are K different anchor
boxes centered around it as shown in Fig. 3. The total number
of anchor boxes per image is (K × W × H) where the W
and H are the sizes of the last feature map. During training,
each generated anchor box is compared to the ground truth
object location. Boxes that overlap the ground truth with an
Intersection over Union (IoU) based on a certain threshold
are considered as an object (no class specified). The IoU is
calculated as follows:

IoU = Agt ∩ Ap

Agt ∪ Ap
(1)

where Agt is the area of the ground truth bounding box while
Ap is the predicted bounding box from the regression layer.
The selected anchor boxes are passed on as region proposals
from RPN stage with a classification score for each box and
four coordinates that represent the location of this object.

Some region proposals highly overlap each other; there-
fore, non-maximum suppression (NMS) is used to prune the
redundant regions leading to a reduced number of region pro-
posals. Later on, the selected region proposals are fed into
the next phase as in Fast R-CNN. The ROI pooling divides
the input feature map from candidate anchor boxes into a
fixed number of almost equal regions. Maxpooling is applied
to these regions; consequently, the output from the phase is
always fixed size regardless of the input size. One of themain
benefits of the Faster R-CNN is that the convolutional layer
between two networks (RPN and Fast R-CNN) is shared as
shown in Fig. 4 rather than learning two separate networks.

Single-Shot Multibox Detector (SSD)

Liu et al. [30] presented a Single-Shot Multibox Detector
(SSD). SSD is considered a faster deep learning object detec-
tion method compared to previously discussed methods as
it generates the predicting bounding box and classifies the
object within it in a single operation while processing the
image. During the training process, the SSD takes the image
and the ground truth as inputs. Following that, the image is
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Fig. 4 General architecture of the Faster R-CNN. The CNN is applied to the input image to extract the feature map that is later used by both the
RPN and the ROI pooling layers (Feature map is shared between both). The RPN outputs the classification score and bounding box location of the
candidate region proposals that are passed on to the next stage. The ROI layer unifies the feature vector size of the candidate region proposal that
is classified using softmax

Fig. 5 General architecture of the SSD [30]. The SSD is a single unified network for both testing and inference

passed through a series of convolutional layers that are com-
bined throughout the network as shown in Fig. 5. The SSD
generates a list of bounding boxes for each location using pri-
ors (i.e., same as anchors in Faster R-CNN) and then adjusts
it to be close to the ground truth location as much as possi-
ble. Although the number of generated boxes from SSD is
considered a huge number compared to the other methods,
it does not guarantee to have an object inside it. An NMS
is applied to minimize the number of boxes by grouping the
highly overlapping regions and choosing the box with the
highest confidence.

Additionally, negative samples are kept with a ratio of
3:1 compared to positive samples in order to apply hard-
negativemining. The hard-negativemining helps the network
to better learn the incorrect detection leading to more accu-
rate results. The backbone CNN network used in the Faster
R-CNN and the SSD is the VGG’16 [31] after discarding
the fully connected layer and using its feature map. One
of the main reasons for using the VGG’16 is that it has
a very high performance toward image classification prob-
lems.

In this paper, we evaluate the performance of the described
deep learning object detection methods using the VGG’16 as
the backbone network to identify the EAC abnormalities in
the HD-WLE images automatically.

Dataset

Adataset composed of 100HD-WLE images of lower esoph-
agus provided by the Endoscopic Vision Challenge MICCAI
2015 [32] and [9] is used in the evaluation. The 100 images
were divided into 50 images with non-cancerous regions
(Fig. 6a) and another 50 with EAC (Fig. 6b). The images
were gathered from 39 patients, among those patients, 22
patients diagnosed with esophageal adenocarcinoma and 17
patients with non-cancerous Barrett’s. Different numbers of
images were captured from each patient resulting in a varied
number from one to eight images per patient. Lesions found
in the abnormal images have been annotated by five lead-
ing experts in the field to obtain golden standards as shown
in Fig. 6c. Due to the differences in manual segmentation
from one expert to another, we used the largest intersection
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(a) Non-Cancer Patient (b) Cancerous Patient (c) Annotation by experts

Fig. 6 Examples of the HD-WLE images from the provided dataset showing a non-cancerous Barrett’s patient, b EAC patient and c annotation
from five different experts

area between the annotations from all the experts during the
training and testing phase.

Experiments

In this section, we first give details about the implementation
setup for the CNN methods. Then, the measures used in the
evaluation process are described. Finally, we evaluate the
performance of the detection methods on our dataset.

Experimental setup

Due to the limited publicly available dataset, we performed
an addition data augmentation to the training data by flipping
along the axial plane and rotation in different angleswith 90◦,
180◦ and 270◦.

For implementation, we adopt the Keras library [33]
based on Python to train and test the different deep learn-
ing object detection models on a single Nvidia 1080Ti GPU.
The VGG’16 was employed as the backbone CNN network
for the four discussed models, which has been trained from
scratch on the dataset after augmentation. Each model was
trained for 5000 iterationswith the learning rate set to 0.0001.
Additionally, the images were used with its original size
(1600 × 1200) for the following networks R-CNN, Fast R-
CNN and Faster R-CNN, while in the SSD, the images were
rescaled to 300 × 300.

During the training process, the anchor boxes sizes and
ratios for the RPN stage in the Faster R-CNN were set to
the default setting as proposed in [29], where there exist K
= 9 anchors at each location with three scales (1282, 2562

and 5122 pixels) and three aspect ratios (1:1, 1:2 and 2:1).
Furthermore, the anchor boxes are comparedwith the ground
truth to generate the RPN proposals, and the region with an
IoU (Eq. 1) greater than 0.7 is considered as a proposal. On
the other hand, the SSD uses multiple feature maps to predict
the target location and calculate a confidence score. In the
evaluation, the features are extracted at convolutional layers

4 and 7. Also, the NMS was set to 0.7 for bounding box
selection.

Evaluationmeasures

To assess the performance of the CNNobject detectionmeth-
ods in detecting the tumor regions, we employ the Average
Recall Rate (ARR) and Average Precision Rate (APR) [34],
tomeasure the accuracy of the detected bounding box in com-
parison to the ground truth region in the cancerous images.
Also, sensitivity (SE), specificity (SP) and the F-measure
(FM) are measured over all the test images (non-cancerous
and cancerous) as follows:

ARR = 1

N

N∑

I=1

Bg
I ∩ Bp

I

Brmg
I

(2)

APR = 1

N

N∑

I=1

Bg
I ∩ Bp

I

Bp
I

(3)

SE = TP

TP + FN
(4)

SP = TN

TN + FP
(5)

FM = 2 · TP
2 · TP + FP + FN

(6)

where N is the total number of images, the Bg is the ground
truth bounding box area of the tumor region while Bp is the
area of predicted bounding box proposed by the detection
method. Taking into consideration the (x, y) coordinates as
the location of the upper left corner of both boxes to compute
the intersection, all measures have been assessed in reference
to the cancerous patients, True Positive (TP) the number of
cancerous images that had correct prediction, True Negative
(TN) the number of non-cancerous images that had correct
prediction, False Negative (FN) number of cancerous images
that had no prediction and False Positive (FP) number of non-
cancerous images that had regions predicted as cancerous.
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Results

The four deep learning object detection approaches discussed
in “Object detection CNN based methods” section have been
carried on the available dataset after augmentation. The five
measures defined in Eqs. 2–6 were used to evaluate detection
performances. First, the ARR and APR were used to evalu-
ate the bounding box accuracy. A higher APR demonstrates
that a more significant region is overlapping between the pre-
dicted region and the ground truth, and a higher ARR shows
that the tumor region generated by the detection method
excludes more non-cancerous areas. Moreover, the sensitiv-
ity, specificity and F-measure rates were measured, where
the number of the missed region in a cancerous patient (no
detection) and any false prediction in normal patient images
affected the results. Additionally, if the IoU value between
the generated bounding box and the ground truth is less than
0.5, then the produced bounding box is considered to be a
false prediction (non-cancerous). Furthermore, the time for
the detection processes for each method was measured in
seconds during the testing phase.

The experiments have been carried out using three types
of validation. Experiment 1: from the 39 patients, 60%
were used for training [21 patients (12 cancerous, 9 non-
cancerous Barrett’s)], 20% for validation [9 patients (5
cancerous, 4 non-cancerous Barrett’s)] and 20% for test-
ing [9 patients (5 cancerous, 4 non-cancerous Barrett’s)].
The experiments were carried twice to verify the results
using more cases by changing the patients dataset between
the validation and testing sets in the second experiment.
Therefore, the results presented in Table 1 are based on a
total of 18 patients (10 cancerous and 8 non-cancerous Bar-
rett’s) that are entirely different from the dataset used for
training the model. Experiment 2: The dataset was eval-
uated based on 5-fold-cross-validation (5-fold-CV), where
the dataset is divided into 5-fold randomly. (Each fold will
hold 7–8 patients.) The results of the second experiment
are shown in Table 2. Experiment 3: Leave-One-Patient-Out
cross-validation (LOPO-CV) is applied to compare the four
detection methods. Table 3 demonstrates the results from
LOPO-CV experiment in addition to a comparison with two
of state-of-the-art (Mendel et al. [20] and Sommen et al.
[16]) methods that use the same dataset. The results of the
three experiments will be discussed further in the following
section.

Furthermore, the bounding box results from each method
have been provided on some sample images shown in Fig. 7
and compared to the ground truth bounding box. The figure
shows different samples of the true and false positives detec-
tion. An example from one non-cancerous image that had
false prediction by the R-CNN and Fast R-CNN method is
shown in Fig. 7c, and another one by the R-CNN is shown in
Fig. 7l. Moreover, Fig. 7j illustrates the detection of Faster

Table 1 Average Recall Rate (ARR), Average Precision Rate (APR),
sensitivity (SE) and specificity (SP) and F-measure (FM) for the state-
of-the-art object detection deep learning methods on the EAC dataset
based on 60% training and 40% testing

Method APR ARR SE SP FM Time (s)

R-CNN 0.43 0.41 0.47 0.41 0.44 13.38–37.81

Fast R-CNN 0.66 0.37 0.53 0.57 0.55 0.65–2.1

Faster R-CNN 0.50 0.78 0.72 0.83 0.83 0.3–0.45

SSD 0.69 0.81 0.93 0.93 0.93 0.1–0.2

Bold values represent the highest values

Table 2 Average Recall Rate (ARR), Average Precision Rate (APR),
sensitivity (SE) and specificity (SP) and F-measure (FM) for the state-
of-the-art object detection deep learning methods on the EAC dataset
based on 5-fold-CV

Method APR ARR SE SP FM

R-CNN 0.48 0.41 0.50 0.40 0.48

Fast R-CNN 0.62 0.43 0.64 0.64 0.64

Faster R-CNN 0.68 0.83 0.78 0.80 0.79

SSD 0.70 0.79 0.90 0.88 0.88

Bold values represent the highest values

Table 3 Average Recall Rate (ARR), Average Precision Rate (APR),
sensitivity (SE), specificity (SP) and F-measure (FM) for the state-of-
the-art object detection deep learningmethods on the EACdataset based
on LOPO-CV

Method SE SP FM

R-CNN 0.60 0.56 0.59

Fast R-CNN 0.64 0.60 0.63

Faster R-CNN 0.88 0.86 0.87

SSD 0.96 0.92 0.94

Mendel et al. [20] 0.94 0.88 0.91

Sommen et al. [16] 0.86 0.87 0.87

Bold values represent the highest values

R-CNN and SSD only as the other two methods failed to
find an EAC region. The rest of the figures demonstrate the
performance of the four models in detecting the abnormal
regions in minor and complex tumors.

Discussion

CAD has been acting as an essential tool in clinical practice
and research by providing a second opinion to the clinician.
With the evolving of the use of deep learning methods in
implementing CADmethods in various fields, there has been
a tremendous improvement in accuracy. Multiple CAD sys-
tems have been proposed in the literature that mainly relied
on handcrafted features to detect EAC abnormalities in endo-
scopic images. Only one method used the deep learning to
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(a) Cancerous groundtruth (b) Cancerous groundtruth (c) Normal groundtruth

(d) Cancerous Prediction (e) Cancerous Prediction (f)False prediction

(g) Cancerous groundtruth (h) Cancerous groundtruth (i) Normal groundtruth

(j) Cancerous Prediction (k) Cancerous Prediction (l) False prediction

Fig. 7 Bounding box ground truth based on experts annotation and the output from the R-CNN, Fast R-CNN, Faster R-CNN and SSD when using
5-fold-CV from different patients showing correct prediction in d, e, j and k with different scores and a false prediction on a non-cancerous patient
in f and l

classify the patches inside image into cancerous and non-
cancerous [20].

The APR and ARR are used to measure the performance
of the detection methods by evaluating the output bound-
ing box in cancerous images only. They both measure the
overlapping region between the predicted bounding box and
ground truth. As shown in Table 1, the APR results for the
Fast R-CNN and the SSD achieved 0.66 and 0.69, respec-
tively. Additionally, the APR results from Table 2 show that
the Faster R-CNN achieved 0.68, while the SSD achieved

0.70. From both tables, the SSD proved the ability to detect a
greater abnormal region that overlappedwith the ground truth
generated by experts compared to the other three CNNmeth-
ods. Moreover, the ARR from these two tables, the Faster
R-CNN and SSD outperform the Fast R-CNN and R-CNN
with results of 0.78 and 0.81 from Table 1 and 0.83 and 0.79
from Table 2. The results indicate that the SSD and Faster
R-CNNwere able to detect fewer false positive regions (non-
cancerous areas) inside the generated bounding box for the
abnormal area.
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Additionally, the sensitivity, specificity and F-measure
are measured for the three experimental validation methods.
Results in Table 1 are based only on 18 patients (10 cancer-
ous and 8 non-cancerous Barrett’s) as described previously
in “Results” section. The SSD outperforms among the com-
pared methods with a result of 0.93 for the three measures.
The high sensitivity of the SSD result from this table indi-
cates that it had a good performance in detectingEAC regions
from the cancerous images and less false bounding boxes in
the non-cancerous Barrett’s images. The Faster R-CNN fol-
lowed by with results of 0.72 for the sensitivity and 0.83 for
both the specificity and F-measure.

From Table 2 based on 5-fold-CV. The SSD surpasses the
other three methods with a sensitivity of 0.90, both speci-
ficity and F-measure of 0.88. The results demonstrate that
the SSD had a high performance in generating bounding
boxes that located in abnormal regions throughout the testing
dataset and less false ones. For the Faster R-CNN as shown
in Table 2, the results of the sensitivity were 0.78 and 0.80
for the specificity and 0.79 for the F-measure demonstrating
an acceptable performance.

As a further study, a comparison of the results with other
state-of-the-art models provided by Mendel et al. [20] and
Sommen et al. [16] is illustrated in Table 3. For a fair eval-
uation, we employ the same validation method LOPO-CV.
Firstly, the sensitivity was evaluated, and the SSD achieved
the highest performance among the four deep learning meth-
ods and surpassed the results of [20] by 2% and [16] by 10%.
Also, the Faster R-CNN outperformed against [16] by 2%.
Additionally, the specificity of the SSD achieved 92% indi-
cating the improvement of less false positives regions, while
the Faster R-CNN achieved 0.86 that is considered compa-
rable with results of [20] and [16].

As observed in Tables 2 and 3, the R-CNN and the Fast R-
CNN have the lowest performance. The reason behind this
is that both methods rely on selective search algorithm to
generate a region of interest. As explained in the earlier sec-
tion, selective search algorithm uses the greedy algorithm
to search for a location for object localization. The greedy
algorithm has limitations in finding the optimal solution.
Additionally, the grouping process is done based on the color
space difference and similarity metrics, while for our dataset,
it is difficult to differentiate between non-cancerous Barrett’s
regions and EAC solely based on color as they both have a
darker color than normal regions which might lead to more
false positives.On the other hand, the use of anchor boxes and
priors in the Faster R-CNN and the SSD helps improve the
performance of generating more candidate regions of inter-
est. Furthermore, the results of Table 3, in general, are more
improved than that in Table 2 as the LOPO-CV allows more
dataset to be trained than the 5-fold-CV.

The differences in sensitivity and specificity between the
four object detection methods were statistically evaluated

Table 4 The p-value calculate using the paired t-test to measure the
difference of sensitivity and specificity results between the four deep
learning methods

Method Sensitivity Specificity

R-CNN Fast R-CNN R-CNN Fast R-CNN

Faster R-CNN 0.0049 0.1279 0.0001 0.0443

SSD 0.0012 0.0882 0.0001 0.0036

using the paired t-test at a confidence level of 95%. The
results of the two-tailed p value of the two best performers
(SSD and Faster R-CNN), when compared with the other
two methods, are illustrated in Table 4. As shown, the dif-
ference between the sensitivity and specificity of the SSD
and Faster R-CNN was found to be significantly different
when they were compared to the R-CNN and Fast R-CNN
using the t-test. Additionally, the t-test was also employed to
determine whether there are any statistical differences in the
sensitivity and specificity, obtained using the two validation
methods (i.e., 5-fold-CV and LOPO-CV). The p value of the
sensitivity and specificity for each deep learning object detec-
tion method was as follows R-CNN (0.0235,0.0068), Fast
R-CNN (0.3222, 0.1594), Faster R-CNN (0.0238 ,0.0832)
and SSD (0.0832, 0.1594). Our analysis based on these p
values suggests that the two validations for the R-CNN and
Faster R-CNN show a significant difference. On the other
hand, the difference in results for the SSD and the fast R-
CNN is not statistically significant.

Moreover, the detection time during testing was measured
in seconds for each method as shown in Table 1. The time
started with a range of 13.38–37.81 s when using the R-CNN
and then decreased while using a more updated method. The
R-CNN requires a significant amount of time as it generates
around 2000 region proposal for each location and then used
to extract features from them using CNN. This leads to a
repetition of almost 2000 times to extract features from one
image. The detection time drops to 0.65–2.1 s when using
the Fast R-CNN, as the selective search is applied to the
extracted features after applying the CNN to the input image.
The Faster R-CNN was faster after sharing the weights and
feature map between the RPN and ROI pooling layer result-
ing in a range of 0.3–0.5 s to generate detection bounding
boxes. The SSD surpassed against the other methods in pre-
dicting region in most of the cancerous images with only
0.1–0.2 s. The reason for this is that the SSD can localize
the object and classify it in a single forward pass network.
We believe that with a more powerful hardware (i.e., Nvidia
Titan, Nvidia Tesla V100), the detection speed would be fur-
ther increased.

In addition to providing the quantitative evaluation, we
also randomly choose some qualitative results of the deep
learning object detection methods for different cases as
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Table 5 Average error presented by each model in capturing non-
cancerous regions inside the produced bounding boxes in the EAC
images

R-CNN Fast R-CNN Faster R-CNN SSD

Average error 0.388 0.328 0.211 0.197

shown in Fig. 7. For example, Fig. 7e demonstrates that the
differentmethods can detect somedifficult instances inwhich
the abnormality is located in a small region and is visually
similar to other areas inside the same image. Also, in Fig. 7d,
k the abnormal areas are present in most of the images. The
SSD and Faster R-CNN show the ability to detect most of
the EAC area compared to the ground truth. Furthermore,
Fig. 7f, l lists some false positive regions detected by the
R-CNN and Fast R-CNN. The non-cancerous Barrett’s from
normal patients have a difference in color in some areas as
shown in Fig. 7c, i which makes the detection challenging.
The accuracy of this bounding box is discussed earlier using
the ARR and APR values compared to the ground truth and
illustrated in Fig. 7.

The esophagus has a special internal structure that makes
it challenging to differentiate between normal and abnor-
mal regions. Also, the abnormalities inside the esophagus are
particularly challenging due to its different sizes, locations
and shapes. There exist variations in the size and the loca-
tion in the generated bounding boxes from the four models,
where eachboxmight includenon-cancerous regions. Table 5
calculates the average error presented by each model in cap-
turing non-cancerous regions inside the bounding box. As
shown, the R-CNN and Fast R-CNN presented higher error
percentage compared to the other two models. This indicates
the bounding box generated by these two methods included
a high ratio of non-cancerous regions. On the other hand,
the Faster R-CNN and SSD provided a lower error rate for
containing non-cancerous areas; therefore, they were able to
provide better bounding boxes localized around the cancer-
ous regions.

Conclusion

In this paper, we adapted the state-of-the-art deep learn-
ing object detection methods to automatically identify the
EAC abnormalities from HD-WLE images. Throughout the
evaluation experiments, the SSD has proved to be the lead-
ing performance regarding the different evaluationmeasures,
with an outstanding result of 0.90 for the sensitivity, 0.88 for
the specificity and 0.88 for the F-measure when evaluated
based on 5-fold-CV.

Also, the average precision and recall rates are of 0.70
and 0.79 for the SSD and 0.68 and 0.83 for the Faster R-

CNN in locating abnormal regions compared to the expert’s
annotation. The current study is a step forward to use deep
learning object detection methods to find abnormalities in
esophageal endoscopy still image. We mainly focused on
detection by using the bounding boxes to allocate abnormal
regions. Additionally, experiments based on LOPO-CV have
been carried out and compared with other state-of-the-art
methods. The SSD and Faster R-CNN were able to surpass
among the results.

Moreover, figures have been presented to illustrate the
generated bounding box by each method. There are some
errors introduced by the bounding boxes by the different
models that need to be improved. The CNN network used
for feature extraction can be modified/replaced with adjust-
ments in network parameters to improve the final detection
performance.

Further work will be held to improve the performance of
automatic EAC detection using the most efficient methods
in current evaluation ( i.e., SSD and Faster R-CNN) and will
include more patients data to assess the proposed modified
methods further.
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