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Abstract Sensing and reciprocating cellular systems (SARs) are important for the
operation ofmany biological systems. Production in interferon (IFN) SARs is achieved
through activation of the Jak-Stat pathway, and downstream upregulation of IFN regu-
latory factor (IRF)-7 and IFN transcription, but the role that high- and low-affinity IFNs
play in this process remains unclear. We present a comparative between a minimal
spatio-temporal partial differential equation model and a novel spatio-structural-
temporal (SST)model for the consideration of receptor, binding, andmetabolic aspects
of SAR behaviour. Using the SST framework, we simulate single- and multi-cluster
paradigms of IFN communication. Simulations reveal a cyclic process between the
binding of IFN to the receptor, and the consequent increase in metabolism, decreas-
ing the propensity for binding due to the internal feedback mechanism. One observes
the effect of heterogeneity between cellular clusters, allowing them to individualise
and increase local production, and within clusters, where we observe ‘subpopular
quiescence’; a process whereby intra-cluster subpopulations reduce their binding
and metabolism such that other such subpopulations may augment their production.
Finally, we observe the ability for low-affinity IFN to communicate a long range sig-
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nal, where high affinity cannot, and the breakdown of this relationship through the
introduction of cell motility. Biological systems may utilise cell motility where envi-
ronments are unrestrictive andmayuse fixed system,with low-affinity communication,
where a localised response is desirable.

Keywords Population dynamics · Structured models · Interferon signalling

Mathematics Subject Classification 22E46 · 53C35 · 57S20

1 Introduction

1.1 Sensing and Reciprocating Systems and their Mathematical Treatment

In order for biological systems to initiate changes in behaviour at the scale of a group of
cells or of a tissue in response to a localised event, it is necessary for small signals to be
transformed into large signals and sequentially communicated to other cells. This is no
more apparent than in the human immune response where T cells are actively recruited
to the site of infection through the amplification and dispersion of the precursor signal
(Mackay 1996). The intermediate signal must be received and amplified, in order that
distant cells may receive the signal with sufficient veracity as to respond.

In the case of the immune system, the cell-to-cell communication can be at least par-
tially orchestrated by dynamic changes of the cellmembrane receptors and by secretion
of communication proteins such as chemokines (Mackay 1996) and cytokines (Oyler-
Yaniv et al. 2017). Other cell-to-cell communication and amplification mechanisms
are used by bacteria in a phenomenon known as ‘quorum sensing’ (Ng and Bassler
2009) and by yeast to optimise mating efficiency (Barkai et al. 1998). In order to syn-
chronise the phenotypes expressed by a local group of cells, bacteria and yeast posses
internal feedback loops that amplify incoming diffusible chemical signals. Similar
examples where local behaviour spreads by cell-to-cell communication can be found
in animal development, when blocks of tissues can be developed from sheets of cells by
a phenomenon called ‘community effect’ (Gurdon 1988) or when cell fate is specified
by ‘sequential patterning’ such as in the spatial regulation of Delta–Notch signalling
(Hoyos et al. 2011; Henrique et al. 1997). Collective synchronous behaviour of cells
is also needed in insulin secretion by pancreatic islets, but in this case, the possible
cell-to-cell communication mechanisms are still under debate (Pedersen et al. 2005).
We call such systems sensing and reciprocating systems (SARs), on the basis that the
initial chemical signals are replicated and amplified, which is similar to the concept
of secrete and sensing cells (Maire and Youk 2015; Olimpio and Youk 2017).

SARs are ubiquitous in biology and somemathematicalmodels dealingwith proper-
ties of such systems exist. The versatility of collective properties of secrete and sensing
cells was studied using phenomenological, compartment-based models and ordinary
differential equations (ODEs) (Youk and Lim 2014). The same type of formalism
was used for metabolic synchronisation of insulin secretion in islets (Pedersen et al.
2005) and for studying cell-to-cell communication in the immune system (François
and Altan-bonnet 2016). ODE based models allow rather detailed descriptions of
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intracellular signalling and metabolic dynamics but do not cope accurately with cell
proliferation, migration, and cell-to-cell interactions.

Although not yet used for SARs, frameworks based on partial differential equa-
tions (PDEs) could integrate many of these processes and explain aspects related to
spatial heterogeneity such as the role played of spatial arrangement of cells in deter-
mining the conveyance of these signals (Oyler-Yaniv et al. 2017). However, in PDE
models, non-spatial heterogeneity, resulting from the fact that cells in close spatial
proximity do not necessarily respond synchronously to stimuli, is lost by averaging.
This ‘structural heterogeneity’ can be an essential part of a complex cell dynamics, in
which cell subpopulations behave differently to the average, and may be essential to
understanding the complicated dynamics of biological systems. As an example, such
models have predicted that below a certain threshold value, interferon (IFN) signalling
allows the activity of the cellular population to decay entirely (Hart et al. 2014).

A paradigm which seems appropriate to exploring the possible structural dimen-
sions of biological problems, in a mathematical context, is that of the continuous
structural approach (Bekkal Brikci et al. 2008; Lorz et al. 2012, 2015). This approach
encompasses the genetic or epigenetic state of a cell, under temporal conditions which
are consistent with the continuous nature of dynamic biological problems by employ-
ing the application of PDEs in structure, rather than in spatial position. On the other
hand, these approaches neglect the spatial dimensions associated with chemical com-
munication between cells and, thusly, do not provide the descriptive breadth necessary
to analyse these situations.

One recent ‘spatio-structural-temporal’ (SST) framework, which demonstrates the
potential to represent greater details of dynamical processes in dimensions of both
structure and space, was developed in order to model the urokinase plasminogen
activator system in breast cancer (Domschke et al. 2017; Trucu et al. 2017). Herein,
we present a similar derivation in order to augment the generality of this framework
and present a modelling form capable of capturing the intricacies, and important
heterogeneous features of SARs. Compared to Domschke et al. (2017), Trucu et al.
(2017), we introduce new metabolic structural variables and conjugated advection
fluxes that are derived from the continuity equation and Liouville’s theorem. These
variables are needed for modelling stimulated amplification in SARs. The use of
Liouville theorem is a major advance in the SST framework as it can relate any single-
cell ODE dynamics to population dynamics in structure space.

1.2 An Example of a SAR System: Cellular Interferon (IFN) System

We look, here, specifically at a detailed model for the IFN binding process of a given
cell and the concurrent metabolic processes that result from this binding process. This
SAR shall serve as an exemplar biological system on which to base models that will
explore the efficacy of the framework to be proposed.

There are 13 forms of IFNα and 1 of IFNβ, which we subcategorise as low and high
affinity and denote as IFNα and IFNβ, respectively. Their ability to activate a cell’s
internal infrastructure is dependent on their ability to concurrently bind the IFN-α/β

receptors 1 (IFNAR1) and 2 (IFNAR2) on the surface of the cell. The association rate
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of IFN with IFNAR2 is approximately 10× that of IFNAR1, therefore the primary
interaction is with the jak1 signalling complex of IFNAR2 (Gavutis et al. 2005, 2006).
It is also essential, however, that IFN bind the lower-affinity IFNAR1 and so IFNAR1
is recruited to the location of the bound IFN/IFNAR2 complex (Gavutis et al. 2005,
2006). These tyk2 and jak1 protein phosphorylate one another to initiatewhat is known
as the Jak–Stat pathway (Stark et al. 1998).

The Jak-Stat pathway is predicated on the fact that the phosphorylated Jak1-tyk2
complex is capable of phosphorylating the transcription factors Stat1 and Stat2. These
two factors are then able to bind the IFN regulatory (transcription) factor (IRF)-9 in
order to form the IFN stimulated gene factor (ISGF)-3 complex (Stark et al. 1998;
Samuel 2001), which is capable of entering the nucleus Lin et al. (1998). Having
achieved this step, this complex can bind to the promoter region of IFN stimulated
genes (ISGs) and effectively initiate their transcription (Stark et al. 1998; Samuel
2001).

One particularly significant ISG is the IRF-7 protein who is capable of the down-
stream binding of and IRF-3. This IRF-7-3 complex is directly responsible for the
promotion of IFN-α and IFN-β genes (Haller et al. 2006). Another effect of tran-
scribing ISGs is the transcription of USP18, which will compete with jak1 for binding
of the intracellular domain of IFNAR2 (François-Newton et al. 2011). IFNAR2s bound
byUSP18 have also been shown to be ineffective at affecting the transcription of IRF-7
(Randall et al. 2006; Wilmes et al. 2015; Arimoto et al. 2017).

Therefore, this system can be looked at through the simplified lens of two major
and important processes:

(a) the binding of IFN to the surface of the cell, and
(b) the activation of the metabolic pathway which eventually leads to the creation of

new IFN molecules.

We use the phrase ‘metabolic activation’ in order to characterise the state of the cell
in terms of the chemical activity levels of those proteins involved in the Jak-Stat
pathway and, ultimately, the transcription of the genes necessary for the synthesis of
IFN. Thus, when one describes the metabolic activation of the cell, with regards to
the IFN pathway, one is actually describing, in some way, the spatially differentiated
presence of IRF-7-3 within the cell (Fig. 1).

Moreover, one review of experimental data plotted the relationship over time
between the activation of genes within the cell and the fractional levels of bound
and unbound surface receptors, for both IFNα2 and IFNβ (Schreiber and Piehler
2015). This graph importantly showed that, for low levels of IFNα2, as the num-
ber of surface receptors decreased, the metabolic activation level rose concurrently.
Further, as genetic activation levels decreased, one could observe a corresponding nor-
malisation of the fractional surface receptor levels (Lavoie et al. 2011). Comparably,
for high levels of IFNβ, one finds that the cells genetic mechanism is activated in a
locally irreversible process and that the fraction of IFNAR1 receptors is maintained
at approximately 40% (Schreiber and Piehler 2015).

In order to demonstrate the descriptive power within the existing modelling frame-
works, we choose the biological IFN system in T cells as an illustrative example of
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Fig. 1 Diagram describing the simplified IFN cell-regulatory system. Unbound IFN (top left) will attempt
to bind unbound receptors (‘Y’s) on the surface of the cell (circle), in accordance with its affinity for these
receptors, with binding rate β. Likewise, these bound IFN receptor complexes unbind with some rate η. The
other way in which the proportion of surface boundmolecules may decrease in through the internalisation of
IFN receptor complexes with rate δ. The internalisation of IFN, through a complicated biological pathway,
leads to a metabolic switching of the IFN-producing cell infrastructure from the default state of dormant
(OFF) to active (ON), in which state the cell produces greater levels of IFN with rate φ (centre). The cell
infrastructure attempts to return to the default (OFF) state with a constant rateμ0. In the active (ON) state the
conformation of receptors, in the presence of IFN, is reduced which can be modelled through the reduction
of the ability of IFN molecules to bind their receptors (i.e. β ↓, bottom right)

such a system of SARs. This will serve as a comparative case for the development of a
framework, which is capable of significantly improving upon one’s existing capacity.

2 A Simple, Continuous Mathematical Model for the IFN System

If one were to create the simplest possible system of SARs, one would begin with only
the population of SARs, themselves, and the molecular population of SAR diffusing
ligands. In reality, however, these systems are rarely as simplistic as this and often
require consideration of spatially intermediate cells which may mediate the levels of
the SAR ligands, by consuming these proteins without reciprocally producing them.
This is the case in the biological IFN system and, as such, we call such intermediate
cells ‘consumers’ and the SAR cells as ‘producers’, within a system that considers
only such a responsive protein.

Therefore, begin by defining a temporal domain, given by I = [0, T ] with t ∈ I,
and a two-dimensional spatial domain, given by D ⊆ R

2 with x ∈ D. We then write
cellular population functions such that c1 : I×D → R gives the population of IFN-
producing cells and c2 : I×D → R gives the global population of consumer cells,
whilstm : I×D → R gives the non-dimensionalised concentration of IFNmolecules.

In order to write as simple amodel as is possible, we begin by ignoring all dynamics
in the cellular populations are given simply by c1(t, x) := c1(0, x) and c2(t, x) := 1,
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respectively. This is so that one might analyse only the communicative capabilities of
the IFN itself.

We then write the dynamics of the system as a whole as a spatio-temporal partial
differential equation (PDE) inm(t, x), such that the spatial dynamics are given entirely
by the diffusion of this molecule in the solution. Interferon is then systematically
consumed by c2, at a rate λ, and is autoreplicated within c1 cells, at a rate φ2, and
where this autoreplication is further stabilized by negative self-regulation, with the
rate constant φ3. Therefore, we have that

∂m

∂t
= Dm∇2

xm − λmc2 + (φ2m
2 − φ3m

3)c1 (1)

where Dm is the coefficient for diffusion of IFN.
Simulations were performed for this system using a fourth-order Runge–Kutta

predictor and MacCormack corrector, with a central difference formula used for the
calculation of diffusion terms. Initial conditions for the producer cells are given by

c1(0, x) =
5∑

j=1

5∑

i=1

exp

[
−

(
x1 − 1

2
i

)2

−
(
x2 − 1

2
j

)2
]

,

and for the IFN concentration is given by the Gaussian distribution

m0 := m(0, x) = exp

[
−

(
x1 − 1

2

)2

−
(
x2 − 1

2

)2
]

,

with the rate constants given by Dm = 10−3, φ2 = 3
4 , and φ3 = 1

8 and λ being variable
between simulations. Moreover, zero-Neumann boundary conditions are used in order
to conserve the molecular population.

The results for the simulation of system (1) show, most simply, that communicative
capability increases with decreasing values for affinity of IFN for its consumer cells
(Fig. 2). The approximate threshold value for which this is true falls in the interval
λ ∈ (0.1, 0.15) (Fig. 2), given the values chosen for Dm, λ, φ2, φ3.

This may, to some extent, give a mathematical explanation for why it may be
biologically advantageous tomaximise the utilisation of lower-affinity IFN in a system
where one wishes to stop the spread of the infection. It could be that cells employ this
methodology in order to spread a panic signal upon the initial detection of a virus and
initialisation of a local IFN signal.

The explanation given by this simple model, however, does not explain the nature
of the interaction between molecules and cells that allows this system to proffer com-
municative capabilities as it does. For example, we artificially introduce the notion that
increasing the affinity of IFN molecules will increase their consumption but must still
question what effect this alteration should have on the interaction with producer cells.
It is difficult to intuit, also, how this increase in affinity should change the interac-
tions that impact the metabolism of IFN within the cell. One might expect that affinity
would increase production but would it also increase feedback sufficiently to dampen
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λ t = 0 t = 25 t = 50 t = 75 t = 100

0.01

0.1

0.15

Fig. 2 (Color figure online)Multi-cluster results in the concentration ofmolecular speciesm(t, x) fromsim-
ulation of the simple model (1) for varying affinities, λ ∈ {0.01, 0.1, 0.15}, and for t ∈ {0, 25, 50, 75, 100}
respectively

that response? Alterations to Eq.1, however, require suppositions on the desired final
behaviour of the system, rather than a priori biological assumptions.

Therefore, in response to this fundamental issue, we aim to create a more bio-
logically descriptive model that will serve to quantify dynamics in the cell-surface
receptors; the binding of these receptors by free molecules; and the consequential
alterations in metabolism in a spatial context. We will also realise the interactions
between these various dynamical behaviours, in order that one might better under-
stand how the biological reality is affected by changing individual characteristics.

3 General SAR Model Within the SST Framework

We introduce here a general SST model for SAR systems. Various instances of this
model can serve to study different biological problems.

In this framework, we consider that cells of the same type can differ in their states.
The cell state is described by three variables ξ ∈ Υ ⊂ R

υ , y ∈ P ⊂ R
p and

α ∈ Γ ⊂ R
γ , where ξ , y, α represent the total density of receptors on the cell

membrane; the part of receptors that have bound ligands; and the metabolic variables,
respectively. We consider that there are q different diffusible ligands of concentrations
ml(t, x), 1 ≤ l ≤ q. As a simplifying assumption we consider that ligands mk bind
with no competition to their cognate receptors ξi , 1 ≤ i ≤ υ. Competition could be
easily introduced by considering that the same receptor can bind several ligands, but
in this case the y space has to be supplemented with extra dimensions corresponding
to the simple and double charge of the receptors. The binding event can trigger the
signalling and activation of metabolic variables αk, 1 ≤ k ≤ γ that are responsible of
the production of the ligands m j , 1 ≤ j ≤ q.

A spatially and structurally heterogeneous cell population is described by a struc-
tured cell density, namely by a positive, integrable function ĉ(t, x, ξ, y, α), with
t ∈ (0, T ], x ∈ D ⊂ R

d , ξ ∈ Υ , y ∈ P , and α ∈ Γ .
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The spatial cell density c(t, x) can be obtained as the marginal distribution of the
structured cell density

c(t, x) =
∫

Υ×P×Γ

ĉ(t, x, ξ, y, α)dξ dy dα. (2)

The dynamics of the structured cell density is described by

∂

∂t
ĉ(t, x, ξ, y, α) = Ŝ(t, x, ξ, y, α) − ∇x · F̂(t, x, ξ, y, α) − ∇ξ · Ĝ(t, x, ξ, y, α)

−∇y · Ĥ(t, x, ξ, y, α) − ∇α · K̂ (t, x, ξ, y, α) (3)

whose full derivation is based upon work by Domschke et al. (2017) and is given in A,
along with a novel derivation of a structural source term, where Ŝ is a source term and
where F̂, Ĝ, Ĥ , K̂ are space-structure fluxes conjugated to the variables x, ξ, y, α,
respectively.

We then proceed to more clearly define each of the flux terms in (3) as follows.

3.1 Spatial Flux

The general form of the spatial flux equation is commonly obtained from Fick’s law
and is given by

F̂(t, x, ξ, y, α) = − Dc∇x ĉ(t, x, ξ, y, α)

+ ĉ(t, x, ξ, y, α)χv∇xv(t, x)

+ ĉ(t, x, ξ, y, α)

q∑

i=1

χi (y)∇xmi (t, x), (4)

where the first term represents the spatial undirected diffusion of cells, the second term
and third terms correspond to directed haptotactic and chemotactic cell migration,
respectively.

3.2 Structural Fluxes

We consider here the dynamics of a cell population in structure space. Each cell of
the population is characterised by its structure state vector s = (ξ, y, α) and by its
location x ∈ D. We consider that cells in the same location follow a dynamics defined
by the vector field Ψ on s ∈ Υ ×P×Γ , with c(t, x), m(t, x), v(t, x) as parameters
defining the local environment

ds

dt
= Ψ (s; c(t, x),m(t, x), v(t, x)). (5)
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Different cells have different initial conditions at t = t0, whose distribution is given
by ĉ(t0, x, s). Let s(t) = Φt,t0(s0) be the unique solution of (5) starting from s0 at t0.

Let us consider the cell subpopulation located in bounded spatial V ⊂ D and
structural U ⊂ Υ ×P×Γ boxes. A population in which each cell follows (5) fulfils
the continuity equation, namely

∫

V

∫

Φt,t0 (U )

ĉ(t, x, s) ds dx =
∫

V

∫

U

ĉ(t0, x, s) ds dx

−
t∫

t0

∫

∂V

∫

Φt ′,t0 (U )

F̂(t ′, x, s) · n(x) ds dσ(x) dt ′

+
t∫

t0

∫

V

∫

Φt ′,t0 (U )

Ŝ(t ′, x, s) ds dx dt ′,

(6)

whereΦt,t0(U ) is the image ofU byΦt,t0 , ∂V is the boundary of V , n(x) is the normal
vector and dσ(x) is the surface measure on this boundary. Performing a change of
variables in the left-hand side of (6), we get

∫

Φt,t0 (U )

ĉ(t, x, s) ds =
∫

U

ĉ(t, x, Φt,t0(s))Jt,t0 ds, (7)

where Jt,t0 = | det dΦt,t0
ds | is the Jacobian determinant.

Using Stokes theorem and the first fundamental theorem of calculus in (6) and
further using (7) it follows

∫

V

∫

U

d

dt
[ĉ(t, x, Φt,t0(s))Jt,t0 ] ds dx = −

∫

V

∫

Φt,t0 (U )

∇x · F̂(t, x, s) ds dx

+
∫

V

∫

Φt,t0 (U )

Ŝ(t, x, s) ds dx .
(8)

After changing the structure variables in the two integrals in the right-hand side of (8),
we get

d

dt
[ĉ(t, x, Φt,t0(s))Jt,t0 ] = −∇x · F̂(t, x, s)Jt,t0 + Ŝ(t, x, s)Jt,t0 . (9)

Using 1
J
dJ
dt = ∇s · Ψ (s, c(t, x),m(t, x), v(t, x)), from (9) we obtain the Liouville

equation
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∂ ĉ(t, x, s)

∂t
= −∇s · (ĉ(t, x, s)Ψ (s, c(t, x),m(t, x), v(t, x))) − ∇x · F̂(t, x, s)

+Ŝ(t, x, s). (10)

Comparing this result to (3), it follows that the structural fluxes Ĝ, Ĥ , K̂ are advection
fluxes

Ĝ = ĉΨξ (ξ, y, α; c(t, x),m(t, x), v(t, x)), (11)

Ĥ = ĉΨy(ξ, y, α; c(t, x),m(t, x), v(t, x))), (12)

K̂ = ĉΨα(ξ, y, α; c(t, x),m(t, x), v(t, x)), (13)

where Ψξ , Ψy , Ψα are the components of the vector Ψ on the directions ξ , y, α,
respectively.

3.3 Dynamics in Receptoro-Binding Space

Notice that each ligand binds to the available cognate receptors. Thus, the binding
rate depends on the free receptor amount ξi − yi and is proportional to the ligand
concentration mi

bi (ξ, y,m) = βiϑ(ξi − yi )mi , (14)

where ϑ is a function allowing to cope with the situation when binding is thresholded
in the concentration of free receptors. The unbinding rate is simply proportional to the
fraction of the carrying capacity of bound receptors

ui (y) = ηi yi . (15)

Bound receptors are internalised with a rate

ιi (y) = ki yi . (16)

A subset of these internalised receptors is recycled. The timescale ζ−1
i of this process

results fromcomplex interactions between receptors and scaffolds inside the endosome
(Grant and Donaldson 2009) and depends nonlinearly on y. Therefore, the recycling
rate reads

ri (y) = ζi (y)yi , 0 ≤ ζi (y) ≤ ki . (17)

Receptors are synthesised by the cell with a rate pi (α, ξ) that depends on themetabolic
variables α and also on actual concentration of receptors ξ and are lost by various
mechanisms with a rate proportional to ξ

di (ξ) = diξi . (18)
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In summary, the receptoro-binding variables of a single cell follow the differential
equations

dξ

dt
= Ψξ (ξ, y, α) = P(α, ξ) − Dξ + (R(y) − I)y, (19)

dy

dt
= Ψy(ξ, y) = βB(ξ − y)m − (U + I)y, (20)

where P , D, R, I,β, B, U are diagonal matrices with diagonal entries pi , di , ζi , ki ,
βi , ϑ(ξi − yi ), ηi , respectively.

It follows that the advection fluxes in receptor and binding spaces are

Ĝ(t, x, ξ, y, α) = ĉ(t, x, ξ, y, α)[P(α, ξ) − Dξ + (R(y) − I)y], (21)

Ĥ(t, x, ξ, y, α) = ĉ(t, x, ξ, y, α)[βB(ξ − y)m − (U + I)y]. (22)

3.4 Dynamics in Metabolic Space

The part of internalisation flux that is not recycled and that escapes lysosome degra-
dation triggers signalling and induces changes of the metabolic variables α. We use
a flux-based description of these variables that considers that there are γ irreversible
metabolic fluxes, each one producing a different molecule. The reversible case can be
simply obtained by doubling the number of variables for each reversible flux. To each
one of these fluxes, we associate a scalar variable 0 ≤ αi ≤ 1, meaning no production
activity and maximum production activity for αi = 0 and αi = 1, respectively. In
order to represent competition between fluxes, we impose the condition

∑r
i=1 αi ≤ 1.

Thus α ∈ Γ , where Γ = {(α1, . . . , αr ) | 0 ≤ αi ≤ 1,
∑r

i=1 αi ≤ 1} is a simplex.
This description is equivalent to the space of admissible fluxes in stoichiometric and
flux balance analysis of metabolic networks where αi , 1 ≤ i ≤ r represent activities
of extreme pathways or currents (Clarke 1988; Schilling et al. 2000). The dynamics in
the metabolic space is described phenomenologically imposing the invariance of the
simplex Γ as fundamental property. A possible such choice is

dαi

dt
= Ψαi (y, α) = fi (y)(1 − αi ) − μiαi , (23)

where μi ≥ μ0 > 0, fi ≤ f0, f0 > 0, r f0 < ( f0 + 1). The corresponding advection
flux in the metabolic structure space is K̂ = (K1, . . . , Kγ ) with the components

Ki = ĉ[ fi (y)(1 − αi ) − μiαi ]. (24)

3.5 Spatial Dynamics of Diffusible Ligands

Begin by denoting m̄ := [m1, . . . ,mp,mp+1, . . . ,mq ]T , withm j := m j (t, x), as the
total vector of molecular species, where there exist q molecular species of which the
first p ≤ q species are binding ligands.
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Then, the spatial dynamics of all molecular species are defined by a diffusive
process, and with a species specific diffusion coefficient Dm j for m j (t, x). The bind-
ing ligands, within the molecular species, are removed from the population of free
molecules through binding. All molecules are produced by the cellular population,
in a metabolic-activity-dependent manner, and are either contributed to or detracted
from by a situation specific sink or source function Θ̄(t, x). Therefore, denoting the
q-dimensional vectors of parameters ·̄ := [·1, . . . , ·q ]T , we obtain the relations for
molecular species as

∂m̄

∂t
= ∇x · diag(Dm̄)∇x m̄ − ε

∫

Γ

∫

P

∫

Υ

(diag(β̄ϑ(ξ − y))m̄ − diag(η̄)ȳ)ĉ dξ dy dα

+
∫

Γ

∫

P

∫

Υ

φ̄α(α)(1 − m̄)ĉ dξ dy dα + Θ̄(t, x), (25)

with φ̄α(·) : Υ → R
q defining a vector of production values for each molecular

species given the cellular metabolic activity level, α; β̄ = [β1, . . . , βp, 0, . . . , 0]T ;
and η̄ = [η1, . . . , ηp, 0, . . . , 0]T ; ε is a constant converting surface to volume bind-
ing/unbinding rates.

3.6 Summary of the Derived Modelling Framework

The modelling framework derived above has been given in its most general form to
allow applicability to most any problem in cell–cell communication. The major con-
tribution of this model is its completeness, in relation to other suchmodels. The spatial
partial derivative form allow the description of cell migration, including directional
motility resulting from chemotactic and haptotactic interactions. The Liouville equa-
tion form in structure variables can cope with distribution dynamics of heterogeneous
cellular populations. The dynamics of the cellular population in space and structure is
described by major flux functions given by

Ŝ(t, x, ξ, y, α)—who can be used to specify the precise nature of the mitotic
process within the cellular population (for which a suggestion for cell-cycle based
mitosis is given in Sects. A.1 and A.2);
F̂(t, x, ξ, y, α)—who specifies the spatial movements and interactions of the cel-
lular populations within its micro- and macro-environment, such as diffusive,
hapto- or chemotactic dynamics;
Ĝ(t, x, ξ, y, α)—who particularises the dynamic mechanisms through which the
cell alters its receptor expression pattern and who may depend on spatial, binding,
or metabolic considerations;
Ĥ(t, x, ξ, y, α)—who intimates the binding dynamics of the particular molecular
species to the cellular population in question and who, in previous treatments
(Domschke et al. 2017; Hodgkinson et al. 2018), has been used to describe even
binding-contingent inhibitory dynamics;
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K̂ (t, x, ξ, y, α)—who describes themetabolic dynamics of the cellular population
in response to binding or other dynamics.

Together, these flux functions allow one to describe the dynamics of cellular popula-
tions in oncological, immunological, and many other scenarios.

The totality of the above propositions is summarised as the system of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂c

∂t
= Ŝ(t, x, ξ, y, α)

− ∇x ·
[

− Dc∇x + χv∇xv(t, x) +
q∑

i=1

χi (y)∇xmi (t, x)

]
ĉ(t, x, ξ, y, α)

︸ ︷︷ ︸
F̂

− ∇ξ · [P(α, ξ) − Dξ + (R(y) − I)y] ĉ(t, x, ξ, y, α)︸ ︷︷ ︸
Ĝ

− ∇y · [βB(ξ − y)m − (U + I)y] ĉ(t, x, ξ, y, α)︸ ︷︷ ︸
Ĥ

− ∇α · [ fi (y)(1 − αi ) − μiαi ] ĉ(t, x, ξ, y, α)︸ ︷︷ ︸
K̂

∂m̄

∂t
= ∇x · diag(Dm̄)∇x m̄

− ε

∫

Γ

∫

P

∫

Υ

(diag(β̄ϑ(ξ − y))m̄ − diag(η̄)ȳ)ĉ(t, x, ξ, y, α) dξ dy dα

+
∫

Γ

∫

P

∫

Υ

φ̄α(α)(1 − m̄)ĉ(t, x, ξ, y, α) dξ dy dα + Θ̄(t, x),

(26)
and shall be used as the basis of the particular models used throughout the remainder
of this paper.

4 Particularised IFN-Based Model

It is necessary to first have a discussion about the context into which we shall place
this model, with respect to the generalised SST framework for SARs. First of all, and
for simplicity, we neglect the receptor space and source terms in the IFN case. This
is due to the fact that we do not consider the creation of IFN SARs, but rather their
behaviour and spatial recruitment, and the change in binding in the IFN case appears
to be related to affinity rather than flux of the binding proteins themselves.

It should be clear that a main concern in modelling the IFN system is the numerical
simplification involved in the reduction of the number of necessary dimensions under
consideration. This has succeeding consequences in terms of our ability to intuit the
results of the system and better understand both the SST framework, and the internal
processes for communicative SARs. For this reason, we also neglect, initially, the
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spatial dynamics of the SAR cells and concentrate first on cell–cell communication
mediated by the diffusible ligand.

Now, we contextually define the binding variable, y ∈ P with v = p = 1, 0 ≤ y ≤
ξ = 1, such that increasing values of y correspond to the increasing concentration of
bound IFN–IFNAR1–IFNAR2 complexes for some given (t, x, α) ∈ I×D×Γ .

The metabolic variable, α ∈ Γ , is somewhat more complicated in biological terms
since we wish to encapsulate a state of the cell under which a certain reaction is
more likely to take place. In the particular case of IFN, for example, we understand
the metabolic variable as describing a state of the cell wherein ISGs implicated in
the production of or response to IFN (such as IRF-7, implicated in production, or
USP18, a key regulator of the cellular response to IFN) aremore frequently transcribed.
Therefore, begin by describing α = 0 as a state in which ISGs are not transcribed
and α = 1 as some state where ISGs are transcribed at their physiologically maximal
rates. Then we understand α, itself, as encapsulating the propensity for the cell to
proactively transcribe ISGs through the activity of the Jak-Stat pathway.

Within this paradigm, then, these two variables will interact in the following way.
Begin by considering a scenario in which one cluster of IFN SARs are stimulated by
a single initial dosage of IFN. The cell will bind these IFN molecules and increase
in binding state of the cell, y, will form the IFN–IFNAR1–IFNAR2 complex and
initiate the reactions of the Jak-Stat pathway. This will subsequently increase the cells
metabolic state, α, of the cell and cause the increased production of IFN. The increase
in transcription of ISGs, specifically USP18, will also cause a decrease in the efficacy
of the ternary complex (IFNAR1–IFN–IFNAR2) assembly (Wilmes et al. 2015) or
maximal effective binding, y. This, in turn, will subsequently lead to a decrease the
physiological concentration of the Jak–Stat reactions and reduce the metabolic state,
α, of the cell.

4.1 Unthresholded Binding Model

Throughout this model, we assume a homogeneous and constant concentration of
biological pathogen, such that IFN response is consistently encouraged. We have
chosen illustrative values for the binding rates, consistently with previous models
(Domschke et al. 2017; Trucu et al. 2017), but with the difference that we consider
here the negative feedback loop of the IFN system between the metabolic state of the
cell and the binding of molecular species to the surface. In this respect, we consider
binding to be non-dimensionalised and that feedback causes the maximal binding rate
to decrease linearly with the metabolic state of the cell such that the range of values
of y for which positive binding exists is given by y < 1 − α. Thus, we consider that
the binding dynamics of molecular species to the surface, b : I×D×P×Γ → R, can
be given by

b(m, y, α) := β(1 − y − α)m

where β is the binding rate constant for IFN.
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When we say ‘binding’ in this context, we actually make a generalisation of the
concept of ‘meaningful binding’ which is to say that binding is sufficient to allow for
recruitment of the secondary complex (IFNAR2) and subsequent co-phosphorylation
of their protein tails.

The rate of removal of bound molecular species from the surface of the cell has a
first component corresponding to unbinding and a second component corresponding
to internalisation and degradation of bound receptors. Therefore, we consider that the
removal of species from the cell surface, d : P → R, can be given by

d(y) := (η + δ)y,

where η gives the unbinding rate of molecules from the surface of c1(t, x, y, α) and δ

gives the rate of cellular degradation of bound IFN.
Further, we make the assumption that the gene responsible for regulating the pro-

duction of IFN has a default transcriptional state of ‘off’, such that the gene is not
transcribed unless appropriately upregulated. Therefore we arrive at a relation for the
advective rate for change in metabolic profile, μ : P × Γ → R, of the cells which is
given by

μ(y, α) := δy(1 − α) − μ0α

where δy is the internalisation–degradation rate (as above) and μ0 is the intrinsic
metabolic restoration rate, the purpose of which is to restore the default metabolic
position of the cell α = 0. The term (1− α) is chosen such that the metabolic state of
the cell might never exceeds a maximum value normalised to one.

Production of m with respect to the metabolic state of the cell is given by the
production rate function φ : Γ → R and is assumed to be of the form

φ(α) := φαα(α − θα),

whereφα is the rate constant formetabolic production ofm and θα is some thresholding
value above which the cell become metabolically active with respect to the production
of IFN, m.

For reasons that will become clear in the following subsection, we call this model
the unthresholded binding model, which is then written

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂c1
∂t = −∇y · [β(1 − y − α)m − (η + δ)y] c1 − ∇α · [δ(1 − α)y − μ0α] c1
∂c2
∂t = 0
∂m
∂t = ∇x · Dm∇xm − ∫

Γ

∫

P
(β(1 − y − α)m − ηy)εc1(t, x, y, α) dy dα

∫

P

∫

Γ

φαα(α − θα)(1 − m)c1(t, x, y, α) dα dy − λmc2.

(27)
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4.2 Thresholded Binding Model

There are several alternative interpretations of potency of a ligand for meaningful
binding and signalling triggering (Kersh et al. 1998). One interpretation associate this
potency to the product between concentration and affinity of the ligand, suggests that
ligands are detected irrespective to their quality as long as their concentration is above
a threshold. Thresholds in the number of triggered receptors have been observed for
immune T cells (Viola and Lanzavecchia 1996). The second interpretation is based on
kinetic proof-reading and suggests that a minimal binding time is needed for a given
ligand to trigger signalling (François andAltan-bonnet 2016). The correlation between
binding time characteristics and immune cell activation is confirmed by several studies
(Kersh et al. 1998; Gascoigne et al. 2001). Furthermore, recent dynamical studies
demonstrated the phosphorylation of STAT2 to follow the formation of the complex
(which is more or less instantaneous, < 1 second) by approximately 8 s (Löchte et al.
2014) for complete activation. All these studies suggest the intrinsic assumption that
meaningful binding requires that receptor–ligand complex to be bound for at least a
minimal time τmin. In general, depending on the comparison between the timescales of
meaningful complex formation and dissolution and those of activation of the signalling
processes, it is possible that both concentration and temporal thresholds apply to the
ligand recognition.Wedonot aim to resolve this issue here.Because ourmodel does not
account for binding time heterogeneity, we simply replace the temporal threshold by a
concentration one, considering that there is a function τb(m) relating the concentration
of ligands to the binding time. Then, for some concentration m(t, x) = θm we have
that

τb(θm) = τmin

such that θm gives the concentration ofm sufficient for effective binding of the IFNAR2
protein and IFNAR1–IFNAR2 complex. In order to cope with this threshold effect,
we rewrite the binding flux term as

b(y, α,m) := β(1 − y − α)(m − θm).

Substituting this new relation back into our model, we obtain the thresholded bind-
ing model

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂c1
∂t = −∇y ·[β(1 − y − α)(m − θm) − (η + δ)y] c1 − ∇α ·[δ(1 − α)y − μ0α] c1
∂c2
∂t = 0
∂m
∂t = ∇x · Dm∇xm − ∫

Γ

∫

P
(β(1 − y − α)m − ηy)εc1(t, x, y, α) dy dα

∫

P

∫

Γ

φαα(α − θα)(1 − m)c1(t, x, y, α) dα dy − λmc2.

(28)
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4.2.1 Spatially Dynamic, Thresholded Binding Model

Finally, we consider a spatially dynamic systemwherein cells are able tomove through
the spatial domain. We choose to endow this system with 2 primary functions of
migration:

(i) diffusion, by virtue of immune cells’ natural inclination to motility, and
(ii) chemotaxis, by virtue of immune cells’ ability to actively respond to an immune

response signal as a recruitment signal.

In stating this, we therefore assume that the immune cell will interpret the presence of
IFN as a response to, for example, a viral threat to the body and respond to this signal
by migrating towards its origin. We further assume that even in the absence of an IFN
gradient, cell Brownian motion will generate spatial fluxes leaving regions of highest
cell concentration.

We thusly rewrite the system as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂c1
∂t = ∇x · Dc1∇xc1 − ∇y · [β(1 − y − α)(m − θm) − (η + δ)y] c1

−χm∇x · c1∇xm − ∇α · [
μ̆+(1 − α)y − μ−

]
c1

∂c2
∂t = 0
∂m
∂t = ∇x · Dm∇xm − ∫

Υ

∫

P
(β(1 − y − α) − (η + νrδ)y)εc1(t, x, y, α) dy dα

∫

P

∫

Υ

φαα(α − θα)(1 − m)c1(t, x, y, α) dα dy − λmc2,

(29)

5 Results from Numerical Simulations

Spatially static, single-cluster results were generated by simulating (27), whilst multi-
cluster results generate by simulating (28) with Neumann zero boundary conditions
in spatial variables and Neumann zero boundary conditions in structural variables.
Spatially dynamics results were generated by simulating (29). A full description of
numerical techniques used, methods, and parameters for simulating this system of
equations is given in B, where parameters were used as appropriate for the simulated
model.

In the following we will refer to two types of numerical simulations that differ
by the type of initial condition. Single cluster simulations start with a localised cell
distribution having a singlemaximum.Multiple cluster simulations start with an initial
cell distribution having several maxima periodically positioned in space.

5.1 Spatially Static, Single-Cluster Simulations

Single-cluster results (Figs. 3 and 4) demonstrate an initial rise in average binding posi-
tion, cy , of the cellular population with a concurrent rise in averagemetabolic position,
cα . In c̆ we also observe the rise in metabolo-binding state with a focus developing
at approximately (y, α) ≈ (0.45, 0.55), with a negatively graduated nonlinear ridge,
and a tail between the focus and (y, α) = (0, 0).
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cα

cy

c̆

m1

t = 0 t = 5 t = 10 t = 15

Fig. 3 (Color figure online) Single-cluster results from simulation of model (27) for low affinity (λ = 0.1)
are given for c(t, x, y, α) in the spatio-metabolic domain (1st row, cα), with x on the horizontal plane and
α on the vertical axis; in the spatio-binding domain (2nd row, cy ), with x on the horizontal plane and y on
the vertical axis; in the metabolo-binding domain (3rd row, c̆), with α on the horizontal axis and y on the
vertical axis; and for m(t, x) in space (4th row), for t ∈ {0, 5, 10, 15} respectively

Beyond t = 20, the average distribution in the binding space remains largely static,
whilst the population continues to redistribute itself into a teardrop geometry, around
the average position. This indicates, firstly, that the cell is capable of sustaining its own
binding state, through production, upon initial stimulation with IFN. The formation
of this geometry could be as a result of the maximal concentration of producer cells
being central, and thusly producing greater levels of IFN which can be bound by the
population, itself.

The distribution in the metabolic space exhibits oscillation, around its average
position, for all time points t ≥ 15 (Fig. 4 cα). This oscillation is both transverse
and longitudinal, and is likely to occur as a result of the SAR-cycling between the
metabolic and binding states of these cells. This demonstrates the importance of the
establishment of heterogeneity within the cellular population as it acts to regulate the
IFN output of the system, whilst concurrently maximising metabolic expedition from
the available and bound IFN supplies. Interferon producer cells do not act in unison
and, indeed, use heterogeneity to co-regulate cells within such a cluster.
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cα

cy

c̆

m1

t = 20 t = 25 t = 30 t = 35

Fig. 4 (Color figure online) Single-cluster results from simulation of model (27) for low affinity (λ = 0.1)
are given for c(t, x, y, α) in the spatio-metabolic domain (1st row, cα), with x on the horizontal plane and
α on the vertical axis; in the spatio-binding domain (2nd row, cy ), with x on the horizontal plane and y on
the vertical axis; in the metabolo-binding domain (3rd row, c̆), with α on the horizontal axis and y on the
vertical axis; and for m(t, x) in space (4th row), for t ∈ {20, 25, 30, 35} respectively

The final observation that one wishes to make in the results for the single-cluster
case is the visible SAR-cycle displayed within the metabolo-binding space (Figs.
3 and 4 c̆). Regions of the solution for the cellular population appear to increase
their binding state of IFN; before concurrently increasing their metabolic state and
slightly decreasing their binding state; subsequently decreasing their metabolic and
binding states, together; and beginning this cycle, once more. Whilst the majority of
the population maintains its position within the bulk of this distribution, there exist
cells (or subpopulations of the cellular population) that are affected by this feedback
cycle.

5.2 Spatially Static, Multi-cluster Simulations

In the multi-cluster results (Figs. 5, 6, 7 and 8) we observe a significant difference in
the behaviour of themetabolic and binding spaces, in comparison to those of the single

123



Signal Propagation in Sensing and Reciprocating Cellular Systems… 1919

cα

cy

m1

t = 0 t = 15 t = 30

Fig. 5 (Color figure online) Multi-cluster results from simulation of model (28) for low affinity (λ = 0.01)
are given for c(t, x, y, α) in the spatio-metabolic domain (1st row, cα), with x on the horizontal plane and
α on the vertical axis; in the spatio-binding domain (2nd row, cy ), with x on the horizontal plane and y on
the vertical axis; and for m(t, x) in space (3rd row), for t ∈ {0, 15, 30} respectively

cluster. One observes the appearance of stable regions within the metabolic space, at
high values for α; a phenomenon that we term ‘metabolic trapping’. In the low-affinity
case, where the focal point for metabolo-binding dynamics would be lower in value,
this effect is likely due to the feeding back of IFNproteins between clusters that lead the
internal feedback mechanism to be ineffective at downregulating the metabolic state
of the cell. In the high-affinity case, this is likely to be due to the high binding and
retention rates, in comparison to the unbinding rate, which causes the internalisation
rate to remain high.

The binding state (Figs. 5, 6, 7 and 8 cy), on the other hand, demonstrate oscil-
latory dynamics which were before characteristic of the metabolic state. Upon the
establishment of stable metabolic dynamics, at high values for α, one expects that the
conflict between the high rates of binding (caused by high rates of production and
subsequent values for free chemical concentrations) and the feedback mechanism of
the metabolic gene circuitry would cause such a behaviour. Cells will attempt to bind
the high levels of IFN whilst the feedback mechanism continually acts to diminish the
affinity of producer cells for IFN.
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cα

cy

m1

t = 45 t = 60 t = 75

Fig. 6 (Color figure online) Multi-cluster results from simulation of model (28) for low affinity (λ = 0.01)
are given for c(t, x, y, α) in the spatio-metabolic domain (1st row, cα), with x on the horizontal plane and
α on the vertical axis; in the spatio-binding domain (2nd row, cy ), with x on the horizontal plane and y on
the vertical axis; and for m(t, x) in space (3rd row), for t ∈ {45, 60, 75} respectively

One should also notice that in the low-affinity case (Figs. 5 and 6), as opposed
to the high-affinity case (Figs. 7 and 8), one observes that the signal is conveyed to
the neighbouring cells. This can only be achieved through the implementation of a
threshold in the binding dynamics for c(t, x, y, α) and this same threshold mediates
the distance at which the signal can be conveyed.

Moreover, a simple comparative between the high-affinitymulti-cluster (Figs. 7 and
8), low-affinity multi-cluster (Figs. 5 and 6), and single-cluster (Figs. 3 and 4) results
will show that the concentrations of IFN produced by the low-affinity multi-cluster
system were far in excess of those in the other two cases. This is likely as a result of
the cumulative production but also as a result of the production of the two, or more,
clusters feeding back the IFN to one another, causing a metabolic trapping effect.
This metabolic trapping is manifest as an emergence of the population at the upper
boundary of the metabolic space and retention of this position. This effect is opposed
to that of the metabolo-binding SAR-cycling that one observes in the single-cluster
case and is as a direct result of inter-cluster heterogeneity, where the promotion of the
primed state in one cluster will facilitate the priming of the second, and so on.

123



Signal Propagation in Sensing and Reciprocating Cellular Systems… 1921

cα

cy

m1

t = 0 t = 15 t = 30

Fig. 7 (Color figure online) Multi-cluster results from simulation of model (28) for high affinity (λ = 0.5)
are given for c(t, x, y, α) in the spatio-metabolic domain (1st row, cα), with x on the horizontal plane and
α on the vertical axis; in the spatio-binding domain (2nd row, cy ), with x on the horizontal plane and y on
the vertical axis; and for m(t, x) in space (3rd row), for t ∈ {0, 15, 30} respectively

5.3 Spatially Dynamic, Multi-cluster Simulations

Consider, now, the numerically generated results for the system (29), with parameters
given as in above Sect. (B).We give the simulated solutions for the high-affinity, multi-
cluster IFN case (Figs. 9 and 10), only, as the spatio-metabolo-binding dynamics are
similar at both high and low affinities. One immediately observes the dissolution of
the discrepancy between the two species in terms of their communicative capability.
The high-affinity SARs are able to communicate with one another under a spatially
dynamic, chemotactic regime.

In order to best understand these dynamics, one must observe them in the pas-
sage of time. The chosen initial conditions impose a stimulus on the central cluster
of cells, whilst peripheral clusters are in a state of metabolic relaxation (Fig. 9). The
spatial dynamics of the central cluster, at early time points, will be mainly balanced
between diffusive processes and chemotactic auto-aggregation. In the peripheral clus-
ters, however, the absence of IFN means that the spatial dynamics are mainly dictated
by diffusive processes.
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cα

cy

m1

t = 45 t = 60 t = 75

Fig. 8 (Color figure online) Multi-cluster results from simulation of model (28) for high affinity (λ = 0.5)
are given for c(t, x, y, α) in the spatio-metabolic domain (1st row, cα), with x on the horizontal plane and
α on the vertical axis; in the spatio-binding domain (2nd row, cy ), with x on the horizontal plane and y on
the vertical axis; and for m(t, x) in space (3rd row), for t ∈ {45, 60, 75} respectively

This diffusion in the cellular population allows some small subpopulation of cells
to migrate sufficiently towards the central cluster so as to overcome the thresholding
in the metabolic dynamics. Coupling this subpopulation with high-affinity molecules,
one achieves a fast dynamics in the binding and metabolic spaces on the perimeter of
the peripheral clusters (Fig. 9, t = 20). Once these peripheral subpopulations have
been potentiated to the point where they are capable of producing high-affinity IFN,
the cluster attains an intra-cluster supply and is capable of maintaining its own levels
of IFN (Fig. 9, m(20, x)), resulting in initially peaked levels of IFN concentration at
peripheral sites.

In the chemotactic simulations, one can more clearly see the elements of inter-
cluster oscillation as an illustration of similar intra-cluster events. One observes an
initially raised production dynamics in the central clusters (Fig. 9, t = 10); followed by
fast metabolic dynamics within, and a concurrent raising of the local concentrations
around, the peripheral clusters (Fig. 9, t = 20); a subsequent response from the
central cluster as the peripheral clusters feedback IFN to elevate binding rates (Fig.
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cα

cy

m1

t = 0 t = 10 t = 20

Fig. 9 (Color figure online) Multi-cluster results from simulation of model (29) for high affinity (λ = 0.5)
are given for c(t, x, y, α) in the spatio-metabolic domain (1st row, cα), with x on the horizontal plane and
α on the vertical axis; in the spatio-binding domain (2nd row, cy ), with x on the horizontal plane and y on
the vertical axis; and for m(t, x) in space (3rd row), for t ∈ {0, 10, 20} respectively

10, t = 30); and the resolution of this oscillatory behaviour in the establishment of
a quasi-equilibrium (Fig. 10, t ≥ 40), where intra-cluster dynamics prevail but result
in little macroscopic change. The initial inter-cluster heterogeneity is a necessary
precursive state for the establishment of this uniformity in behavioural dynamics.

Moreover, the establishment of this synchronicity between the clusters leads to
another effect stemming from the chemotactic dynamic. Not only are cells capable of
communicating in the chemotactic paradigmbut they also self-attenuate their diffusion
and auto-aggregate upon the establishment of intra-cluster activation. This may have
profound implications for immunity: If, as one might intuitively predict, cells who
are inclined to utilise chemotactic dynamics were attracted to the first cluster, and
activated at some gradualistic pace, then the infection of the organism by a pathogen
would result in the accumulation of IFN excreting cells. The decay of the spatial
diversity in the cells would then lead the body to become more vulnerable to infection
at novel sites, as there would no longer be IFN SARs present. If, however and as
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cα

cy

m1

t = 30 t = 40 t = 50

Fig. 10 (Color figure online)Multi-cluster results from simulation of model (29) for high affinity (λ = 0.5)
are given for c(t, x, y, α) in the spatio-metabolic domain (1st row, cα), with x on the horizontal plane and
α on the vertical axis; in the spatio-binding domain (2nd row, cy ), with x on the horizontal plane and y on
the vertical axis; and for m(t, x) in space (3rd row), for t ∈ {30, 40, 50} respectively

predicted by our model, we have a slight diffusive process which allows the signal to
be passed but followed by auto-aggregation, then the cells would remain mostly in
situ and would propagate the signal without compromising their position in the event
of a further wave of infection.

6 Discussion

Themodel and framework that we have herein developed is sufficiently general so as to
be useful in cases that extend beyond the IFN system and even beyond themore general
category of SARs. Generality is achieved through the biologically global forms of the
binding and unbinding functions as well as the particularly general form chosen for
the metabolic flow function, which describes a whole metabolic pathway in a reasoned
but condensed single ODE form.
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The single-cluster model demonstrates a qualitative biological SAR-cycling
between binding and metabolic dynamics of a SAR (Figs. 3 and 4). More basic, or
simplistic, modelsmay be capable of producing quantitatively similar results but could
not capture themechanistic heterogeneity within biological systemswhich cause them
to function as they do. Alone, this illustrates the potential for SST systems to differ-
entially mimic biological systems to a far greater accuracy than can current modelling
techniques.

In terms of the biology, this model makes two important realisations: That low-
affinity molecules may be necessary, for the functioning of the system, in order that the
concentrations of such molecules, at long range, are sufficiently high so as to activate
distant clusters of producer cells. In otherwords, low-affinitymolecules allow cell–cell
communication, at a distance. Also, the biological system actually has two important
functions of heterogeneity internally, in order to self regulate clusters and maintain
sensible levels of IFN, and externally between clusters, so as to convey the activation
signal of one cluster by firstly priming an initially excited cluster at a distance.

The internal heterogeneity established by clusters informs one that the ability for a
cluster of SARs (specifically those for IFN) to maintain optimal levels of metabolism
and reciprocal output, it is necessary for some subpopulation of cells to sacrificially
reduce their levels of binding. This appears to be as a consequence of the feed-
back between metabolism, α, and binding, y, such that as one subpopulation rapidly
increases its metabolism it will feel and subsequent inhibition of its ability to bind and
will sacrifice itself such that another subpopulations may rapidly increase its binding
and metabolism, due to the increased availability of local IFN. This is an important
effect of intra-popular heterogeneity whichwe term ‘subpopular quiescence’, andmay
explain several of the intercellular, intra-popular oscillatory events in biology.

The latter of these two realisations recognises the importance of heterogeneity to
the biological system. We demonstrate that in order that a primary cluster be primed,
upon excitation, itmust be allowed to be internally heterogeneous such thatmore active
cells serve to activate less active cells whilst down regulating their own activity. This
is essential for maintenance of activity levels and eventually for switching the system
off. We further show that this ability for one cluster to self-activate and autoregulate is
essential to maintain the long range signal and activate further clusters, at a distance.
This nuancing is not possible within the simple spatial model (1).

One phenomenon, observed within the multi-dimensional model, which cannot be
recreated within more simple mathematical models is that of ‘metabolic trapping’,
and therefore, production in the presence of inter-cluster cooperativity. In the simple
models, one has a mechanism of feedback wherein a cluster will create IFN in the
presence of IFN, amplifying a given local signal. This return, however, always achieves
a maximal concentration and the rate is dependent only on local IFN concentration.
In the SST context, one observes that the inter-cluster supply of IFN protein between
clusters actually increases the metabolic state of all involved clusters causing the
productions rates to increase, concurrently. This is a qualitative result which makes a
qualitative difference to the final resting state of IFN concentration.

We recognise, also, that the conveyance of the signal in the low-affinity cases (Figs.
5 and 6) is dependent on some thresholding parameter in the binding space, and
can be justified through the biological realisation that sufficiently low quantities of
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chemical are insufficient to bind the receptor for long enough durations so as to cause
co-phosphorylation of the internal proteins. This is a further major difference between
this and previous modelling techniques, since previous modelling techniques make no
comment on this phenomenon.Ademonstrable advantage of thismodelling framework
is the ability to flag up novel biological problems, not necessarily perceptible to simpler
state-variable frameworks.

Spatially dynamic results demonstrated a breakdown in the different abilities of
high- and low-affinity IFN to affect inter-cluster cell communication. This demon-
strates that communication can be achieved either by means of reducing the barriers
to the travelling molecule (affinity to consumer cells) or by cellular migration, reduc-
ing the distance between SARs themselves. In biology these dynamics may occur
in environments which have more freedom for the cells to migrate and may not be
achievable in many instances. In cases where migration is not possible, it may be
advantageous to increase production of lower-affinity IFN, where high-affinity IFN
may be advantageous otherwise, due to the resultant increase in dynamic rate.

The biological significance of these processes are underscored by the intricate
intra- and inter-cluster spatial and metabolo-binding dynamics. The major features
are an intra-cluster oscillatory dynamic and a intra-cluster, post-potentiation auto-
aggregationwhichmaybe immunologically advantageous (dependingon the paradigm
considered). In the paradigm where cells are capable of migration, however, one will
immediately notice that any given signal is much harder to contain or confine to
a local spatial domain. This may be important in organs, such as he brain, where
the body wishes to localise inflammatory response and antiviral behaviour as far as is
possible. Therefore, local biological considerations may effect the evolutionary choice
of method for communication chosen.

Finally, this framework is far more approachable for the biological community, in
terms of understanding. The internal and inter-cluster heterogeneity described by the
SST framework is relatable to biologists in a way that is conducive to dialogue. In line
with this a further explanation proffered to the thresholding problem, however, could
be that there are two such IFN molecules involved in this process; one of high and one
of low affinity. The high-affinity molecules may serve to perpetuate the activation of
the considered cell, or cluster, whilst the low-affinity molecule may serve to convey
this signal to other producer cells. This is a theme that the authors intend to explore
in a further publication.
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A Derivation of the Spatio-Structural-Temporal Model with Receptor
and Metabolic Spaces

Following the same form as the derivation given in Domschke et al. (2017), we derive
of a spatio-structural-temporal (SST) model presented in (3).
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LetD ⊂ R
d with d ∈ {1, 2, 3} be a bounded spatial domain, I = [0, T ] ⊂ R, with

T > 0 be an arbitrary time interval. Further, let Υ ⊂ R
υ with υ ∈ N characterise

the available binding sites, and corresponding binding space, for given receptor ξi for
i ∈ {1, . . . , υ}, which may differ in structure dependent on the molecules capable
of binding each ξi and let P ⊂ R

p characterise the binding space for the biological
complexes bound to these available sites. Finally, let Γ ⊂ R

γ with γ ∈ N characterise
the metabolic subspace of each Υ whose boundary is given by the corresponding
extreme currents for the effected metabolic gene network. Herein, the space defined
by Υ × P shall be referred to as the elementary-state (e-state) space and will give a
characterisation of the total structure of an individual element’s state.

Now, let the variables x ∈ D ⊂ R
d represent space; ξ ∈ Υ ⊂ R

υ represent
receptoral state; y ∈ P ⊂ R

p represent the binding state of these receptors; and
α ∈ Γ ⊂ R

γ represent the metabolic state of these cells. Therefore, we have also that
(ξ, y) ∈ Υ ×P gives the receptoro-binding state of the population, at any given point
in the spatial domain, D.

Further, letU , V ,W be rectangles inD,Υ×P , andΓ respectively (i.e.U×V×W ⊆
D×Υ ×P×Γ ). Then the total amount of cells at a given time t is given by

ĉ(t) = ∫

W

∫

V

∫

U
c(t, x, (ξ, y), α) dx d(ξ, y) dα (30)

the change in c̄ := ĉ(t, x, (ξ, y), α) per unit time in the spatio-metabolo-receptoro-
binding region U×V×W is given by

dc̄(t)

dt
=

∫

W

∫

V

∫

U

Ŝ(t, x, (ξ, y), α) dx d(ξ, y) dα

−
∫

W

∫

V

∫

∂U

F̂(t, x, (ξ, y), α) · n(x) dσd−1(x) d(ξ, y) dα

−
∫

W

∫

U

∫

∂V

[Ĝ(t, x, (ξ, y), α), Ĥ(t, x, (ξ, y), α)]T · n(ξ, y) dσυ+p−1(ξ, y) dx dα

−
∫

V

∫

U

∫

∂W

K̂ (t, x, (ξ, y), α) · n(α) dσγ−1(y) dx d(ξ, y) dα (31)

where σd−1, σ2r−1, and σγ−1 are surface measures on ∂D, ∂P , and ∂Γ , respectively.
Supposing, now, that F , G, H , and J , are in the class of continuously differentiable
vector fields, C1, one can use Stokes’ Theorem to write

dc̄(t)

dt
=

∫

W

∫

V

∫

U

Ŝ(t, x, (ξ, y), α) dx d(ξ, y) dα

−
∫

W

∫

V

∫

U

∇x · F̂(t, x, (ξ, y), α) dx d(ξ, y) dα
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−
∫

W

∫

U

∫

V

∇(ξ,y) · [Ĝ(t, x, (ξ, y), α), Ĥ(t, x, (ξ, y), α)]T d(ξ, y) dx dα

−
∫

U

∫

V

∫

W

∇α · K̂ (t, x, (ξ, y), α) dα d(ξ, y) dx (32)

and using Lebesgue’s dominated convergence theorem, one can move the time deriva-
tive within the integral for ĉ

∫

W

∫

V

∫

U

∂ ĉ

∂t
dx d(ξ, y) dα =

∫

W

∫

V

∫

U

Ŝ(t, x, (ξ, y), α) dx d(ξ, y) dα

−
∫

W

∫

V

∫

U

∇x · F̂(t, x, (ξ, y), α) dx d(ξ, y) dα

−
∫

V

∫

U

∫

W

∇(ξ,y) ·
(
Ĝ(t, x, (ξ, y), α)

Ĥ(t, x, (ξ, y), α)

)
d(ξ, y) dx dα

−
∫

U

∫

V

∫

W

∇α · K̂ (t, x, (ξ, y), α) dα d(ξ, y) dx, (33)

which can be written

∫

Rd+υ+p+γ

[
∂ ĉ

∂t

]
1U×V×W (x, (ξ, y), α) dx d(ξ, y) dα

=
∫

Rd+υ+p+γ

[Ŝ(t, x, (ξ, y), α)]1U×V×W (x, (ξ, y), α) dx d(ξ, y) dα

−
∫

Rd+υ+p+γ

[∇x · F̂(t, x, (ξ, y), α)]1U×V×W (x, (ξ, y), α) dx d(ξ, y) dα

−
∫

Rd+υ+p+γ

[
∇(ξ,y) ·

(
Ĝ(t, x, (ξ, y), α)

Ĥ(t, x, (ξ, y), α)

)]
1U×V×W (x, (ξ, y), α) dx d(ξ, y) α

−
∫

Rd+υ+p+γ

[∇α · K̂ (t, x, (ξ, y), α)]1U×V×W (x, (ξ, y), α) dx d(ξ, y) dα. (34)

Then, since we have that

{U×V×W | U, V,W - compact with piecewise smooth boundaries}
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is a family of generators for the Borelian σ -algebra on U×V ×W we can denote 1A

as the indicator function for any arbitrary A ⊆ D×Υ ×P×Γ and write

∫

Rd+υ+p+γ

[
∂ ĉ

∂t

]
1A(x, (ξ, y), α) dx d(ξ, y) dα

=
∫

Rd+υ+p+γ

[Ŝ(t, x, (ξ, y), α)]1A(x, (ξ, y), α) dx d(ξ, y) dα

−
∫

Rd+υ+p+γ

[∇x · F̂(t, x, (ξ, y), α)]1A(x, (ξ, y), α) dx d(ξ, y) dα

−
∫

Rd+υ+p+γ

[
∇(ξ,y) ·

(
Ĝ(t, x, (ξ, y), α)

Ĥ(t, x, (ξ, y), α)

)]
1A(x, (ξ, y), α) dx d(ξ, y) dα

−
∫

Rd+υ+p+γ

[∇α · K̂ (t, x, (ξ, y), α)]1A(x, (ξ, y), α) dx d(ξ, y) dα (35)

for any arbitrary Borelian set A in the σ -algebra onD×Υ×P×Γ . Then we can replace
1A with any simple function, as so

∫

Rd+2r+γ

[
∂ ĉ

∂t

]
ν(x, (ξ, y), α) dx d(ξ, y) dα

=
∫

Rd+υ+p+γ

[Ŝ(t, x, (ξ, y), α)]ν(x, (ξ, y), α) dx d(ξ, y) dα

−
∫

Rd+υ+p+γ

[∇x · F̂(t, x, (ξ, y), α)]ν(x, (ξ, y), α) dx d(ξ, y) dα

−
∫

Rd+υ+p+γ

[
∇(ξ,y) ·

(
Ĝ(t, x, (ξ, y), α)

Ĥ(t, x, (ξ, y), α)

)]
ν(x, (ξ, y), α) dx d(ξ, y) dα

−
∫

Rd+υ+p+γ

[∇α · K̂ (t, x, (ξ, y), α)]ν(x, (ξ, y), α) dx d(ξ, y) dα

∀ν ∈ C∞
0 (D×P×Γ ). (36)

Then, since this relation holds for any C∞ test function, ν(x, (ξ, y), α), we obtain
the equation

∂ ĉ

∂t
= Ŝ(t, x, (ξ, y), α) − ∇x · F̂(t, x, (ξ, y), α)

−∇(ξ,y) · [Ĝ(t, x, (ξ, y), α), Ĥ (t, x, (ξ, y), α)]T − ∇α · K̂ (t, x, (ξ, y), α),

(37)
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where the functions on the right-hand side describe fluxes in the cellular population
density.

A.1 Derivation of a Structural Source Term

The source term accounts for cell multiplication by division. It is clear that for the
source term, therefore, one must consider the full, continuous transition from mother
cell to 2 daughter cell and, finally, back to 2 second-generationmother cell.We achieve
this by considering mitosis as time dependent process that occurs on a normalised
micro-temporal scale, τ ∈ [0, 1).

Therefore, assuming uniform splitting of the receptors on the cell surface during
cell differentiation, at a given spatio-temporal node (t, x), the amount of cells whose
binding structure reside within an arbitrary rectangleW ∈ P is given by the difference
between the cells that arrived withinW due to mitosis and those that leaveW through
mitosis, and we recast this mathematically as

∫

W

Ŝ(t, x, y) dy = 2
∫

[0,1)

∫

(2−τ)W

φ(ỹ, c, v)ĉ(t, x, ỹ) d ỹ dτ

−
∫

W

φ(y, c, v)ĉ(t, x, y) dy (38)

Using the change of variable

ỹ(y) = (2 − τ)y

d ỹ = (2 − τ) dy (39)

we can obtain

∫

W

Ŝ(t, x, y) dy = 2
∫

[0,1)
(2 − τ)p

∫

W

φ((2 − τ)y, c, v)ĉ(t, x, (2 − τ)y) dy dτ

−
∫

W

φ(y, c, v)ĉ(t, x, y) dy

=
∫

W

2
∫

[0,1)
(2 − τ)pφ((2 − τ)y, c, v)ĉ(t, x, (2 − τ)y) dτ dy

−
∫

W

φ(y, c, v)ĉ(t, x, y) dy. (40)

Thus, as this equality holds true for any rectangleW , via a standardmeasure theoretical
argument, we obtain that
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Ŝ(t, x, y) = 2
∫

[0,1)
(2−τ)pφ((2−τ)y, c, v)ĉ(t, x, (2−τ)y) dτ −φ(y, c, v)ĉ(t, x, y).

(41)

A.2 Derivation of a Structural Source Term for Systems with Receptors

We proceed similarly to derive the source term in the case when the dynamics of
the receptors is also accounted for. Consider again that mitosis is a time dependent
process that occurs on a normalised micro-temporal scale, τ ∈ [0, 1) and that we have
uniform splitting of the receptors on the cell surface during cell differentiation, at a
given spatio-temporal node (t, x). Then the amount of cells whose receptoral-binding
structure reside within an arbitrary rectangle V×W ∈ Υ×P is given by the difference
between the cells that arrived within v×W due to mitosis and those that leave V×W
through mitosis, which can be expressed as

∫

V×W
Ŝ(t, x, ξ, y, α) dy = 2

∫

[0,1)

∫

(2−τ)V×W
φ((ξ̃ , ỹ), c, v)ĉ(t, x, ξ, ỹ, α) d(ξ̃ , ỹ) dτ

−
∫

V×W
φ((ξ, y), c, v)ĉ(t, x, ξ, y, α) d(ξ, y) (42)

and using the change of variable

(ξ̃ , ỹ)(ξ, y) = (2 − τ)(ξ, y)

d(ξ̃ , ỹ) = (2 − τ) d(ξ, y) (43)

we obtain
∫

V×W
Ŝ(t, x, ξ, y, α) d(ξ, y)

= 2
∫

[0,1)
(2 − τ)(p+γ )

∫

V×W
φ((2 − τ)(ξ, y), c, v)ĉ(t, x, (2 − τ)(ξ, y), α) d(ξ, y) dτ

−
∫

V×W
φ((ξ, y), c, v)ĉ(t, x, ξ, y, α) d(ξ, y)

=
∫

V×W
2
∫

[0,1)
(2 − τ)(p+γ )φ((2 − τ)(ξ, y), c, v)ĉ(t, x, (2 − τ)(ξ, y), α) dτ d(ξ, y)

−
∫

V×W
φ((ξ, y), c, v)ĉ(t, x, ξ, y, α) d(ξ, y). (44)

Since this relation holds for any rectangle V ×W , then using the standard measure
theory density argument as in the 2 preceding appendix sections, we arrive at our final
expression of source flux for the total population as

123



1932 A. Hodgkinson et al.

S(t, x, ξ, y, α)

= 2
∫

[0,1)
(2 − τ)(p+γ )φ((2 − τ)(ξ, y), c, v)ĉ(t, x, (2 − τ)(ξ, y), α) dτ

−φ((ξ, y), c, v)ĉ(t, x, ξ, y, α). (45)

B Numerical Methods and Parameters

B.1 Numerical Methods

We use the fourth-order Runge–Kutta predictor for this system, given by

c̄τ+1
1 := cτ

1 + dτ

6

(
F(kτ

c1,1) + 2F(kτ
c1,2) + 2F(kτ

c1,3) + F(kτ
c1,4)

)
,

with

kτ
c1,1 := cτ

1 , kτ
c1,2 := cτ

1 + h

2
kτ
c1,1,

kτ
c1,3 := cτ

1 + h

2
kτ
c1,2, kτ

c1,4 := cτ
1 + dτkτ

c1,3,

where F(cτ
1) := F(cτ

1 ,m
τ ) are given by the local central difference approximation of

the spatio-structural dynamics for cτ
1 := c1(tτ , x, y, α) at the given time point tτ . We

then use a MacCormack corrector, of the form

ĉτ+1
1 := cτ

1 + c̄τ+1
1

2
+ dτ

2
F(c̄τ+1

1 ).

Likewise, these formulae are used for the calculation of the solution for the IFN
molecular species, m(t, x).

We further apply the population-based constraint

cτ+1
1 := ĉτ+1

1

∫

P

∫

Γ

c01 dα dy

∫

P

∫

Γ

ĉτ+1
1 dα dy

, (46)

in order to constrain growth in the population due to the advective term under
condition c(t, x, ξ, y, α) ≥ 0. We can write this in the particular case give since
S(t, x, ξ, y, α) = 0 and thereforewe have that there is no overall change in population.
Otherwise, however, this can be achieved by stepwise accumulation and conformity.

In order to compute accurate solutions to the multi-cluster distribution arrays, we
denote one individual cluster as c1,i (t, x, y) for any i ∈ {1, . . . , k}, where k is the
total number of clusters or initial distributions. Then we have that the entire cellular
population distribution is defined as
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c1(t, x, y, α) :=
k∑

i=1

c1,i (t, x, y, α).

Observe that from the fundamental theorem of calculus we, therefore, have

∇x · c1(t, x, y, α)∇xm = ∇x ·
(

k∑

i=1

c1,i (t, x, y, α)

)
∇xm

=
k∑

i=1

∇x · c1,i (t, x, y, α)∇xm

(47)

Since we have that the overall population does not change with respect to changes time
(S(t, x, y, α) = 0), we can use that (46) and (47) imply that the population constraint
holds on each individual cluster of IFN producer cells

cτ+1
1,i := ĉτ+1

1,i

∫

P

∫

Γ

c01,i dα dy

∫

P

∫

Γ

ĉτ+1
1,i dα dy

, ∀i. (48)

and then the total population changes with

cτ+1
1 := ĉτ+1

1

∫

P

∫

Γ

k∑
i=1

c01,i dα dy

∫

P

∫

Γ

ĉτ+1
1 dα dy

, ∀i. (49)

These constraints should either leave the population c(t, x, y, α) unaltered or correct
for any small instabilities arising from the long-term cumulation of O(δ2) spatial
advective errors, which are not adequately dealt with by the predictor–corrector
methodology.

We also introduce the notations

cα :=
∫

P
c(t, x, y, α) dy and cy :=

∫

Γ

c(t, x, y, α) dα

as quantifying the spatio-metabolic and spatio-binding distributions, respectively, and

c̆ :=
∫∫

D
c(t, x, y, α) dx

as quantifying the non-spatial metabolo-binding distribution of the cellular population
c(t, x, y, α).
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B.2 Parameters

Here we give the table of parameters for the complete, SST system (See Table 1):

Table 1 Table of parameters

Dependent variable Independent variable Parameters

ĉ x Dc = 10−5 χm = 10−4

y β = 2λ υ = 10−1 θm = 10−1

α d = 1
4β μ0 = 10−1

m x Dm = 4×10−3

ε = 10−2 θα = 10−1 φ = 1
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