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To those outside the field, and even to some focused on empirical applications,
phylogenetics may appear to have little to do with algebra. Probability and statistics
are clearly important ingredients, as modeling and inferring evolutionary relationships
motivate the field. Combinatorics is also an obvious component, as the graph-theoretic
notions of trees, and more recently networks, are used to describe the relationships.
But where does the algebra arise?

The models used in phylogenetics are necessarily complex. At the simplest, they
depend on a tree structure, as well as Markov matrices describing changes in nucleotide
sequences along the edges. These two components result in probability distributions
given by rather complicated polynomials on the parameters of the models, whose
precise form reflects the structure of the tree. Even following standard statistical
paradigms for inference, efficient calculation, such as by the Felsenstein pruning algo-
rithm Felsenstein (1981) used in likelihood calculations, depends on understanding
this algebraic structure.

But in the late 1980s, the algebraic structure also suggested alternative infer-
ence frameworks to some researchers. These included the phylogenetic invariants
of Cavender and Felsenstein (1987), and of Lake (1987), and the Hadamard transform
framework of Hendy and his colleagues Hendy and Penny (1989), Hendy et al. (1994).
While this early explicitly algebraic work resulted in a number of interesting mathe-
matical explorations, perhaps culminated in Evans and Speed’s invariants work Evans
and Speed (1993), it had little impact on practical inference as simulations studies
seldom showed good performance Huelsenbeck (1995).

In the early 2000s, works of Allman and Rhodes (2003) and of Sturmfels and Sul-
livant (2005) revived interest in invariants. Interest in applying algebraic perspectives
to statistical problems, especially in computational biology, was exemplified by the
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book of Pachter and Sturmfels (2005), which helped draw new researchers to the field.
Of course, algebra in statistics has been present from the beginning, such as in Pear-
son’s work Pearson (1894), but as theoretic and computational tools of algebra have
developed, they had remained largely outside of the inference toolbox.

In recent years, algebraic methods have been crucial to advances in the theory of
phylogenetic inference [in particular, parameter identifiability of phylogenetic models
Allman and Rhodes (2009), Allman et al. (2018)] and in new methods of tree recon-
struction Ferndndez-Sanchez and Casanellas (2016), Chifman and Kubatko (2014)
that are competitive with traditional frameworks. The tools that have been used draw
from algebraic geometry, commutative algebra, computational algebra and algebraic
statistics as well as group representation theory and algebraic combinatorics.

The works in this volume showcase the varied directions in which algebra is playing
arole in current phylogenetic research.

Algebraic varieties underly the investigation of mixture models by Gross et al., as
well as the study of maximum likelihood inference using recently developed numerical
algebraic geometry tools by Kosta and Kubjas. Sumner and Woodhams focus more
tightly on the modeling of sequence evolution, and the algebraic origin of nicely
structured models.

A number of works move beyond simple evolution on a tree. The multispecies
coalescent model, which describes the biological process by which gene trees may
differ from species trees, is analyzed by Disanto and Rosenberg with tools of algebraic
combinatorics. Long and Kubatko also consider this model, greatly weakening the
assumptions necessary to justify the invariant-based SVDquartets method of species
tree inference. Durden and Sullivant give an identifiability result for a k-mer based
distance under the coalescent.

Moving from trees to networks, Kim et al. investigate the impact of admixture on
phylogenetic distances and tree reconstruction. Considering both the coalescent and
the hybridization, Bafios mixes algebraic and combinatorial approaches to show the
identifiability of many network features from gene tree data.

Two works highlight other algebraic tools. Terauds and Sumner apply representation
theory to study improving distance estimates based on gene order through maximum
likelihood. Yoshida et al. bring tropical geometry and algebra to bear on summarizing
collections of trees, through a new form of principal component analysis.

Finally, Huber et al.’s work highlights the role of submodularity, a concept appearing
widely in combinatorics and optimization, while Wicke and Fischer address open
questions on the Shapely value of trees.
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