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Abstract To determine the cross-immunity between influenza strains, we design a
novel statistical method, which uses a theoretical model and clinical data on attack rates
and vaccine efficacy among school children for two seasons after the 1968 A/H3N2
influenza pandemic. This model incorporates the distribution of susceptibility and the
dependence of cross-immunity on the antigenic distance of drifted strains. We find that
the cross-immunity between an influenza strain and the mutant that causes the next
epidemic is 88%. Our method also gives estimates of the vaccine protection against the
vaccinating strain, and the basic reproduction number of the 1968 pandemic influenza.

Keywords Cross-immunity - Drift evolution - Vaccine protection - Seasonal influenza
strains - Basic reproduction number - Evolutionary tree

1 Introduction

Influenza is an important cause of morbidity and mortality in humans (Earn et al.
2002). Seasonal influenza accounts for more than 41,000 deaths each year in North
America (Dushoff et al. 2006), whereas the 1918 influenza pandemic is estimated to
have caused approximately 50 million deaths (Taubenberger et al. 2005). Influenza is
caused by a fast mutating RNA virus in the family of Orthomyxoviridae (Earn et al.
2002). There are three type of influenza, namely A, B and C. Influenza A accounts
for the majority of seasonal influenza deaths (Dushoff et al. 2006) and has caused all
the pandemics since 1918. Influenza A undergoes two types of evolution (i) antigenic
drift (point mutations) and (ii) antigenic shift (gene reassortment) (Earn et al. 2002;
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Webster et al. 1992). Antigenic shift produces new influenza A subtypes (Taubenberger
et al. 2000), and these subtypes have caused four major pandemic outbreaks in the last
century (Webster 1998). Antigenic drift is a rapid minor genetic variation in the RNA
segments in currently circulating subtypes (Taubenberger et al. 2000; Webster et al.
1992). Due to this drift evolution, seasonal influenza outbreaks occur in almost every
winter, usually November—April in the Northern hemisphere (the influenza season)
(Earn et al. 2002; Webster 1998).

Seasonal influenza A strains tend to group in antigenic clusters rather than form a
continuous antigenic lineage (Smith et al. 2004). Usually the strains in a cluster have
small antigenic distance (number of different epitopes) and remain dominant for 3.3
seasons on average before a new cluster at a larger antigenic distance emerges (Smith
et al. 2004). This makes it very difficult to predict which strains are going to cause
an outbreak in the next season. Influenza vaccine is a main strategy for prevention
and control of seasonal and pandemic influenza (Earn et al. 2002; Davenport 1962).
The usual practice is that influenza vaccines are administered before the start of the
seasonal epidemic. Due to antigenic drift, influenza vaccines (that are derived from
the strains in the past season) are not completely protective in the next season against
infection by drifted strains. However, influenza vaccine and natural infection give rise
to cross-immunity (Yu et al. 2008; Potter 1979), that is, the reduction in the probability
of infection to challenging strains. This probability is also called susceptibility. That
is, for any individual, the cross-immunity and the susceptibility sum up to unity.

Cross-immunity reduces the final size (the fraction of individuals infected in an
influenza outbreak, also called the attack rate) of seasonal epidemics because it reduces
the probability of infection upon challenge. This reduction also reduces the number
of challenges. The total reduction is reflected by a nonlinear relationship between the
final size and the basic reproduction number (Ma and Earn 2006). The resulting change
in final size influences the distribution of susceptibility in the population, which in turn
shapes the natural selection of influenza strains (Ferguson et al. 2003). In addition,
cross-immunity between the vaccine and challenging strains is a crucial measure for
vaccine protection. Kucharski et al. (2015) developed a mechanistic model to mea-
sure cross-reactivity of antibodies to a challenging strain given a history of influenza
A/H3N?2 infection. They estimated that the exponential decay of cross-reactivity has
the rate 0.29 per year. In the study by Kucharski et al. (2015), there are two limitations.
One is that they considered in vitro response (cross-reactivity), which does not always
represent the in vivo response (cross-immunity), since the latter involves complex
mechanisms in addition to antibody cross-reactivity. The second is that they assumed
that cross-reactivity decays exponentially with time, implying that the strain in one
season directly evolves from the strain of the previous season. The genetic evolution
of these strains is commonly represented by a phylogenetic tree (Viboud et al. 2005).
Thus, the antigenic change can be represented by a similar tree, called the evolutionary
tree of antigens. The second assumption of Kucharski et al. (2015) corresponds to a
linear evolutionary tree of antigens.

We consider in vivo response with realistic evolutionary trees of antigens and esti-
mate the cross-immunity between strains of influenza A on the evolutionary tree. We
develop a theoretical model that takes into account both the drift evolution (antigenic
distance of influenza strains) and the cross-immunity gained from previous infections
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reducing the susceptibility to related strains of influenza. We fit our model to immune
response data for influenza epidemics from the Seattle area for two seasons after the
1968 pandemic. We group influenza strains by their antigenic distance into a tree struc-
ture. Considering different evolutionary trees of antigens in our model, we determine
the most likely structure during these seasons, which agrees with the observed tree
structure found by Viboud et al. (2005). From our model, we also estimate the basic
reproduction number of the pandemic influenza A/H3N?2.

2 Sources of Data

The average cross-immunity in the population not only determines the attack rate of a
seasonal epidemic (Andreasen 2003; Asaduzzaman et al. 2015), but also depends on
the attack rate of previous seasons. The attack rate in turn depends on the distribution of
susceptibility in the population. It is difficult to estimate this distribution for seasonal
epidemics, except for the seasons immediately following a pandemic. In the season
following a pandemic, individuals are either completely susceptible to a challenging
strain (those who escaped the pandemic) or have the same cross-immunity (those who
were infected by the pandemic). This gives us the initial condition for our model of
the evolution of the distribution of susceptibility. Thus, we use the attack rates in the
seasons immediately following the 1968 pandemic as given in Foy et al. (1971, 1973)
for 1968-1971.

Foy et al. (1973) conducted a field study among school children to evaluate the
efficacy of a single dose of monovalent influenza vaccine. The study began in late
November and early December of 1968 (Fig. 1) by vaccinating junior high school
children in the Seattle urban and suburban areas; a total of 4133 children were vac-
cinated with influenza A/Aichi/2/68(H3N2) or influenza B/Mass/66 strain on one
occasion only. On a random basis, half of the children received influenza A vaccine
(the study group) and half received influenza B vaccine. The children who received
influenza B vaccine are taken as the control group, since influenza B vaccine is not
effective against influenza A. At the time of vaccination, a random 20% of the children
had blood samples collected, and vaccinated children were monitored for a period of
3 years. Following the pandemic that peaked in December 1968, blood samples were
collected again in March 1969; see Fig. 1 for the time line. An influenza A/H3N2 strain
caused a seasonal influenza epidemic during the influenza season of 1969—1970. After
this seasonal epidemic, blood samples were collected in March 1970 (Fig. 1) for sero-

Vaccination Blood sample Blood sample No blood sample Blood sample
Jv Pandemic l Epi. 69-70 J No Epi. 70-71 l Epi. 71-72 l
Nov 68 Mar 69 Mar 70 Mar 71 Mar 72

Fig. 1 Time line of the A/H3N2 influenza study of Foy et al. (1971, 1973). The dotted line indicates the
duration of the pandemic influenza in 1968, the solid lines indicate the summer time between influenza
epidemics, and the broken lines indicate the duration of typical seasonal influenza epidemics. Influenza
vaccine was administered in November—December 1968; blood samples were collected in March 1969,
March 1970 and March—April 1972
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Table 1 Fraction of infected samples (number of infected children/number of total children in the group)
from serological analyses after seasonal influenza A in the 1969—-1970 and 1971-1972 influenza seasons
(from Foy et al. 1971, Table 4 and Foy et al. 1973, Table 1)

Season Influenza A vaccine (study group) Influenza B vaccine (control group)
1969-1970 10/165 33/152
1971-1972 17/147 40/156

logical analyses and estimating infection rates among vaccinated children. A fourfold
or greater titer rise in Complement Fixation or Hemagglutination Inhibition or both
tests were taken as infection during the influenza season. A sample of 165 influenza A
vaccine and 152 influenza B vaccine recipients were tested for influenza infection in
March 1970. There was no seasonal epidemic in the 1970-1971 season in the Seattle
urban and suburban areas (Foy et al. 1973). Following the seasonal A/H3N2 epidemic
in the influenza season of 1971-1972, blood samples were collected in March—April
1972; serological analyses of blood samples for influenza infection were based on 147
influenza A vaccine and 156 influenza B vaccine recipients. The results of serological
analyses of blood samples are summarized in Table 1.

Our method also depends on the pandemic attack rate in the general population,
which is not available in Foy et al. (1971, 1973). However, Davis et al. (1970) provide
this information in a similar high school population in another metropolitan area.
Davis et al. (1970) conducted a retrospective questionnaire survey among high school
students and their families in the Kansas City area for histories of influenza like illness
between November 1, 1968, and January 17, 1969, during the A/H3N2 influenza
pandemic. On January 17, 1969, each student was requested to donate a blood sample
for serologic studies of influenza infection. A total of 139 students out of 285 samples
were found with antibody titers of atleast 1:10 of influenza A/H3N2, giving an estimate
of 49% for the serologically confirmed attack rate of the pandemic.

3 Modeling the Dynamics of Seasonal Influenza
3.1 Population Model

We adapt a theoretical model from Andreasen (2003), Andreasen and Sasaki (2006),
Asaduzzaman et al. (2015) to investigate the cross-immunity between influenza strains
depending on the evolutionary tree of antigens of influenza A/H3N2. Following the
time line (Fig. 1), we fit the model to the influenza epidemic data in Table 1 for
the 1969-1970 and 1971-1972 seasons in the Seattle area. Our model requires the
knowledge of the immune status of susceptible individuals. To represent these immune
status classes in the current season ¢, we introduce the symbol Sg as the fraction of
susceptible individuals who had their last seasonal influenza in season ¢, and S(‘)' as
the fraction of susceptible individuals who have never been infected by the influenza
A/H3N2 subtype.
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Fig. 2 Progress of disease dynamics among the study group (¢ > 0) and the control group (¢ = 0). Here,
A8 s the attack rate of the pandemic in 1968. The solid and dashed lines represent the flows of uninfected
and infected individuals, respectively

The flow of individuals among the Sy classes is depicted in Fig. 2. Let € be the
proportion of individuals vaccinated who had an antibody response. For simplicity,
we assume that natural infection and effective vaccination have the same level of
immunological response. Thus, after the pandemic in 1968, the Sgg class contains
individuals who were either effectively vaccinated or infected during the pandemic.
That is,

Ses =€+ A%B(1 — o), (1)
where A% is the attack rate of the pandemic. In the vaccinated study group, because
everyone is vaccinated, € is the fraction of vaccine recipients with an antibody response.
For individuals who have no antibody response to the vaccine, a fraction A% (1 — €)
were infected by the pandemic, and a fraction

SB=(1—-A%)(1 e 2)

escaped the pandemic.

For £ € {0, 68}, the classes S,fg contain individuals in S?S who escaped influenza in
the 1969—-1970 season, and individuals who were infected during that season belong to
Sgg . We assume that a fraction of individuals (]5?9 (with 0 < (]5?9 < 1) for £ € {0, 68}

in S,?S escaped influenza and a fraction 1 — ¢?9 were infected by influenza in the
1969-1970 season. Thus,
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S =P8, £=0,68, 3)
sg=1- (s +5%). @)

There was no observed influenza epidemic in the Seattle area in 1970-1971 season
(Foy et al. 1973), but an epidemic was observed in the 1971-1972 season. Thus,
similarly at the end of the 1971-1972 epidemic season, individuals belonging to SZ]
for £ € {0, 68, 69} and S;ll classes are found as follows

S)t=¢]'s¥, £=0,68,69, (5)
SI=1— (5" + S8 + 53) ©)

where ¢Zl is the fraction of individuals in S?g for € € {0, 68, 69} who escaped influenza
infection during the 1971-1972 season. Knowing the parameters €, A%, and ¢?9 for
£ € {0, 68} and qbzl for £ € {0, 68, 69}, the flow of individuals among Sy classes are
completely determined by (1)—(6). In Sect. 3.2, we model the transmission dynam-
ics of seasonal influenza with an SIR-type model to determine the parameters qb?g
and ¢Z1.

3.2 Seasonal Epidemic Model

We model the dynamics of seasonal influenza by taking into account an individual’s
infection history since this determines the cross-immunity of an individual to the
challenging strain (Andreasen 2003; Kucharski et al. 2015). Like Andreasen (2003),
we assume that the level of cross-immunity is determined by the most recent infection.
We denote by sy () the fraction of susceptible individuals in season ¢ at time ¢ whose
infection history belongs to £, by i () the fraction of infected and infectious individuals,
and by r(¢) the fraction of recovered individuals. For ¢ = 69, an individual’s infection
history £ belongs to {0, 68}, and ¢ € {0, 68, 69} for ¢ = 71. We ignore birth and death
processes; thus, Z[ sE + i+ r =1 is a constant. We assume that individuals in slf
with £ # 0 have susceptibility 7;. Individuals in 53 are assumed to have complete
susceptibility, i.e., 1'5 = 1. We introduce nondimensional time such that the infectious
period is 1. The transmission dynamics of influenza for the season 1969-1970 evolves
according to the ordinary differential equations

dseﬁg 69 .69 -

T —Rot, s, i, £=0,68, (7a)
di
T = Ro (5 + ) i = @)
d
T (7¢)
dt

The initial conditions are s¢%(0) = S for ¢ € {0,68} (from Sect. 3.1), i(0) is
positive and small, and r(0) = 0. We assume that seasonal epidemics occur on a fast
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time scale, where the end of the epidemic is denoted by time oco; thus, r(c0) = S69
69
and 58 (00) = S&. From (3), in this model ¢%° =t = 5669((’0‘;) for £ € {0, 68). The
J4
final state of the seasonal epidemic can be calculated from (7a) by observing that
69 69
dsgs 6068

68 — 08 69
dsg S0

and integrating on the fast time scale from 0 to co gives

Q00 _ (s89<oo>>rg’? ®)
69 - 69 ’
Se8 () S0 0)

that is

N
oo <¢ ) . ©)

To determine ¢89, sum (7a)and (7b) and integrate from 0 to co

69 69
i(00) — i(0) + 58°(0) ( 69(;;) ) +58(0) (S;”EQ((CZ;) - 1)
68

1 /00 1 dsg9dt (10)
CRoJo sQ) dr

At the beginning of the epidemic, i (0) is very small, so it can be taken as zero, and
at the end of the epidemic i (00) is zero because no one is infectious anymore. Thus,
using (9), the final size equation from (10) can be written as

69
768
tog (#§°) = Ro <s89<0> 087 = 1] +58© [(cﬁg ) - 1})
65
= Ry (s38¢g9 + 568 (48) - 1) . (11)
Similarly, using s/ (0) = S for € € {0, 68, 69}, it follows that

71
ol = (') . ¢=68069, (12)

and

log (¢3') =R (sg%sgl + 5% (q>31)rgig + 58 (¢31)ngI - 1) NG
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(& —(® —() (e (8 (0 —(7)

Model 1 Model 2
{ {—- Cov —(0 —(71)
Model 3 Model 4
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Fig. 3 Possible evolutionary tree of antigens of influenza A/H3N2 after the 1968 pandemic. The prime
indicates a strain that did not appear in the Seattle area

With (9), (11)—(13), Egs. (3)-(6) determine S?g and SZl once Te 9 and ‘L' I are modeled;
see Sect. 3.3.

3.3 Evolutionary Trees of Antigens

Figure 3 lists all possible canonical evolutionary trees of antigens of influenza A/H3N2
for the strains appearing in the 1969-1970 and 1971-1972 seasons, rooted at the 1968
pandemic strain. A node a represents the influenza strain in year a that caused an
epidemic, and an arc connects from node a to node b if strain b evolves from strain a
and causes an epidemic in year b. We define the unit antigenic distance as the average
number of epitopes between two strains connected by an arc. Thus, the antigenic
distance d(c, £) is the number of arcs between the nodes ¢ and £ on the evolutionary
tree of antigens. For example, in Fig. 3, Model 1 assumes that the 69 strain is a mutant
of (i.e., evolves from) the 68 strain, and the 71 strain is a mutant of the 68 strain, with
d(68,69) = 1 and d (68, 71) = 2. Model 2 assumes that the 71 strain is a mutant of
some 70’ strain that did not appear in the Seattle area, which is a mutant of the 69 strain.
Model 3 assumes that the 69 and 71 strains are independent mutants of the 68 strain,
and in Models 4-5 the 71 strain is a descendant of some 70’ strain that did not appear
in the Seattle area; thus, for instance, in Model 5, d(68, 71) = 3 and d (69, 71) = 4.

We assume as Boni et al. (2006) that the cross-immunity decays exponentially with
antigenic distance. This gives 7; = 1 — q9Y as the susceptibility in the current
season ¢, where ¢ is the cross-immunity between strains connected by an arc. With
parameters €, ¢, R and A% and the evolutionary tree, the flow in Fig. 2 is uniquely
determined.

4 Statistical Method for Parameter Estimation
We use the maximum likelihood method to estimate the cross-immunity g between

influenza strains depending on the tree of A/H3N2 with unit antigenic distance, the
vaccine protection € against the vaccinating strain, the basic reproduction number Ry,
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and the attack rate of the 1968 pandemic A%® by fitting the model of Sect. 3 to the four
data points in Table 1. We assume that each individual has the same probability of
being infected during the pandemic influenza or seasonal influenza after the pandemic.
Denote by X% the number of infected individuals in a sample of size N during the
pandemic. Thus, X8 follows a Binomial distribution with parameter A% and sample
size N, i.e., X8 ~ BIN(N, A%), where X and N are, respectively, 139 and 285
from Davis et al. (1970); see Sect. 2.

Let X¢ and X¢ be the number of infected individuals among influenza A and
influenza B vaccinated individuals (control group) in a sample of size N¢ and N¢ in
a season ¢, where ¢ = 69 for the 1969-1970 season and ¢ = 71 for the 1971-1972
season. The numerator and denominator of the first column of Table 1 correspond
to X¢ and N¢, and the numerator and denominator of the second column of Table 1
correspond to X¢ and N° for a season ¢. We determine the attack rate of seasonal
influenzain the 1969—-1970 and 1971-1972 seasons in the influenza A vaccine recipient
(e > 0) and influenza B vaccine recipient (¢ = 0) populations and taking these attack
rates as a probability of infection during the seasonal influenza, X 09 ~ BIN(N 09, Sgg ),
X"~ BIN(N"!, 871y and X% ~ BIN(N®, §&), X7! ~ BIN(N7!, §71), where 5
and S;ll denote the attack rates of seasonal influenza among influenza B vaccinated
individuals in the 1969—-1970 and 1971-1972 seasons. The log likelihood function of
the parameters ¢, €,Ro and A% is

£ (g€ Ro, A%) = log (FX®; N%, 58)) +log (FX™; N1 sT))
+log (F(X®; N9, 38)) + 1og (F (X' N7, §7}))
+log(F(X%8, N, A%)), (14)

where F(X; N, p) is the probability mass function of a Binomial random variable.
We find the set of parameters for influenza A/H3N2 that maximizes the log likelihood
function £ in (14) by using MATLAB fmincon function. The Akaike information
criterion

AIC =2(k — L),

where k is the number of parameters (k = 4), is computed for the relative quality of
the models for the data in Table 1. The 95% confidence interval for the parameters
is found from the likelihood ratio test; see, for example, (Bain and Engelhardt 2000,
pp. 417-422).

5 Model Validation and Results

The point estimates of the parameters of the models in Fig. 3 (with their corresponding
7;) and their AIC are summarized in Table 2. Among the candidate models in Fig. 3,
the preferred model (minimum AIC) is Model 5. These five models have the same
number of parameters, so the order of Bayesian information criterion (BIC) is the same
as that for AIC. Viboud et al. (2005) presented an evolutionary tree for the influenza
H3 gene during the period including 1968-1972. This suggests that the 69 and 71
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Table 2 Point estimates of the

parameters of the Models in Model Point estimate AlC
Fig. 3 and their AIC € q Ro A68
1 1.00 0.70 1.74 0.49 41.55
2 1.00 0.85 2.05 0.49 36.51
3 1.00 0.47 1.46 0.49 51.00
4 1.00 0.81 1.95 0.49 35.70
5 0.99 0.88 2.15 0.49 34.93

strains are two different branches of the 68 strain. Our best fit evolutionary tree of
antigens agrees with that of the evolutionary tree of the H3 gene, but differs from that
of the N2 gene, given by Viboud et al. (2005, Fig. 4).

From the data in Table 1 and the susceptibility structure of the best fit evolution-
ary tree of antigens (Model 5, Fig. 3), we estimate that the cross-immunity between
influenza strains with unit antigenic distance g is 88% (85-91%), the vaccine protec-
tion against the vaccinating strain € is 99% (65-100%), the basic reproduction number
Ro is 2.15 (1.84-2.59), and the attack rate of the pandemic A% is 49% (42-56%.).
The likelihood profile of the parameters is shown in Fig. 4. The point and interval
estimates of the parameters are summarized in Table 3, with the distribution of the
attack rate for each season given in Fig. 5.

Since there was no observable epidemic in the Seattle area in the 1970-1971 season,
the strain 70" may be a descendent of strain 69, 68 or 69’ (the latter is depicted in Model
5). Our estimated parameters yield a very small attack rate in the 1970-1971 influenza
season (Fig. Sa—c), agreeing with the observation of Foy et al. (1973) that there was
no observable epidemic in the 1970-1971 season.

6 Discussion

We used a novel statistical model to investigate the cross-immunity between strains
of influenza A/H3N2. Our model incorporated the knowledge of the immune status
of susceptible individuals depending on the evolutionary tree of antigens of influenza
A/H3N2. The value of the cross-immunity between an influenza strain and its mutant
strains implies that an individual infected by a strain has 12% probability of infection
by a mutant strain in the next seasonal epidemic. We also determined that the vaccine
is highly effective in inducing an immune response. Thus, a vaccinated individual can
expect an infection with probability < 0.01 if the season’s influenza outbreak is caused
by the vaccinating strain. Cross-immunity is a better measure of vaccine protection
than vaccine efficacy because the latter depends on factors that are not related to the
vaccine, for example, the probability of individuals in an unvaccinated population
being challenged by the circulating strain.

In a study of individuals tested against nine different influenza A/H3N2 strains
isolated between 1968 and 2008, Kucharski et al. (2015) found a value e %% ~ 0.75
roughly corresponding to our g, which is lower than the range in Table 3. This may
be because we focused only on years following the 1968 pandemic, and strains from
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Fig. 4 (Color figure online) Plots give the likelihood ratio when varying the single parameter on the
horizontal axis. The dashed vertical lines mark the 95% confidence limits

Table 3 Point and interval

estimates of the parameters for Parameter Point estimate 95% Confidence interval
AH3N2 € 0.99 0.65-1.00

q 0.88 0.85-0.91

Ro 2.15 1.84-2.59

A% 0.49 0.42-0.56

consecutive seasons may be on different branches of the evolutionary tree (Model
5) resulting in a smaller cross-immunity between seasons. In addition, in vivo cross-
immunity is expected to be larger than in vitro cross-immunity because of more types
of immune response.

The basic reproduction number R of the 1968 pandemic influenza that we esti-
mated agrees with previously estimated values of 1.5-2.2 in Cooper et al. (2006) and
1.60-2.12 in Jackson et al. (2010). The data that we used are for school children, who
have higher contact rates than other age groups. So we expect that the attack rate and
the basic reproduction number would be lower in a general population.

Our model assumes that the antigenic drift in each season is the same. However,
some theoretical studies (e.g., Boni et al. 2006) suggest that the antigenic drift of the
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Fig. 5 (Color figure online) Distribution of the influenza A/H3N2 attack rates is given by boxplots, where
the whiskers represent the 95% confidence intervals. The observed attack rates in the seasons 1969-1970
and 1971-1972 are depicted with a diamond ¢ symbol (given in Table 1). The labels 69C, 71C and 69V,
71V represent control and vaccinated groups of individuals in these years. For the 1970-1971 season, the
strain that may have challenged in the Seattle area could be (a) a descendant of the 69 strain as in Model 2,
(b) a descendant of the 68 strain as in Model 4 or (c) a descendant of some 69’ strain and the parent of the
71 strain as in Model 5

pandemic strain is larger than that of the seasonal strain of influenza because the pan-
demic has a much greater attack rate. We model this by assuming the cross-immunity
between the 68 and 69 (or 69’) strain is equal to y ¢, where y € [0, 1]. The cross-
immunity between the 69 and 71 strains becomes y2¢* in Model 5. For simplicity, we
assume that the vaccine is effective for all individuals, i.e., ¢ = 1. Running Model 5
with this hypothesis, the point estimates of the parameters remain identical with the
values given in Table 3, and y = 1. Thus, our model cannot distinguish this hypothesis,
but it does not affect our estimates of cross-immunity ¢, and the basic reproduction
number Rg. Our model also assumes that the effectiveness of the vaccine is all or
nothing. However, the vaccine could be leaky (Halloran et al. 2010), i.e, every vac-
cinated individual is protected to some extent, but has a probability of infection. We
need a new model to explore this hypothesis.

Our theoretical model connects the susceptibility distribution with the influenza
evolutionary tree of antigens. Thus, a variant of our model in Sect. 3 can be used to study
the evolution of influenza after any pandemic. Our findings of cross-immunity between
influenza strains can be used to compute the basic reproduction number (fitness) of
the challenging strain. This information may be helpful for predicting which strain of
influenza may cause the next season’s epidemic, and give better suggestions for the
composition of a seasonal influenza vaccine.
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