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Abstract
A functional differential model of SEIS-M type with two time delays, representing the
response time for massmedia to cover the current infection and for individuals’ behav-
ior changes to media coverage, was proposed to examine the delayed media impact on
the transmission dynamics of emergent infectious diseases. The threshold dynamics
were established in terms of the basic reproduction numberR0.When there are no time
delays, we showed that if the media impact is low, the endemic equilibrium is globally
asymptotically stable forR0 > 1, while the endemic equilibrium may become unsta-
ble and Hopf bifurcation occurs for some appropriate conditions by taking the level
of media impact as bifurcation parameter. With two time delays, we comprehensively
investigated the local and global bifurcation by considering the summation of delays
as a bifurcation parameter, and theoretically and numerically examined the onset and
termination of Hopf bifurcations from the endemic equilibrium. Main results show
that either the media described feedback cycle, from infection to the level of mass
media and back to disease incidence, or time delays can induce Hopf bifurcation and
result in periodic oscillations. The findings indicate that the delayed media impact
leads to a richer dynamics that may significantly affect the disease infections.
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1 Introduction

Since the 2003 outbreak of severe acute respiratory syndrome (SARS) and the 2009
novel influenza A(H1N1) pandemic, global public health systems of surveillance and
response have been substantially improved. In order to quickly curb an emerging dis-
ease and reduce its influence on socioeconomic activities, each country developed its
effective public health information processing system.With themassive news coverage
and fast information flow on the emerging diseases, the public may alter individuals’
behavior and consequently implement some control measures. There are a number of
mathematical models describing the media impact on disease transmission (Verelst
et al. 2016; Funk 2010; Yan et al. 2018, 2016; Funk et al. 2015; Mao 2014; Cui
et al. 2008a, b; Xiao et al. 2013, 2015; Tang et al. 2010; Liu et al. 2007; Li and Cui
2009; Tchuenche et al. 2011; Sun et al. 2011; Wang and Xiao 2014; Song and Xiao
2018). The most general approach is to change the incidence rate by including a func-
tion which is decreasing in the number of infected individuals. For example, Liu et al.
(2007) introduced amedia functionβe−α1E−α2 I−α3H into the transmission coefficient,
where E, I and H are the numbers of reported exposed, infectious and hospitalized
individuals, respectively. Li and Cui (2009) used a factor β1 − β2

I
m+I (or β2

I
m+I ) to

reflect the reduced amount of contact rate due to media coverage. Xiao et al. (2015)
extended these media functions by assuming that the function depends on both the
case number and its rate of change, and obtained that media impact switches on and
off in a highly nonlinear fashion. Yan et al. (2016) further extended these models by
including extra compartment, i.e., the level of media coverage M , and consequently,
media impact is modeled by including the function e−μM withμ > 0 in the incidence.

Basically, these models, described by ordinary differential equations (Liu et al.
2007; Cui et al. 2008b; Li and Cui 2009; Sun et al. 2011; Xiao et al. 2015; Yan
et al. 2016), ignored the time duration for individuals’ response to the media coverage
and the time duration for the mass media’s response to the disease infection. In fact,
by analyzing the number of hospital notifications of the Shaanxi province and the
number of daily news items from the eight popular sources during September 3, 2009,
to November 16, 2009, Yan et al. (2016) obtained the correlation between the case
number andmedia coverage, confirmed the existence of time lags and further identified
the time lags. Hence, it is more reasonable to include time delay in the incidence rate
when modeling media impact on transmission dynamics. Recently, we (Song and
Xiao 2018) initially included time delay in the media function e−α I (t−τ) with positive
constant α and examined the global bifurcation of the proposed system. However, time
delays may not be single but multiple. They are associated with the duration of mass
media’s response to infection or the duration of individuals’ response to mass media.
How these delays mutually affect dynamics of infection and which one is key for the
complex dynamics remain unclear. Therefore, these issues are of great importance
for future epidemics control, and investigating the impact of delayed mass media on
disease spread falls within the scope of this study.

The purpose of this study is to investigate themultiple-delay-mediatedmedia impact
on the transmission dynamics of infectious diseases, based on the mathematical model
with extra compartment of media coverage. We shall examine the threshold dynamics
and global bifurcation of the proposed system in order to know how the refined media
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function affects the global dynamics of disease transmission and consequently address
the effect of media coverage on disease transmission.

2 Model Description

The underlying structure of the model comprises of classes of individuals that are
susceptible (S), exposed but not yet infectious (E) and infected (I ). The susceptible
individuals are infected by infectious individualswith a rate ofβ, and become exposed;
exposed individuals become infectiouswith a rateσ ; infected individuals are recovered
with a rate γ and back into the susceptible class. On the basis of the SEIS-type model,
we include the media coverage as an independent variable, denoted by M(t), which
is the average number of news items related to the outbreak. The changing rate of the
average number of daily news items is assumed to depend on the number of infected
individuals at time t − τ1 with a rate of δ, where time delay τ1 represents the reported
delay and the mass media’s response duration.

Media coverage and fast information flow have significant impact on the avoidance
behaviors at both individual and society levels, and the average number of daily news
items has clearly profound psychological impact on the social conduct that seems to
reduce the effective contact of susceptible with infectious individuals. An exact func-
tional description for media impact is not available and would be extremely difficult
to achieve. Here we assume that the media impact depends on the average number of
daily news items, and it is described by an exponential decreasing factor (Liu et al.
2007). Hence, a reduction in the incidence rate is represented by e−αM(t−τ2), where
time delay τ2 denotes the time duration for individuals’ response to the current media
coverage. Thus the model equations are

⎧
⎪⎪⎨

⎪⎪⎩

Ṡ = Λ − βe−αM(t−τ2)SI − dS + γ I ,
Ė = βe−αM(t−τ2)SI − (d + σ)E,

İ = σ E − (d + γ )I ,
Ṁ = δ I (t − τ1) − μM,

(1)

where Λ stands for the rate of flow into the population, d is the natural death rate, β
denotes the baseline transmission rate andμ represents media spontaneous disappear-
ance rate. All parameters are nonnegative constants.

It is easy to obtain that the total population size N (t) := S(t)+E(t)+ I (t) satisfies
N ′ = Λ − dN , which gives limt→+∞ N (t) = Λ

d
.= N̄ . Thus system (1) is equivalent

to the following system:

⎧
⎪⎪⎨

⎪⎪⎩

Ṅ = Λ − dN ,

Ė = βe−αM(t−τ2)(N − E − I )I − (d + σ)E,

İ = σ E − (d + γ )I ,
Ṁ = δ I (t − τ1) − μM,

(2)

and has a limiting system
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⎧
⎨

⎩

Ė = βe−αM(t−τ2)(N̄ − E − I )I − (d + σ)E,

İ = σ E − (d + γ )I ,
Ṁ = δ I (t − τ1) − μM .

(3)

Let X = C([−τ, 0], R4) with the supremum norm ‖‖∞ where τ = max{τ1, τ2},
then X is an ordered Banach space with the cone X+ consisting of all nonnegative
functions in X . Let Y = C([−τ, 0], R3) be the ordered Banach space with the cone
Y+ consisting of all nonnegative functions in Y . We also denote

Y0 = {ϕ = (ϕ1, ϕ2, ϕ3) ∈ Y |ϕ1(0) + ϕ2(0) ≤ N̄ }, U = Y+ ∩ Y0.

We have the following preliminary results for systems (1, 2, 3):

Theorem 1 (i) For initial value ϕ ∈ X+, system (1) admits a unique nonnegative
bounded solution u(t, ϕ) on [0,∞) with u0 = ϕ, and ut (ϕ) := (u1t (ϕ), u2t (ϕ),
u3t (ϕ), u4t (ϕ)) ∈ X+ for all t ≥ 0;

(ii) For initial value ϕ ∈ X+, system (2) admits a unique nonnegative bounded
solution û(t, ϕ) on [0,∞) with û0 = ϕ, and ût (ϕ) := (û1t (ϕ), û2t (ϕ), û3t (ϕ),
û4t (ϕ)) ∈ X+ for all t ≥ 0;

(iii) For initial valueϕ ∈ U, system (3) admits a unique nonnegative bounded solution
v(t, ϕ) on [0,∞) with v0 = ϕ, and vt (ϕ) := (v1t (ϕ), v2t (ϕ), v3t (ϕ)) ∈ U for
all t ≥ 0.

Proof We only prove (i) here as (ii) and (iii) can be established by similar arguments.
For any ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) ∈ X+, we define

f (t, ϕ) =

⎛

⎜
⎜
⎝

Λ − βe−αϕ4(−τ2)ϕ1(0)ϕ3(0) − dϕ1(0) + γ ϕ3(0)
βe−αϕ4(−τ2)ϕ1(0)ϕ3(0) − (d + σ)ϕ2(0)

σϕ2(0) − (d + γ )ϕ3(0)
δϕ3(−τ1) − μϕ4(0)

⎞

⎟
⎟
⎠ .

Since f (t, ϕ) is continuous in (t, ϕ) ∈ R+ × X+, and f (t, ϕ) is Lipschitz in ϕ on
each compact subset of X+, then it follows from Theorems 2.2.1 and 2.2.3 in Hale
and Lunel (1993), system (1) has a unique solution u(t, ϕ) on its maximal existence
interval [0, σϕ) with u0 = ϕ.

Let ϕ ∈ X+ be given. It is easy to verify that if ϕi (0) = 0 for some i ∈ {1, 2, 3, 4},
then fi (t, ϕ) ≥ 0.This together with Theorem 5.2.1 and Remark 5.2.1 in Smith (1995)
imply the unique solution u(t, ϕ) remains nonnegative for all t ∈ [0, σϕ).

Set ρ(t) := u1(t) + u2(t) + u3(t). Note from (1) that ρ′(t) = Λ − dρ(t), which
implies limt→∞ ρ(t) = Λ

d . Thus u1(t), u2(t) and u3(t) are bounded on [0, σϕ). Hence,
by the last equation of (1), u4(t) is also bounded on [0, σϕ). In view of Theorem 2.3.1
in Hale and Lunel (1993), we have σϕ = ∞. 
�
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3 Basic Reproduction Number and Threshold Dynamics of Disease

The basic reproduction ratioR0, defined as the expected average number of secondary
cases produced in a completely susceptible population by a typical infective individual
during the infectious period, is one of the most significant concepts in population
biology (Diekmann et al. 1990; Anderson and May 1991; van den Driessche and
Watmough 2002; Zhao 2017). In epidemiology,R0 is also a commonly used measure
of the effort needed to control an infectious disease. In this section, we will calculate
the basic reproduction numberR0 of system (1) and investigate the threshold dynamics
in terms of R0.

It is easy to calculate the disease-free equilibrium of system (1) Ê0 = (N̄ , 0, 0, 0).
Note that Ê0 is also the disease-free equilibrium of system (2). In view of Zhao
(2017) Corollary 11.1.1, the basic reproduction number for the functional differential
equations (1) can be denoted by

R0 = σβ N̄

(d + σ)(d + γ )
. (4)

The Jacobian matrix associated with the linearization of system (1) at Ê0 is

MÊ0
=

⎛

⎜
⎜
⎝

−d − λ 0 −β N̄ 0
0 −(d + σ) − λ β N̄ 0
0 σ −(d + γ ) − λ 0
0 0 δe−λτ1 −μ − λ

⎞

⎟
⎟
⎠ .

Therefore, the characteristic equation of Ê0 gives

(λ + d)(λ + μ)(λ2 + (2d + γ + σ)λ + (d + γ )(d + σ)(1 − R0)) = 0.

This implies that the disease-free equilibrium Ê0 of system (1) is local asymptotically
stable ifR0 < 1 and unstable ifR0 > 1. Nowwe proceed to the global asymptotically
stability of Ê0 for system (1).

Theorem 2 (i) The disease-free equilibrium, denoted by E0 = (0, 0, 0), of system (3)
is globally asymptotically stable ifR0 ≤ 1 and unstable ifR0 > 1;

(ii) The disease-free equilibrium Ê0 of system (2) ( or system (1) ) is globally asymp-
totically stable ifR0 ≤ 1 and unstable ifR0 > 1.

Proof We prove (i) by constructing a Lyapunov functional and applying LaSalle’s
invariance principle (Theorem 1 in Hale 1969; Theorem 1.1.1 in Zhao 2017) for
infinite-dimensional dynamical systems. It is easy to verify that system (3) defines a
dynamical system on U . Let Q(t) be the solution semiflow of system (3) on U , i.e.,
Q(t)ϕ = vt (ϕ), t ≥ 0,where v(t, ϕ) is the unique solution of system (3) with v0 = ϕ.
By Theorem 3.6.1 in Hale and Lunel (1993), Q(t) is continuous and compact, and for
each ϕ ∈ U , the orbit of ϕ under Q(t) has compact closure in U .
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For any φ ∈ U , define the functional

L(φ) = φ1(0) + d + σ

σ
φ2(0).

For an arbitrary solution v(t, ϕ) of (3), we obtain

d
dt L(vt (ϕ)) = βe−αM(t−τ2)(N̄ − E − I )I − (d+γ )(d+σ)

σ
I

= β N̄ I
R0

[
R0e−αM(t−τ2)

(
1 − E+I

N̄

)
− 1

]

≤ 0.

(5)

Therefore, d
dt L(vt (ϕ)) ≤ 0, which implies that L(φ) is a Lyapunov functional on U

relative to the system (3).
Next define

L̇(ϕ) := d

dt
L(vt (ϕ))|t=0 and S = {ϕ ∈ U |L̇(ϕ) = 0},

where v(t, ϕ) is the unique solution of (3) with initial condition v0 = ϕ ∈ U . By (5),
we have S = {ϕ ∈ U |ϕ2 = 0}. It follows from (3) that the maximal invariant set in S
is given by

Ŝ = {ϕ ∈ U |ϕ1 = ϕ2 = 0}.

Thus by the LaSalle invariant principle (Theorem 1 in Hale 1969), we obtain
limt→∞ E(t), I (t) = 0, which together with (3) imply limt→∞ M(t) = 0.

Now we prove (ii). Let Ψ (t) be the solution semiflow of system (2) on X+, i.e.,
Ψ (t)ϕ = ût (ϕ), t ≥ 0,where û(t, ϕ) is the unique solution of system (2) with û0 = ϕ.
By Theorem 3.6.1 in Hale and Lunel (1993),Ψ (t) is continuous and compact. For any
given ϕ ∈ X+, let ω(ϕ) be the omega limit set of the orbit for the semiflow Ψ (t).

Note from the first equation of (2) that ω(ϕ) = {N̄ } × ω̃, where ω̃ is a subset of
Y+. It is easy to verify that ω̃ ⊂ U . By Lemma 1.2.1 in Zhao (2017), ω(ϕ) is an
internally chain transitive set for Ψ (t) on X+. It then follows ω̃ is an internally chain
transitive set for Q(t) on U . Note from (i) that E0 is globally asymptotically stable
for Q(t) onU . It follows from Theorem 1.2.1 in Zhao (2017) that ω(ϕ) = {Ê0}. Thus
we have completed the proof (ii), and then the disease-free equilibrium system (1) can
be directly obtained. 
�

Now we show the disease will be persistent if R0 > 1. Let Φ(t) be the solution
semiflow of system (1) on X+, i.e.,Φ(t)ϕ = ut (ϕ), t ≥ 0,where u(t, ϕ) is the unique
solution of system (1) with u0 = ϕ.

Theorem 3 If R0 > 1, then Φ(t) : X+ → X+, is uniform persistent with respect to
(X0, ∂X0), where X0 = {ϕ ∈ X+|ϕ2(0) 
= 0 and ϕ3(0) 
= 0}, ∂X0 = X+\X0 , i.e.,
there exists a positive constant η > 0 such that

lim inf
t→∞ (S(t), E(t), I (t), M(t)) ≥ (η, η, η, η).

123



1588 P. Song, Y. Xiao

Besides, system (1) admits a unique endemic equilibrium, denoted by Ê1 = (N̄ − Ê −
Î , Ê, Î , M̂) = (N̄ − (d + γ ) Î/σ − Î , (d + γ ) Î/σ, Î , δ Î/μ), where

Î = σ N̄

d + γ + σ
− μ

αδ
LambertW

(
αδ(d + σ)(d + γ )

μβ(d + γ + σ)
e

αδσ N̄
μ(d+γ+σ)

)

, (6)

and Lambert W (.) is a Lambert W function, defined to be the multivalued inverse of
the function ω → ωeω (Corless et al. 1996).

Proof We appeal to the uniform persistence theory developed in Zhao (2017), Magal
and Zhao (2005). Note that X+ = X0 ∪ ∂X0. Moreover, X0 and ∂X0 are relatively
open and closed subsets of X+, respectively, and X0 is convex. It follows from Hale
and Lunel (1993) Theorem 3.6.1 that Φ(t) is continuous and compact for all t > 0.
In view of Theorem 1, Φ(t) is point dissipative. Therefore Φ(t) has a global attractor
by Theorem 2.4.7 in Hale (1988).
Step 1. We have Φ(t)X0 ⊂ X0 for all t ≥ 0.

Let ϕ ∈ X0, then we have ϕi (θ) ≥ 0 for all θ ∈ [−τ, 0], i = {1, 2, 3, 4}, and
ϕ2(0), ϕ3(0) > 0. It follows from model (3) that

{
Ė ≥ −(d + σ)E,

İ ≥ −(d + γ )I .

Thus we have E(t) ≥ ϕ2(0)e−(d+σ)t > 0, I (t) ≥ ϕ3(0)e−(d+γ )t > 0.
Step 2. Let ω(x) be the ω-limit set of x ∈ X+ with respect to Φ(t). Define

M∂ := {ϕ ∈ X+|Φ(t)ϕ ∈ ∂X0,∀t ≥ 0}, Ω(M∂ ) :=
⋃

x∈M∂

ω(x).

More details about the definitions can be found in Zhao (2017) Chapter 1. It is easy
to verify that M∂ = {ϕ ∈ X+ | ϕ2 = ϕ3 = 0}. Then if E(t) = I (t) = 0, for all t ≥ 0,
we have Ṡ = Λ − dS, Ṁ = −μM . Therefore, Ω(M∂ ) = {Ê0}. Hence, Ω(M∂ ) is a
compact and isolated invariant set for Φ(t) restricted in M∂ .

Step 3. We prove WS(Ê0)
⋂

X0 is an empty set by contradiction, where WS(A) is
defined as the stable set of A ⊂ X+.

Assume, on the contrary, that for any ε1 > 0, there exists some initial value φ ∈ X+
such that

lim sup
t→∞

‖Φ(t)φ − (N̄ , 0, 0, 0)‖ ≤ ε1

2
. (7)

Choose ε1 such that R̂0 = σβe−αε1 (N̄−ε1)
(d+γ )(d+σ)

> 1. Then there exists t0 = t0(ε1) > 0 such

that N̄ − ε1 < S(t) < N̄ + ε1, E(t) < ε1, I (t) < ε1, M(t) < ε1 for all t ≥ t0. It
follows from Eq. (1) that, for t > t0 + τ2, we have
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{
Ė > βe−αε1(N − ε1)I − (d + σ)E,

İ = σ E − (d + γ )I .

Let (y(t), x(t)) be the solution of the following cooperative system:

{
ẏ = βe−αε1(N − ε1)x − (d + σ)y,
ẋ = σ y − (d + γ )x,

with the initial value y(t0 + τ2) = E(t0 + τ2), x(t0 + τ2) = I (t0 + τ2). Then we
have E(t) > y(t), I (t) > x(t) for all t > t0 + τ2. Note that the solution (y(t), x(t))
tends to infinity, which consequently indicates that E(t) and I (t) will approach to the
infinity. This contradicts to the above-mentioned arguments. In view of Theorem 1.3.1
and Remark 1.3.1 in Zhao (2017), we have Φ(t) : X+ → X+ is uniform persistent
with respect to (X0, ∂X0).

Let Ê1 = (Ŝ, Ê, Î , M̂) be the endemic equilibrium. By system (1), we obtain

βe
−αδ Î

μ

(

N̄ − (d + γ + σ) Î

σ

)

− (d + σ)(d + γ )

σ
= 0.

Rewriting this equation gives

e
αδσ N̄

μ(d+γ+σ)
− αδ Î

μ

(
αδσ N̄

μ(d + γ + σ)
− αδ Î

μ

)

= e
αδσ N̄

μ(d+γ+σ)
αδ(d + σ)(d + γ )

μβ(d + γ + σ)
.

Therefore, Î = σ N̄
d+γ+σ

− μ
αδ
LambertW (e

αδσ N̄
μ(d+γ+σ) αδ(d+σ)(d+γ )

μβ(d+γ+σ)
) (see details for Lam-

bertW function in paper Corless et al. 1996). Besides, it is easy to verify that Î > 0 if
and only ifR0 > 1. 
�

4 Dynamics at the Endemic EquilibriumWithout Delays

In this section, we assume τ1 = τ2 = 0, then system (1) becomes

⎧
⎪⎪⎨

⎪⎪⎩

Ṡ = Λ − βe−αMSI − dS + γ I ,
Ė = βe−αMSI − (d + σ)E,

İ = σ E − (d + γ )I ,
Ṁ = δ I − μM,

(8)

and the limiting system (3) becomes

⎧
⎨

⎩

Ė = βe−αM(t)(N̄ − E − I )I − (d + σ)E,

İ = σ E − (d + γ )I ,
Ṁ = δ I (t) − μM .

(9)
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Obviously, Ê1 is also the unique endemic equilibrium of system (8).Moreover, system
(9) admits a unique endemic equilibrium, denoted by E1 = ((d + γ ) Î/σ, Î , δ Î/μ),
where Î is defined in (6).

For further purposes, we first give a preliminary result.

Lemma 1 Assume that k,m > 0 and r > 1. Let m, r be fixed and denote the unique
positive root of f (x) = re−kx (1 − mx) − 1 = 0 by x0 = g(k). Set h(k) = kg(k).
Then we have:

(i) g′(k) < 0, limk→0 g(k) = r−1
mr , limk→∞ g(k) = 0;

(ii) h′(k) > 0, limk→0 h(k) = 0, limk→∞ h(k) = ln r .

Proof Note that

g′(k) = −x0
k + re−kx0

< 0, h′(k) = rekx0mx0
k + re−kx0m

> 0.

It follows from ekx0 = r(1 − mx0) that for any k > 0, we have 0 < g(k) < 1
m and

0 < h(k) < ln r . This together with the monotonicity of g(k), h(k) in k implies the
existence of limits.

We first prove (i). Note that

0 = lim
k→0

(ekg(k) − r(1 − mg(k))) = 1 − r(1 − m lim
k→0

g(k)).

Hence, limk→0 g(k) = r−1
mr . Moreover, we have limk→∞ g(k) = 0, for if it is not true,

then

0 = lim
k→∞(ekg(k) − r(1 − mg(k))) = ∞.

For (ii), it can be seen that

0 = lim
k→0

(keh(k) − r(k − mh(k))) = rm lim
k→0

h(k),

and

0 = lim
k→0

(

eh(k) − r

(

1 − m
h(k)

k

))

= elimk→∞ h(k) − r .

Therefore, we complete the proof of (ii). 
�

4.1 Local Stability and Local Hopf Bifurcation at the EndemicWithout Delays

In what follows, we will obtain the stability of Ê1 of system (8) by exploring the
stability of E1 with respect to the limiting system (9). Particularly, we fix N̄ , β, d, σ, μ

here and set

k = αδ

μ
(10)
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as the bifurcation parameter to explore whether Hopf bifurcation can occur at E1 or
not. Recall that here δ/μ is actually the relative reproduction ratio of mass media due
to the reported number of infected individuals at time τ1 ago. Thus, k = αδ/μ can
be regarded as a parameter to measure the effect of psychological impact of media
reported numbers of infectious individuals.

The Jacobian matrix concerned the linearization of system (9) at E1 is

JE1 =
⎛

⎝
−β Î e−αM̂ − (d + σ) βe−αM̂ (N̄ − Ê − 2 Î ) −αβe−αM̂ (N̄ − Ê − Î ) Î

σ −(d + γ ) 0
0 δ −μ

⎞

⎠ .

Therefore, the characteristic equation |JE1 − λI3×3| = 0 yields

λ3 + a2λ
2 + a1λ + a0 = 0, (11)

where

a2 = μ + 2d + γ + σ + β Î e−αM̂ ,

a1 = μ(2d + γ + σ + β Î e−αM̂ ) + (d + γ + σ)β Î e−αM̂ ,

a0 = μ(d + γ + σ)β Î e−αM̂ + αδ(d + γ )(d + σ) Î .

(12)

In view of Hurwitz criterion, we only need to verify the sign of a2a1 − a0 to check
the stability of endemic equilibrium E1, since ai > 0, i = 1, 2, 3. To investigate
whether system (9) undergoes Hopf bifurcation at the endemic E1 (details about Hopf
bifurcation can be seen in Theorems 3.1 and 3.15 in Marsden and McCracken 1976),
we begin with exploring the existence of imaginary roots of the characteristic Eq. (11).
Substituting λ = iw,w ∈ R+, into Eq. (11) yields

w2 = a1 = a0
a2

. (13)

It follows from (13) that a pair of imaginary roots ± iw of the characteristic Eq. (11)
exists only if there exists k > 0 such that Θ(k) := − a2(k)a1(k) + a0(k) = 0. If
Θ(k) = 0, in order to validate the transversality condition of Hopf bifurcation, we
need to verify the sign of Re( dλdk |λ=iw). We have

Re
( dλ
dk |λ=iw

) = Re
(
− a′

2λ
2+a′

1λ+a′
0

3λ2+2a2λ+a1

)
|λ=iw

= Θ ′(k)
2a1+2a22

.

Now we study the properties of Θ(k). Note from (12) and β Î e−αM̂ =
(d+γ )(d+σ) Î

σ N̄−(d+γ+σ) Î
:= g( Î ) that

Θ(k) = −μ2(2d + γ + σ + g( Î )) − μ(2d + γ + σ + g( Î ))2

−(2d + γ + σ + g( Î ))(d + γ + σ)g( Î ) + μ(d + γ )(d + σ)k Î . (14)
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By using Lemma 1, which gives estimation of Î with respect to k, we can get the
following relations:

lim
k→0

Î = σ N̄ (R0−1)
R0(d+γ+σ)

, lim
k→0

k Î = 0,

lim
k→∞ Î = 0, lim

k→∞ k Î = lnR0.
(15)

By Lemma 1, we obtain that g( Î ) is monotone decreasing in k, and k Î is monotone
increasing in k. Therefore, Θ ′(k) > 0 and

lim
k→0

Θ(k) = −μ2(2d + γ + σ + g( Î )) − μ(2d + γ + σ + g( Î ))2

−(2d + γ + σ + g( Î ))(d + γ + σ)g( Î ) < 0,

lim
k→∞ Θ(k) = −μ2(2d + γ + σ) − μ(2d + γ + σ)2 + μ(d + γ )(d + σ) lnR0.

(16)

Denote

R1 = e
μ(2d+γ+σ)+(2d+γ+σ)2

(d+γ )(d+σ) . (17)

Thus by (16), if 1 < R0 ≤ R1, we have Θ(k) < 0 for any k > 0, which by Hurwitz
criteria, the endemic equilibrium E1 is locally asymptotically stable. If R0 > R1,
then there exists a unique k0 such that Θ(k0) = 0. Therefore, in view of Theorems
3.1 and 3.15 in Marsden and McCracken (1976), we have the following results.

Theorem 4 (i) If 1 < R0 ≤ R1, then the endemic equilibrium E1 of system (9) is
locally asymptotically stable for any k > 0.

(ii) If R0 > R1, the endemic equilibrium E1 is asymptotically stable for k ∈ [0, k0)
and unstable for k > k0. Besides, system (9) undergoes Hopf bifurcation at
the endemic equilibrium when k = k0, where k0 is the unique positive root of
Θ(k) = 0 (given in (14)).

Remark 1 Denote the Jacobian matrix concerned the linearization of system (8) at Ê1
by JÊ1 . It is easy to verify that the characteristic equation

|JÊ1 − λI4×4| = (λ + d)|JE1 − λI3×3| = 0.

Thus Theorem 4 also holds for Ê1 in system (8).

We now use numerical results to demonstrate our theoretical results in Theorem 4
(ii). We fixed

β = 80, d = σ = γ = μ = 0.1(day−1), α = 0.1, N̄ = 1. (18)

Then we haveR0 > R1. We now take δ as a flexible parameter, and let k = αδ
μ

be the
bifurcation parameter. We then obtain that k0 ≈ 384 in Theorem 4 (ii). Figure 1 shows
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Fig. 1 Solutions of system (9) for k = 300 < k0 ≈ 384 (a) and for k = 400 > k0 ≈ 384 (b). Parameters
are fixed as (18) (Color figure online)

that the endemic equilibrium is asymptotically stable for k = 350 < k0 ≈ 384 (shown
in Fig. 1a), and the bifurcated periodic solution is feasible for k = 400 > k0 ≈ 384
(shown in Fig. 1b). Note that here relatively large value of parameter k implies very
quick mass media’ response and individuals’ response, and further this quick response
has more likely to induce the periodic oscillation of disease infections. Moreover, we
plotted the bifurcation diagram by using the media impact level k as the bifurcation
parameter (shown in Fig. 2). It can be seen from the bifurcation diagram that media
coverage lowers the equilibrium level of the disease infection.

Our theoretical and numerical results imply that though the media coverage itself is
not a determined fact to eradicate the infection of the disease, the analysis demonstrates
that the higher media impact level , the less number of individuals will be infected.

4.2 Global Stability of the Endemic EquilibriumWithout Delays

In what follows, we will show directly when R0 > 1 and k is sufficient small, the
unique endemic equilibrium Ê1 of system (8) is globally asymptotically stable, which
implies E1 is globally asymptotically stable for limiting system (9). For further pur-
poses, we give the following two lemmas.

Lemma 2 For initial value ϕ ∈ R4+, system (8) admits a unique nonnegative bounded
solution ū(t, ϕ) for all t ≥ 0 with ū0 = ϕ.

Lemma 3 IfR0 > 1, there exists a positive constant η0 such that for (8)

lim inf
t→∞ (S(t), E(t), I (t), M(t)) ≥ (η0, η0, η0, η0). (19)
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Fig. 2 Bifurcation diagram describing the dynamics of system (9) as k increases. Parameters are fixed as
(18) (Color figure online)

The proofs of Lemma 2 and Lemma 3 are standard, so we omit here.

Theorem 5 If R0 > 1 and k ≤ μ+d
μN̄

, then the unique endemic equilibrium Ê1 of

system (8) is globally asymptotically stable.

Proof Now we prove that the unique endemic equilibrium of system (8) is globally
asymptotically stable by using the theory developed in Li et al. (1999), Li and Mul-
downey (2000). The Jacobian matrix of system (8) reads

J =

⎛

⎜
⎜
⎝

−βe−αM I − d 0 −βe−αMS + γ αβe−αMSI
βe−αM I −(d + σ) βe−αMS −αβe−αMSI

0 σ −(d + γ ) 0
0 0 δ −μ

⎞

⎟
⎟
⎠ .

The third additive compound matrix of J is

J [3] =

⎛

⎜
⎜
⎝

−βe−αM I − d − (d + σ) − (d + γ ) 0
δ −βe−αM I − d − (d + σ) − μ

0 σ

0 0
αβe−αMSI αβe−αMSI
βe−αMS βe−αMS − γ

−βe−αM I − d − (d + γ ) − μ 0
βe−αM I −(d + σ) − (d + γ ) − μ

⎞

⎟
⎟
⎠

and the corresponding linear compound system reads
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(X ,Y , Z ,W )T = J [3](X ,Y , Z ,W )T . (20)

In view of Li et al. (1999), Li and Muldowney (2000), we need to show the uni-
form global stability of the linear compound system. For this purpose, we choose the
Lyapunov functional as

V (S, E, I , R, X ,Y , Z ,W ) = max

{
a|X |
E

,
|Y |
E

,
|Z | + |W |

I

}

,

where a will be determined later. It follows from Lemma 2 and 3 that there exist two
positive constants C1,C2 such that

C1(|X | + |Y | + |Z | + |W |) ≤ V ≤ C2(|X | + |Y | + |Z | + |W |).

Next, we derive the total derivative of V along the trajectory of the linear compound
system (20). We will separate the discussion for the several cases below. Throughout
the calculation, we denote D+ the right-hand (total) derivative with respect to t and
we will use the following equalities:

Ė

E
= βe−αMSI

E
− (d + σ),

İ

I
= σ E

I
.

Case (1): V = a|X |
E , which implies a|X |

E ≥ |Y |
E ,

a|X |
E ≥ |Z |+|W |

I . We have

D+V ≤
(
− Ė

E − βe−αM I − d − (d + σ) − (d + γ )
)

a|X |
E

+ a
E αβe−αMSI (|Z | + |W |),

≤
(
αaI βe−αM SI

E − Ė
E − βe−αM I − d − (d + σ) − (d + γ )

)
V ,

=
(
(αaI − 1)βe−αM SI

E − βe−αM I − d − (d + γ )
)
V .

Case (2): V = |Y |
E , which implies |Y |

E ≥ a|X |
E ,

|Y |
E ≥ |Z |+|W |

I . We have

D+V ≤ δ
|X |
E +

(
− Ė

E − βe−αM I − d − (d + σ) − μ
) |Y |

E

+βe−αM S
E (|Z | + |W |) − γ

|W |
E ,

≤
(

δ
a + βe−αM SI

E − Ė
E − βe−αM I − d − (d + σ) − μ

)
V ,

= (
δ
a − βe−αM I − d − μ

)
V .

Case (3): V = |Z |+|W |
I , which implies |Z |+|W |

I ≥ a|X |
E ,

|Z |+|W |
I ≥ |Y |

E . Then,

D+V ≤ σ
|Y |
I − İ

I
|Z |+|W |

I + (−d − (d + γ ) − μ)
|Z |
I

+(−(d + σ) − (d + γ ) − μ)
|W |
I ,

≤
(

σ E
I − İ

I − d − (d + γ ) − μ
)
V

= −(d + μ)V .
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Since αδ ≤ μ+d
N̄

, we can choose δ
d+μ

≤ a ≤ 1
α N̄

such that aα I ≤ 1 in case 1) and
δ
a ≤ d+μ in case 2). Therefore, in view of Lemma 2, 3, there exists a positive constant

b such that D+V ≤ −bV . By Li et al. (1999) Corollary 3.2, Ê1 of the system (8) is
globally asymptotically stable. 
�

5 Dynamics of System (3) at the Endemic Equilibriumwith Delays

Throughout this section, we assume that 1 < R0 ≤ R1 or R0 > R1, k = αδ
μ

∈
[0, k0), where R1 is defined in (17) and k0 is the unique positive root of Θ(k) = 0
(given in (14)). This assumption means the unique endemic equilibrium E1 is locally
asymptotically stable when τ := τ1 + τ2 = 0. In the following, we focus on the effect
of time delays on stability of the endemic equilibrium and examining the local and
global Hopf bifurcation of system (3) with two time delays.

5.1 Preliminary Results

While dealing with the stability and local Hopf bifurcation of an equilibrium associ-
ated with functional differential equations, the properties of characteristic functions
corresponding to the linearized functional differential equations, which are called
exponential polynomials, are of great significance. We give two properties associated
with the existence of purely imaginary roots and the transversality conditions of local
Hopf bifurcation, which may be used in other functional equations.

Consider the exponential polynomial

P(λ, τ ) = e−λτ
n∑

j=0
b jλ

j +
n∑

j=0
a jλ

j

= e−λτ (B1(−λ2) + λB2(−λ2)) + (A1(−λ2) + λA2(−λ2)),

(21)

where n = 2l + 1, l ∈ Z+, τ ∈ R+, a j , b j ∈ R, j = 1, 2, ..., n with an = 1, bn = 0
and

A1(x) = ∑l
j=0 a2 j (−x) j , A2(x) = ∑l

j=0 a2 j+1(−x) j ,

B1(x) = ∑l
j=0 b2 j (−x) j , B2(x) = ∑l

j=0 b2 j+1(−x) j .
(22)

Now we explore the existence of purely imaginary roots ±iw,w > 0 with respect
to (21). Substituting λ = iw into P(λ, τ ) yields

P(iω, τ) = e−iωτ (B1(w
2) + iwB2(w

2)) + (A1(w
2) + iwA2(w

2)),

and P(iw, τ) = 0 gives A1(w
2)2 + w2A2(w

2)2 = B1(w
2)2 + w2B2(w

2)2. Set

F(x) = A1(x)
2 + x A2(x)

2 − B1(x)
2 − x B2(x)

2. (23)
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If w exists, i.e., F(x) = 0 admits a positive root x = ω2, then

cos(wτ) = G = − A1(w
2)B1(w

2) + w2B2(w
2)A2(w

2)

B1(w2)2 + w2B2(w2)2
,

sin(wτ) = N = wA2(w
2)B1(w

2) − wA1(w
2)B2(w

2)

B1(w2)2 + w2B2(w2)2
,

which implies τ = τm,m = 0, 1, 2, 3, . . . , and

τm = τ 0 + 2mπ

w
, τ 0 =

{ arccosG
w

, N ≥ 0,
2π−arccosG

w
, N < 0.

(24)

Moreover, we further have the following sign equality:

Lemma 4 sign(Re( dλdτ )|τ=τm ) = sign( dF(x)
dx |x=w2), where τm = τ 0 + 2mπ

w
and m is

an integer.

Proof It follows from the formula of P(λ, τ ) defined in (21) that

dλ

dτ
= λe−λτ (B1 + λB2)

−τe−λτ (B1 + λB2) + e−λτ (−2λB ′
1 + B2 − 2λ2B ′

2) − 2λA′
1 + A2 − 2λ2A′

2
.

Moreover, P(iw, τm) = 0 yields

dλ

dτ
|−1
τ=τm = −τ

iw
+ −2iwB ′

1 + B2 + 2w2B ′
2

iw(B1 + iwB2)
− −2iwA′

1 + A2 + 2w2A′
2

iw(A1 + iwA2)
.

Therefore, we get

Re

(
dλ

dτ
|−1
τ=τm

)

= 2A′
1A1 + A2

2 + 2x A′
2A2

A2
1 + w2A2

2

− 2B ′
1B1 + B2

2 + 2x B ′
2B2

B2
1 + w2B2

2

.

Since A2
1 + w2A2

2 = B2
1 + w2B2

2 , we have

Re

(
dλ

dτ
|−1
τ=τm

)

= F ′(w2)

B2
1 + w2B2

2

.

Since B2
1 + w2B2

2 is positive, we obtain

sign

(

Re

(
dλ

dτ

)

|τ=τm

)

= sign

(
dF(x)

dx
|x=w2

)

.


�
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5.2 Local Stability and Local Hopf Bifurcation

In what follows, we will investigate the stability of E1 with respect to system (3).
Particularly, we now set delay (τ1, τ2) ∈ R+ × R+ as the bifurcation parameters to
explore whether Hopf bifurcation can occur at E1 or not.

The Jacobian matrix about the lineralization of system (3) at E1 gives

⎛

⎝
−β Î e−αM̂ − (d + σ) − λ βe−αM̂ (N̄ − Ê − 2 Î ) −αβe−λτ2e−αM̂ (N̄ − Ê − Î ) Î

σ −(d + γ ) − λ 0
0 δe−λτ1 −μ − λ

⎞

⎠ .

Thus the characteristic equation of E1 reads

P(λ, τ ) = λ3 + a2λ
2 + a1λ + a0 + be−λτ = 0, τ = τ1 + τ2, (25)

where

a0 = μ(d + γ + σ)β Î e−αM̂ ,

a1 = μ(2d + γ + σ + β Î e−αM̂ ) + (d + γ + σ)β Î e−αM̂ ,

a2 = μ + 2d + γ + σ + β Î e−αM̂ , b = αδ(d + γ )(d + σ) Î .

(26)

It follows from Theorem 4 that E1 is locally asymptotically stable for τ = 0. In view
of Ruan and Wei (2003), the stability of E1 may change if a pair of purely imaginary
roots λ = ±iw,w > 0 arises. Now we use the results in Lemma 4 together with
Lemma A.1, A.2, A.3 in Appendix A to check whether system (3) undergoes Hopf
bifurcation at the endemic equilibrium E1.

We have A1(x) = a0 − a2x, A2(x) = a1 − x, B1(x) = b, B2(x) = 0 in (22).
Moreover, P(iw, τ) = 0 yields

F(x) = x3 + px2 + qx + r , x = w2

in (23) and (44), where

p = a22 − 2a1, q = a21 − 2a0a2, r = a20 − b2, (27)

and

cos(wτ) = G = a2w2 − a0
b

, sin(wτ) = N = w(a1 − w2)

b
.

Recall the definitions in Appendix A,

D1 = {(p, q, r) ∈ R3|F(x) = 0 has only one positive real root x1
such that F ′(x1) > 0},

D2 = {(p, q, r) ∈ R3|F(x) = 0 has two positive real roots x1, x2
such that F ′(x1,2) > 0}.
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If (p, q, r) ∈ D1, we have

ω = √
x1 (see (48)) (28)

and

τm = τ 0 + 2mπ

w
, τ 0 =

{ arccosG
w

, N ≥ 0,
2π−arccosG

w
. N < 0.

(29)

If (p, q, r) ∈ D2, we have

w1 = √
x1, w2 = √

x2 (see (50)). (30)

Moreover, for i = 1, 2,

τm,i = τ 0,i + 2mπ

w
, τ 0,i =

{
arccosG

wi
, N ≥ 0,

2π−arccosG
wi

. N < 0.
(31)

In view of Lemma 4, A.1, A.2, A.3 and Corollary 2.4 in Ruan and Wei (2003),
and applying the Hopf bifurcation theorem for delay differential equations (Theo-
rem 11.1.1 in Hale and Lunel 1993), we have the following theorem.

Theorem 6 Let (τ1, τ2) ∈ R+ × R+. Assuming 1 < R0 ≤ R1 orR0 > R1, k = αδ
μ

∈
[0, k0), where R1 is defined in (17) and k0 is the unique positive root of Θ(k) = 0
(given in (14)).

(i) If (p, q, r) ∈ D1 (defined in (47)), the endemic equilibrium of system (3) is
locally asymptotically stable for τ ∈ [0, τ 0) and unstable for τ > τ 0. Besides,
system (3) undergoes Hopf bifurcation at the endemic equilibrium when τ =
τm,m = 0, 1, 2..., where τ 0 is given in (29) with w = √

x1 (see details in (28));
(ii) If (p, q, r) ∈ D2 (defined in (49)), the endemic equilibrium of system (3) is

asymptotically stable for τ ∈ [0, τ 0) and unstable for τ > τ 0. Besides, system
(3) undergoes Hopf bifurcation at the endemic equilibrium when τ = τm,i , i =
1, 2,m = 0, 1, 2..., where τ 0,i , i = 1, 2, are given in (31) with wi = √

xi (see
details in (30)) and τ 0 = min{τ 0,1, τ 0,2};

(iii) In other cases, the endemic equilibrium of system (3) is locally asymptotically
stable.

5.3 Global Hopf Bifurcation

In this section, we explore the continuation and termination of the local Hopf bifur-
cation emanating from τ = τ n, n = 1, 2, 3, ... for (p, q, r) ∈ D1 (given in (47)), or
τ = τ n,i , i = 1, 2, n = 1, 2, ... for (p, q, r) ∈ D2 (given in (49)) by using global
Hopf bifurcation theorem of functional differential equations (Theorem 3.2 in Wu
1998; see also Erbe et al. 1992). We refer to Qu et al. (2010), Wei and Li (2005), Shu
et al. (2014) for more applications about global Hopf bifurcation theorem of functional
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differential equations. Throughout this part, we assume that R0 > 1 and k ≤ μ+d
μN̄

,

which means that the endemic equilibrium E1 of system (3) without time delays is
globally asymptotically stable.

Denote X = C([−1, 0], R3). Let τ1 = sτ, τ2 = (1 − s)τ , and fix s here. Set
z(t) = (z1(t), z2(t), z3(t)) = (E(τ t), I (τ t), M(τ t)) and rewrite system (3) as the
following functional differential equation:

z′(t) = F(zt , τ, T ), (t, τ, T ) ∈ R+ × R+ × R+, (32)

where zt (θ) = z(t + θ), θ ∈ [−1, 0] , zt ∈ X and

F(zt , τ, T ) =
⎧
⎨

⎩

τβe−αz3(t−1+s)(N̄ − z1(t) − z2(t))z2(t) − τ(d + σ)z1(t),
τσ z1(t) − τ(d + γ )z2(t),
τδz2(t − s) − τμz3(t).

(33)

F̃ denotes the restricted functional of F on R3 × R+ × R+, i.e.,

F̃ := F |R3×R+×R+ −→ R3,

F̃(z, τ, T ) =
⎧
⎨

⎩

τβe−αz3(N̄ − z1 − z2)z2 − τ(d + σ)z1,
τσ z1 − τ(d + γ )z2,
τδz2 − τμz3.

(34)

It is obvious that F̃ is twice continuously differentiable. Thus the assumption (A1) in
global Hopf bifurcation theorem (Theorem 3.2 in Wu 1998) is corroborated.

Let the set of stationary solutions of system (32) be

N (F) = {(̃z, τ̃ , T̃ ) : F (̃z, τ̃ , T̃ ) = 0}.

For any (z̃, τ̃ , T̃ ) ∈ N (F), we have DF(z̃, τ̃ , T̃ )(e−λ I d) 
= 0, which implies the
assumption (A2) in Theorem 3.2 in Wu (1998) is satisfied.

For any stationary solution (z̃, τ̃ , T̃ ), the characteristic matrix is

Δ
(z̃,τ̃ ,T̃ )

(λ) = λI d − DF(z̃, τ̃ , T̃ )(e−λ I d)

=
⎛

⎝
−τβ z̃2e−αz̃3 − τ(d + σ) − λ τβe−αz̃3(N̄ − z̃1 − 2z̃2)
τσ −τ(d + γ ) − λ

0 τδe−λs

−ταβe−λ(1−s)e−αz̃3(N̄ − z̃1 − z̃2)z̃2
0
−τμ − λ

⎞

⎠ .

Thus the characteristic equation of the stationary solution gives

det(Δ
(z̃,τ̃ ,T̃ )

(λ)) = λ3 + ã2τλ2 + ã1τ
2λ + ã0τ

3 + b̃τ 3e−λ = 0,
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where

ã0 = μ(d + γ )(d + σ + β z̃2e−αz̃3 − μσβ z̃2e−αz̃3(N̄ − z̃1 − 2z̃2),
ã1 = (d + γ )(μ + d + σ + β z̃2e−αz̃3

+μ(d + σ + β z̃2e−αz̃3(z̃2 + 2σ z̃2 + σ z̃1 − σ N̄ )),

ã2 = μ + 2d + γ + σ + β z̃2e−αz̃3 , b̃ = αδ(d + γ )(d + σ)z̃2.

(35)

Therefore, the assumption (A3) in Wu (1998) holds true.
In view of Theorem 3.2 inWu (1998), if det(Δ

(z̃,τ̃ ,T̃ )
(im 2π

T̃
)) = 0 for some integer

m, we call this stationary solution (z̃, τ̃ , T̃ ) ∈ N (F) a center. Moreover, if it is the
only center in some neighborhood of (z̃, τ̃ , T̃ ) and it has finitely purely imaginary
characteristic values of the form im 2π

T̃
, we call this center is isolated. Let J (z̃, τ̃ , T̃ )

denote the set of all such positive integers m. From Wu (1998), we know that for any
integer n ≥ 0, ((Ê, Î , M̂), τ n, 2π

ω0τ n
) is an isolated center (see the definitions of τ n

and ω0 in (29), (31), (28), (30) and Theorem 6). Moreover, it has only one purely
imaginary eigenvalue of the form im 2π

T̃
and the only integer m = 1. Note that the

crossing number in Wu (1998) satisfies

γ1

(

(Ê, Î , M̂), τ n,
2π

ω0τ n

)

= −1. (36)

Thus the assumption (A4) in Wu (1998) holds.
Let Σ(F) = Cl{(z, τ, T ) : z is a nontrivial T -periodic solution of system (32)}

with Σ(F) ⊂ X × R+ × R+, n = 1, 2, ..., and C((Ê, Î , M̂), τ n, 2π
ω0τ n

) denotes the

connected component of (Ê, Î , M̂), τ n, 2π
ω0τ n

) in Σ(F). The global Hopf bifurcation
theorem (Theorem 3.2 inWu 1998) implies that either of the subsequent two assertions
holds:

(i) C((Ê, Î , M̂), τ n, 2π
ω0τ n

) is unbounded,

(ii) C((Ê, Î , M̂), τ n, 2π
ω0τ n

) is bounded, C((Ê, Î , M̂), τ n, 2π
ω0τ n

)∩ N (F) is finite and
for all n = 1, 2, 3, ..., we have

∑

(z,τ,T )∈C((Ê, Î ,M̂),τ n , 2π
ω0τn )∩N (F)

γm(z, τ, T ) = 0,

where γm(z, τ, T ) is the mth crossing number of (z, τ, T ) if m ∈ J (z, τ, T ),
otherwise, γm(z, τ, T ) = 0.
Theorem 6 implies for each n = 1, 2, ..., (z, τ, T ) ∈ C((Ê, Î , M̂), τ n, 2π

ω0τ n
),

J (z, τ, T ) = {1}, (37)
∑

(z,τ,T )∈C
(
(Ê, Î ,M̂),τ n , 2π

ω0τn

)
∩N (F)

γm(z, τ, T ) = γ1(z, τ, T ) = −1 < 0. (38)

Therefore, for all n = 1, 2, ..., assertion (i) holds, which means the con-
nected component of ((Ê, Î , M̂), τ n, 2π

ω0τ n
) in Σ(F), C((Ê, Î , M̂), τ n, 2π

ω0τ n
) is
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unbounded. If its projection onto z-space and T -space are bounded, then the pro-
jection on τ -space is unbounded. Therefore, we reap the final results of global
Hopf bifurcation branches. The following two lemmas help confirm the bounded-
ness of projection of C((Ê, Î , M̂), τ n, 2π

ω0τ n
) onto z-space and T -space. A direct

result of Theorem 1 gives the following lemma.

Lemma 5 For initial value φ = (φ1, φ2, φ3) ∈ X+ with 0 < φ1(0) + φ2(0) < N̄ , all
periodic solutions of system (32) are uniformly bounded.

It can be seen from Lemma 5 that the projection of C((Ê, Î , M̂), τ n, 2π
ω0τ n

) onto
z-space is bounded. (29) and (31) yield that

1

n + 1
<

2π

τ nω0
< 1. (39)

If we exclude the existence of periodic solutions of period 1, then system (32) has
no periodic solutions of period 1

n for any positive integer n. Then, we can obtain the

projection of C((Ê, Î , M̂), τ n, 2π
ω0τ n

) onto T -space is bounded.

Lemma 6 If R0 > 1 and k ≤ μ+d
μN̄

, then the system (32) has no periodic solutions of

period 1.

Proof Assume that z(t) = (z1(t), z2(t), z3(t)) is a periodic solution of system (32)
with period 1, then y(t) = (y1(t), y2(t), y3(t)) = (z1(t), z2(t), z3(t − 1 + s)) is a
periodic solution of the following ordinary differential equation:

⎧
⎨

⎩

ẏ1 = τβe−αy3(N̄ − y1 − y2)y2 − τ(d + σ)y1,
ẏ2 = τσ y1 − τ(d + γ )y2,
ẏ3 = τδy2 − τμy3.

(40)

By Theorem 5, the endemic equilibrium is globally asymptotically stable and no
periodic solutions occur. This contradiction completes the proof. 
�
Theorem 7 Assume that R0 > 1 , k ≤ μ+d

μN̄
and (p, q, r) ∈ D1 ∪ D2 (see details

of D1, D2 in (47), (49)), then for any τ > τ 1 system (3) has at least one nontrivial
periodic solution, where τ 1 = min{τ 1,1, τ 1,2} if (p, q, r) ∈ D2.

Proof Equation (34) implies hypothesis (A1), (A2) and (A3) in Wu (1998) Theorem
3.2 hold true. Moreover, it follows Eqs. (36) and (37) conditions (A4) and (A5) in Wu
(1998) Theorem 3.2 hold. By Theorem 6, we know for each n = 1, 2, ..., (z, τ, T ) ∈
C((Ê, Î , M̂), τ n, 2π

ω0τ n
), and

∑

(z,τ,T )∈C((Ê, Î ,M̂),τ n , 2π
ω0τn )∩N (F)

γm(z, τ, T ) = γ1(z, τ, T ) = −1 < 0. (41)

Thus for all n = 1, 2, ..., C((Ê, Î , M̂), τ n, 2π
ω0τ n

) is unbounded. Lemma 5 claims

the projection of C((Ê, Î , M̂), τ n, 2π
ω0τ n

), n = 1, 2, 3, ... onto z-space is bounded.

123



Analysis of an Epidemic System with Two Response Delays… 1603

Moreover, (24) yields

1

n + 1
<

2π

τ nω0
< 1. (42)

In view of Lemma 6, we can exclude the existence of periodic solutions of period
1, which means the projection of C((Ê, Î , M̂), τ n, 2π

ω0τ n
), n = 1, 2, 3, ..., onto T -

space is bounded. Hence, the projection of C((Ê, Î , M̂), τ n, 2π
ω0τ n

), n = 1, 2, 3, ...
onto τ -space is bounded. 
�

By using numerical methods, we depict the local and global Hopf branches of
periodic solutions originating from Hopf bifurcation points. We initially fix parameter
values as

β = 1, N̄ = 1, σ = 1(day−1), d = 0.2(day−1), γ = μ = 0.1(day−1), δ = 0.1, α = 3.

(43)

Here, let τ2 = 0.5(day) and τ1 vary and consequently τ = τ1 + τ2 can be used as the
bifurcation parameter. It can be calculated that

R0 = 20/9, k ≤ μ + d

μN̄
, and (p, q, r) ∈ D1.

Besides, (29) and (28) yield τ 0 ≈ 22.2, τ 1 ≈ 102.1, τ 2 ≈ 182.
It can be observed from Fig. 3a that the endemic equilibrium is asymptotically

stable for τ = 20 < τ 0 ≈ 22.2 and from Fig. 3b that the bifurcated periodic solution
is feasible for τ = 25 > τ 0 ≈ 22.2. By using DDE-BIFTOOL (Engelborghs et al.
2002), we can depict the global Hopf branches of periodic solution originating from
Hopf bifurcation points τ 0, τ 1, τ 2, shown in Fig. 4a. When τ 0 < τ < τ 1, system (3)
has only one periodic solution originating from τ 0 and the Hopf branch emanating
can continue in a wide range. As τ increases and satisfies τ 1 < τ < τ 2, we obtain two
periodic solutions originating from τ 0, τ 1. As τ further increases and satisfies τ > τ 2,
three periodic solutions originating from τ 0, τ 1, τ 2 coexist. It follows fromFig. 4b and
Theorem 10.3.2 in Hale and Lunel (1993) that the periodic solution bifurcated from τ 0

is stable, whereas the periodic solutions bifurcated from τ 1, τ 2 are unstable. Further,
we plotted the bifurcation diagram by using the delay as the bifurcation parameter
(shown in Fig. 4c). We mention here that fixing one delay and varying the other, we
get the same bifurcation diagrams. This is evidently due to the fact that two delays
always sum up together in analyzing bifurcation [see (25)].

Figure 5 describes the effect of two delays on infectious disease in the early stage. In
Fig. 5a, b, we fix one delay and vary the other to see that the smaller the delay of mass
media’s or individuals’ response is, the lower and earlier the peak comes,which implies
both mass media’s timely report and individuals’ prompt response are significant in
lowering disease infection. Moreover, if we fix τ2 = 5 (day) and increase τ1 from 3 to
6, 9, 12, then the peak time increases by 3.81%, 17.85%, 19.90%, respectively, and the
peak value increases by 4.46%, 7.04%, 8.4%, respectively; if we fix τ1 = 5 (day) and
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Fig. 3 Solutions of system (3) showing that a the endemic equilibrium is asymptotically stable for τ =
20.5 < τ0 ≈ 22.28, and b the bifurcated periodic solution is feasible for τ = 23.5 > τ0 ≈ 22.28.
Parameters are fixed as (43) (Color figure online)

increase τ2 from 3 to 6, 9, 12, then the peak time increases by 5.92%, 23%, 41.67%,
respectively, and the peak value increases 8.14%, 13.54%, 16.28%, respectively. This
implies that the peak time and the peak value are more sensitive to τ2 (individuals’
response delay) than delay τ1( mass media’s report delay). Therefore, we can see that
individuals’ immediate response is more important than mass media’s response in
mitigating disease outbreak .

Note that when doing numerical studies shown in Figs. 1–5, we fixed the total
population N̄ as 1, then I (t) represents the fraction of individuals who are infectious.
We focus our model on influenza A(H1N1) pandemic, the mean exposed time 1

σ
and

infectious time 1
γ
are 2, 4, respectively (Pourbohloul et al. 2010). Generally speaking,

transmission rate β, reporting rate δ and media spontaneous disappearance rate μ are
usually unknown and need to be estimated (Xiao et al. 2015; Yan et al. 2016; Song
and Xiao 2018; Yan et al. 2018), we fixed them as in (18) and (43) to demonstrate
the occurrence of bifurcation. It is worth mentioning that we choose the very different
values of β (which changes from 80 to 1) to illustrate occurrence of Hopf bifurcation
shown in Figs. 1 and 2 and in Figs. 3, 4 and 5 for delay case. In Figs. 1 and 2, Hopf

bifurcation happens when k is large andR0 > R1 = e
μ(2d+γ+σ)+(2d+γ+σ)2

(d+γ )(d+σ) > e4, so we
choose the relatively large value of β (β = 80) to simply illustrate the occurrence of
bifurcation.

6 Conclusion and Discussion

It has been widely recognized in the epidemiological literatures that mass media have
a great impact on individuals’ behavior changes, and hence significantly influence the
spread and outbreak of the infectious diseases. There is evidence showing the existence
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Fig. 4 a Global Hopf branches of τ0, τ1, τ2 with respect to system (3). b The principal Floquet multipliers
of periodic solutions on branches of τ0, τ1, τ2. c Bifurcation diagram describing the dynamics of system
(3) as τ increases. Parameters are fixed as (43) (Color figure online)

0 5 10 15 20 25 30 35 40

t(day)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

I(t
)

1=3, 2=5

1=6, 2=5

1=9, 2=5

1=12, 2=5

0 5 10 15 20 25 30 35

t(day)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

I(t
)

1=5, 2=3

1=5, 2=6

1=5, 2=9

1=5, 2=12

(A) (B)

Fig. 5 Solutions of system (3) when a fixing τ2 and varying τ1; b fixing τ1 and varying τ2. Here β =
1, N̄ = 1, σ = 1, d = 0.2, γ = δ = μ = 0.1, α = 3 (Color Figure Online)
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of time delays of mass media and/or individuals’ response and reported delay (Yan
et al. 2016). We then proposed an SIR-type model (Song and Xiao 2018) with a
delay media impact and examined global dynamics of the proposed model. To further
investigate the delayed media impact on disease infection, we extend our paper (Song
and Xiao 2018) by including extra compartment M(t), describing the level of news
items, and considering two time delays with one representing the reported delay and
the mass media’s response duration, and the other denoting the time for individuals’
response to the current media coverage. Hence, we proposed a functional SEIS-M
differential model with two time delays, to examine the delayed media impact on the
transmission dynamics of emergent infectious diseases. We took the level of media
impact as bifurcation parameter and studied the local bifurcation with respect to the
endemic equilibrium of the model without delay. Further, we investigated the local
and global bifurcation by considering the summation of two delays as a bifurcation
parameter and examined the onset and termination ofHopf bifurcations from a positive
equilibrium theoretically and numerically.

We defined the basic reproduction number and showed that R0 can serve as a
threshold value for the global extinction and uniform persistence of the disease. We
proved that when the basic reproduction number R0 is less than 1, the disease-free
equilibrium of system (1) is globally asymptotically stable which means the disease
will go to extinction, while the basic reproduction numberR0 is greater than 1, disease
is uniformly persistent and there exists an endemic equilibrium. In particular, the
properties of the LambertW function (Corless et al. (1996)) is utilized to represent
the positive equilibrium. Moreover, we find that R0 is independent of media impact,
similar to the main conclusion in papers (Xiao et al. 2013, 2015; Song and Xiao
2018), which implies media is not a determined fact to influence the global extinction
and uniform persistence of the disease. Although the media coverage itself is not a
determined fact to eradicate the infection of the disease, our results demonstrate that
the higher the media impact level , the less number the infected individuals are.

When considering no delays,we found that the ordinary SEIS-Msystem (8) exhibits
interesting dynamics. If the basic reproduction number 1 < R0 ≤ R1 or the basic
reproduction number R0 > R1 together with the media impact level k = αδ

μ
< k0,

then the unique endemic equilibrium is locally asymptotically stable; if the basic
reproduction numberR0 > R1 and themedia impact level k > k0, the unique endemic
equilibrium is not stable andHopf bifurcation at the endemic state of the ordinarySEIS-
M system (8) may occur. Particularly, by using the third additive compound system
theory developed in Li et al. (1999), Li andMuldowney (2000), we show that when the
media impact level is small, the endemic equilibrium of the ordinary SEIS-M system
(8) is globally asymptotically stable.

When taking two delays into consideration, we showed that under the condition
of 1 < R0 ≤ R1 or R0 > R1 together with the media impact level k = αδ

μ
< k0;

if (p, q, r) ∈ D1 [defined in (47)], the endemic equilibrium of system (3) is locally
asymptotically stable for summation of twodelays τ ∈ [0, τ 0), unstable for τ > τ 0 and
system (3) undergoes Hopf bifurcation at the endemic equilibrium when τ = τ k, k =
0, 1, 2, . . .; if (p, q, r) ∈ D2 , the endemic equilibrium of system (3) is asymptotically
stable for τ ∈ [0, τ 0), unstable for τ > τ 0 and system (3) undergoes Hopf bifurcation
at the endemic equilibrium when τ = τ k,i , i = 1, 2, k = 0, 1, 2...; if (p, q, r) ∈
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R3/(D2∪D1), the endemic equilibrium of system (3) is locally asymptotically stable.
Moreover, we validated the global onset and termination of Hopf bifurcations by
employing the global Hopf bifurcation theorem (Wu 1998; Qu et al. 2010; Wei and Li
2005; Shu et al. 2014), and obtained that ifR0 > 1 , k ≤ μ+d

μN̄
and (p, q, r) ∈ D1∪D2,

system (3) has at least one nontrivial periodic solution for any τ > τ1. The numerical
analysis through DDE-BIFTOOL developed by Engelborghs et al. (2002) implied that
the Hopf branch emanating from τ0 can continue in a wide range.

Generally, it is hard to handle the systemswith twodelays (Adimy et al. 2006;Cooke
and van den Driessche 1996; Li and Kuang 2007; Ruan and Wei 2003, 1999), and
doing bifurcation analysis remains challenging. It isworth noting that herewe can fully
investigate the local and global bifurcation of system (1) since two delays, although
arising different places in the model equations, always add together in the characteris-
tic equations [see (25)]. Consequently, the sum of two delays can act as a bifurcation
parameter in analyzing the local and global bifurcation. In fact, from the viewpoint of
epidemiology, it is not easy to find the two delays, denoting the mass media’s response
duration and individuals’ response to the currentmedia coverage, actually representing
a common delay in the feedback cycle from infection to disease incidence, and hence
they both together influence stability of endemic equilibrium. Further, it is interesting
to mention that time delay is not unique factor to induce periodic oscillation. System
(1) without delays can also occur Hopf bifurcation for some suitable conditions. That
is because a feedback cycle, from infection to the level of mass media and back to
the disease incidence, does exist in the model formulation and may cause oscillations.
Main results indicated that media impact with time delays significantly affected the
transmission dynamics of infectious diseases. This may enhance our understanding of
the effects of behavior changes during an epidemic or pandemic threat, which helps
to promote public health communication strategies and disease mitigation measures.

We point out here that the disease-related death was not included inmodel (1) since,
on one hand, we focused our model on influenza A(H1N1) pandemic, and the disease-
induced death ratewas small and could be ignored.On the other hand,we compromised
here to make bifurcation analysis in Theorems 4 and 5 not too complicated. As can be
seen in Appendix A, investigating the existence of positives roots of a cubic equation
has been quite complicated.

Acknowledgements PS was supported by the China Scholarship Council; YX was supported by the
National Natural Science Foundation of China(NSFC, 11631012, 11571273(YX)). The authors would
like to thank the referees for many helpful comments, which lead to improvements in Theorems 1–3. The
authors would like to thank Prof Xiaoqiang Zhao for his generous help in discussing the theory of the
limiting system.

Appendix A

In this section, we give some properties for the general cubic equations. Consider the
following cubic equation with one variable x :

F(x) = x3 + px2 + qx + r = 0, p, q, r ∈ R. (44)
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Set

D0 = {(p, q, r)|F(x) = 0 in (44) has no positive real roots x
such that F ′(x) > 0, (p, q, r) ∈ R3},

D1 = {(p, q, r)|F(x) = 0 in (44) has only one positive real root x1
such that F ′(x1) > 0, (p, q, r) ∈ R3},

D2 = {(p, q, r)|F(x) = 0 in (44) has two positive real roots x1, x2
such that F ′(x1,2) > 0, (p, q, r) ∈ R3}.

(45)

Note that R3 = D0 ∪ D1 ∪ D2. We investigate some properties with respect to D1
and D2.

Lemma A.1 (Shengjin distinguishing means Fan 1989) The cubic equation with one
variable x satisfies x3 + px2 + qx + r = 0 where p, q, r ∈ R. Assume

A = p2 − 3q, B = pq − 9r ,C = q2 − 3pr and Δ = B2 − 4AC . (46)

(i) The cubic equation has a triple real root X1,2,3 = −p
3 if and only if A = B = 0;

(ii) The cubic equation has one real root X1 = −p− 3√Y1− 3√Y2
3 and a pair of

conjugate complex roots X2,3 = −2p+ 3√Y1+ 3√Y2± 3√3( 3√Y1− 3√Y2)
6 with Y1,2 =

Ap + 3(−B±√
B2−4AC
2 ) if and only if Δ > 0;

(iii) The cubic equation has a single real root X1 = −p + B
A and a double real root

X2,3 = B
2A if and only if Δ = 0, A 
= 0;

(iv) The cubic equation has three real roots X1 = −p−2
√
Acos( θ

3 )

3 ,

X2,3 = −p+√
A(cos( θ

3 )±sin( θ
3 ))

3 with θ = arccos 2Ap−3B

2 3√A
if and only if Δ < 0.

Remark If Δ = 0, A = 0, then A = B = 0.

Lemma A.2 We obtain (p, q, r) ∈ D1 if and only if one of the following conditions
holds:

(i) Condition 1 (C1): Δ > 0, r < 0;
(ii) Condition 2 (C2): r = 0, q = 0, p < 0 (which implies Δ = 0, A 
= 0) or

Δ = 0, A 
= 0, r < 0;
(iii) Condition 3 (C3): Δ < 0, q ≤ 0 or Δ < 0, q > 0, p > 0, r < 0 or

Δ < 0, q > 0, p < 0, r ≥ 0.

Proof (I) Sufficiency.
If C1 holds, by Lemma A.1, Δ > 0 implies that F(x) = 0 has only one real root

x1 and F(x) can be rewritten as F(x) = (x − x1)(x2 +mx + n), where m, n ∈ R and
x2+mx+n = 0 has no real roots, i.e.,m2−4n < 0. Note that F(0) = r = −x1n < 0,
then F(x) = 0 admits only one positive root. Besides, F ′(x1) = x2 + mx + n > 0.
In view of the definition of D1 in (45), (p, q, r) ∈ D1.

If C2 holds, in view of Lemma A.1, Δ = 0, A 
= 0 demonstrates that F(x) has a
single real root x1, a double real root x2 and F(x) = (x − x1)(x − x2)2, x1 
= x2. For
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the first situation r = 0, q = 0, p < 0, F(x) has only one positive root x = x1 = −p
and F ′(−p) = p2 > 0. For the second situation r < 0, we have x1 = − r

x22
> 0,

F ′(x1) = (x − x2)2 > 0 and F ′(x2) = 0. It can be seen from the definition of D1 in
(45), both situations satisfy that (p, q, r) ∈ D1.

If C3 holds, Δ < 0 together with Lemma A.1 yields that F(x) has three real
roots x1 > x2 > x3 and F(x) = (x − x1)(x − x2)(x − x3). It is easy to calculate
that F ′(x1) = (x1 − x2)(x1 − x3) > 0, F ′(x2) = (x2 − x1)(x2 − x3) < 0 and
F ′(x3) = (x3 − x1)(x3 − x2) > 0. For situation one q = x1x2 + x2x3 + x1x3 ≤ 0,
we have x1 > 0 and x3 ≤ 0 which yields that (p, q, r) ∈ D1. For if x1 ≤ 0, we
have q ≥ x2x3 > 0 or if x3 ≤ 0, we obtain q ≥ x2x1 > 0. For situation two
q = x1x2 + x2x3 + x1x3 > 0, p = −(x1 + x2 + x3) > 0, r = −x1x2x3 < 0,
we can show that x1 > 0 and x2, x3 < 0 which yields that (p, q, r) ∈ D1. r < 0
implies that x1, x2, x3 > 0 or x1 > 0, x2, x3 < 0. Since p = −(x1 + x2 + x3) > 0,
we have x1 > 0, x2, x3 < 0. For situation three q = x1x2 + x2x3 + x1x3 > 0, p =
−(x1+x2+x3) < 0, r = −x1x2x3 ≥ 0, it can be showed that x1 > 0 and x3 ≤ 0which
implies that (p, q, r) ∈ D1. It can be observed from r ≥ 0 that x1, x2 > 0, x3 ≤ 0 or
x1 ≤ 0, x2, x3 < 0. since p < 0, we obtain x1, x2 > 0, x3 ≤ 0.

(II) Necessity.
Note that D1 = {(p, q, r) ∈ D1,Δ > 0} ∪ {(p, q, r) ∈ D1,Δ = 0} ∪ {(p, q, r) ∈

D1,Δ < 0}, where Δ is defined as (46). If Δ > 0, then it follows Lemma A.1
that F(x) = 0 has only one real root x1 and F(x) can be rewritten as F(x) =
(x − x1)(x2 + mx + n), where m, n ∈ R and x2 + mx + n = 0 has no real roots,
i.e., m2 − 4n < 0. By (p, q, r) ∈ D1 together with the definition of D1 in (45),
r = −x1n < 0.

If Δ = 0, then (p, q, r) ∈ D1 implies A 
= 0 (see definition in (46)). For if
A = 0, it follows from Fan (1989) that B = 0, then the cubic equation F(x) has
a triple real root which contradicts that (p, q, r) ∈ D1. By Lemma A.1, Δ = 0
and A 
= 0 yield that F(x) has a single real root x1, a double real root x2 and
F(x) = (x − x1)(x − x2)2, x1 
= x2. Besides, we have F ′(x1) = (x1 − x2)2 > 0
and F ′(x2) = 0. Thus (p, q, r) ∈ D1 implies x1 > 0. If r = −x1x22 = 0, then
q = 0, p < 0. If r 
= 0, then r = −x1x22 < 0.

IfΔ < 0, we now verify that q ≤ 0 or q > 0, p > 0, r < 0 or q > 0, p < 0, r ≥ 0.
To start with Δ < 0 together with Lemma A.1 yields that F(x) has three real roots
x1 > x2 > x3 and F(x) = (x − x1)(x − x2)(x − x3). It is easy to calculate that
F ′(x1) = (x1 − x2)(x1 − x3) > 0, F ′(x2) = (x2 − x1)(x2 − x3) < 0 and F ′(x3) =
(x3 − x1)(x3 − x2) > 0. Therefore, (p, q, r) ∈ D1 implies x1 > 0, x3 ≤ 0. Note that
there exists y1 > y2 satisfying F ′(y1) = F ′(y2) = 0, q = 3y1y2, p = −3(y1+y2)

2 , and
x1 > y1 > x2 > y2 > x3. If y1 < 0, we have q > 0, p > 0, r < 0; if y1 ≥ 0 ≥ y2,
we obtain q ≤ 0; if y1 > y2 > 0, we have q > 0, p < 0, r ≥ 0.

Thus we completed the proof. 
�
By the similar arguments as the proof of LemmaA.1, we have the following lemma.

Lemma A.3 We have (p, q, r) ∈ D2 if and only if condition 4 (C4): Δ < 0, r <

0, p < 0, q > 0 is satisfied.
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Now we obtain that

D1 = {(p, q, r) ∈ R3|F(x) = 0 in (44) has only one positive real root x1
such that F ′(x1) > 0}

= {(p, q, r) ∈ R3|one of the conditions C1 − C3 holds},
(47)

and by Lemma A.1, this positive root

x1 =

⎧
⎪⎨

⎪⎩

−p− 3√Y1− 3√Y2
3 , condition C1 holds;

B
2A , condition C2 holds;
−p+√

A(cos( θ
3 )+sin( θ

3 ))

3 , condition C3 holds,

(48)

where Y1,2 = Ap + 3(−B±√
B2−4AC
2 ) and A, B,C are defined in (46). Moreover, we

have

D2 = {(p, q, r) ∈ R3|F(x) = 0 in (44) has two positive real roots x1, x2
such that F ′(x1,2) > 0}

= {(p, q, r) ∈ R3|condition C4 holds},
(49)

and by Lemma A.1, the two positive roots are

x1 = −p+√
A(cos( θ

3 )+sin( θ
3 ))

3 , x2 = −p−2
√
Acos( θ

3 )

3 , (50)

where A, B,C are defined in (46).
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