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Abstract
The nervous system has a significant impact in glucose homeostasis and endocrine pancreatic secretion in humans, especially
during the cephalic phase of insulin release (CPIR); that is, before a meal is absorbed. However, the underlying mechanisms
of this neural-pancreatic interaction are not well understood and therefore often neglected, despite their significance to
achieving an optimal glucose control. As a result, the dynamics of insulin release from the pancreas are currently described
by mathematical models that reproduce the behavior of the β cells using exclusively glucose levels and other hormones as
inputs. To bridge this gap, we have combined, for the first time, metabolic and neural mathematical models in a unified
system to reproduce to a great extent the ideal glucoregulation observed in healthy subjects. Our results satisfactorily
replicate the CPIR and its impact during the post-absorptive phase. Furthermore, the proposed model gives insight into the
physiological interaction between the brain and the pancreas in healthy people and suggests the potential of considering the
neural information for restoring glucose control in people with diabetes.
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1 Introduction

Maintaining robust control of glucose homeostasis is
essential to guaranteeing the daily function of the human
body through the provision of energy in cells via glycolysis.
Therefore, to ensure a tight regulation of blood glucose
fluctuations our bodies rely on the complex interaction of
many organs, such as the pancreas and liver, acting through
hormones and neurotransmitters. The brain has also been
found to have a crucial role towards this objective [27, 36].
Evidence of its contribution on glucose regulation dates
back to the work of the physiologist Claude Bernard, who
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for the first time showed a causal relationship between brain
stimulation of the fourth ventricle in the hindbrain and an
increase in plasma glucose levels [13]. Latter research in
the field strengthened this evidence by bringing to light
the mechanisms that underlie this neural control of glucose
homeostasis [17, 27, 35, 41, 42]. However, these findings
are just at the beginning of our understanding because most
of the neural action schemes are still unknown [27].

Of remarkable interest has always been the study of the
implications of central and peripheral neural mechanisms
in regulating the endocrine pancreatic function [8, 25, 45,
56]. In particular, the nervous system has been shown to
have a major role in the cephalic phase of insulin release
(CIPR), which refers to the pre-absorptive secretion of
insulin triggered by neural signals rather than to changes in
plasma glucose concentrations after meal intake [3, 58].

Between the two major pathways identified in regulating
islet secretion, parasympathetic and sympathetic (see
Fig. 1), only the former has been found to carry out a
significant role in regulating the CPIR [1, 8, 32, 35, 42,
55]. The sympathetic innervation, on the contrary, is not
likely to affect CPIR as it mainly inhibits insulin secretion in
hypoglycaemia [4, 6, 8, 55]. There are two parasympathetic
mechanisms which, through activation of the vagus nerve,
enhance insulin and glucagon secretion: (i) cholinergic
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Fig. 1 Diagram depicting the most important neural pathways to the
pancreas during the cephalic phase

regulation via release of acetylcholine (ACh) and (ii) non-
cholinergic mechanisms mediated by neuropeptides, such
as vasoactive intestinal polypeptide (VIP), gastrin releasing
peptide (GRP) and pituitary adenylate cyclase activating
polypeptide (PACAP) [2, 14]. In some animals, like dogs,
rats, and calves, the insulin secretion has been found to be
mediated mainly by ACh because it was largely inhibited
by atropine, which is a muscarinic antagonist [26]. On the
contrary, in humans and pigs, there is evidence of other
non-cholinergic neurotransmitters being implicated [3, 26].
The contribution of each parasympathetic mechanism to
insulin secretion has been assessed with the use of the
ganglionic blocker trimethaphan, which inhibits all the
neural transmission to the pancreas [3]. However, the
degree of involvement of non-cholinergic mechanisms to
the hormonal secretion during the cephalic phase is still
not clear [2, 8]. In addition, to the best of our knowledge,
there are no reported data describing their release dynamics.
Therefore, a mathematical model of the non-cholinergic
signaling mechanisms is not available. On the contrary,
models of the ACh release after vagal activation have been
reported [22, 60]. For these reasons, only the cholinergic
mechanism, i.e., through secretion of ACh, is included in
the proposed model.

Regarding the characteristics of the CPIR, it lasts up to
10 min and has its peak within the first 4 or 5 min after the
food ingestion [3, 47, 49, 52]. Its contribution to the entire

postprandial insulin secretion is quite small, in the range
of only the 1 to 3% of the total secretion (approximately
25% above the baseline levels) [47]. It is thought to act
mainly on the hepatic glucose metabolism, by allowing a
prompt inhibition of gluconeogenesis in the liver [3, 21, 34]
and on the metabolism of fats by inhibiting lipolysis [26,
47]. This allows the body to prepare to the rapid and large
increase in plasma glucose levels that occurs after meal
intake. In addition, absence of the CPIR has been related
to an impaired glucose tolerance after a meal through a
reduction of postprandial hepatic glucose uptake [3, 21, 37,
46, 47]. Therefore, the CPIR affects the insulin sensitivity,
which is a measure of the effectiveness of insulin action on
the tissues. To further illustrate its importance, studies in
people with type 2 diabetes (T2DM) with an impaired or
absent CPIR have reported that injection of a small amount
of insulin just after the meal intake resembling the cephalic
insulin allowed to successfully increase glucose tolerance
in these patients [3, 21, 47]. In conclusion, the resulting
effect of the CPIR is a reduction of postprandial glycemic
fluctuations and insulin secretion [3, 21, 26, 47].

It is worth noting that the cephalic insulin has not been
found to directly affect glucose uptake by other peripheral
organs [26].

Existing metabolic mathematical models are imple-
mented using differential equations which describe the cel-
lular dynamics for insulin release from the β cells using
exclusively glucose levels and other metabolites as inputs
[19, 29, 31]. On the other hand, mathematical models of the
neuroregulation of many physiological processes have been
developed, including modeling of the respiratory system
[43], blood pressure [24], or heart rate among others [22].
However, to the best of our knowledge, models describing
the effects of the neural regulation on the pancreatic func-
tion have not been reported. Hence, the important neural-
pancreatic interaction is currently disregarded, although it is
crucial to achieve an optimal glucose control.

To bridge this gap, we have combined for the first
time metabolic and neural mathematical models in a
unified physiological model to reproduce to a great extent
the ideal glucoregulation seen in healthy subjects. This
work motivates the development of more comprehensive
models of the pancreatic secretion and encourage further
investigations on the neural control of glucose homeostasis
towards diabetes management.

2Methods

2.1 Themodel

Figure 2 depicts the complete scheme of the unified neural-
glucose-insulin system model representing the fluxes of
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Fig. 2 Diagram of the complete model showing the interaction regard-
ing the mass fluxes (solid lines) and control actions (dashed lines)
among the different subsystems (1–7). I (t), Ic(t), and G(t)—plasma

insulin, plasma cephalic insulin, and plasma glucose, respectively—
are the outputs of each subsystem

glucose and insulin and the control actions among them and
the brain.

2.1.1 Gastrointestinal absorptionmodel

The amount of carbohydrates taken during a meal is a key
input for the glucose subsystem (see block 1 in Fig. 2).
The gastrointestinal meal absorption model developed by
Hovorka et al. was implemented [29, 31]. This model was
selected for two main reasons: (i) its simplicity significantly
reduces the number of parameters in comparison with other
complex existing models [19], therefore facilitating the
complete model identification, and (ii) it has been found
to be sufficient to adjust the postprandial glucose profiles
of standard meals like the one used in this work [29]. The
output of this two-state model is the rate of plasma glucose
appearance Ra (mg/min) after an ingestion of a certain
amount of carbohydrates D (mg) in a meal. The model is
defined by the following equations:

Ḟ (t) = 1

tmaxG

(−F(t) + AgDδ(t)), (1)

Ṙa(t) = 1

tmaxG

(−Ra(t) + F(t)), (2)

where F(t) denotes the glucose change in the first
compartment, tmaxG (min) describes the time-to-maximum
of CHO absorption, Ag (unitless) is the carbohydrate
bioavailability, and δ(t) is a Dirac delta.

2.1.2 Glucose subsystem

The model of plasma glucose and insulin interaction
developed by Bergman et al. [11] is used as the key
subsystem for studying the interaction between insulin and
glucose.

The model describes the whole body as a unique
compartment with a basal concentration of glucose and
insulin. The glucose production and disappearance is
influenced by a remote insulin compartment, which is
insulin dependent (see interaction among blocks 2 and 5 in
Fig. 2).

The model is described by two differential equations:

Ġ(t) = −[SG + X(t)]G(t) + SGGb + Ra(t)

VGBW
, (3)

Ẋ(t) = −p2X(t) + p2SI [I (t) − Ib], (4)

where G(t) is the plasma glucose concentration; X(t) is the
remote active insulin effect on glucose uptake by the tissue
and its uptake and production by the liver; p2 refers to
the rate of degradation of the active insulin; BW (kg) is
the subject’s body weight and VG (dL/kg) is the glucose
distribution volume.

The glucose effectiveness SG (min−1) is defined as the
glucose ability per se to promote its own disposal and inhibit
its production [29], i.e., independently of insulin. Insulin
sensitivity SI (min−1 per pmol/L) is defined as the ability of
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insulin to increase glucose effectiveness [29]. As a result, it
characterizes the effect of insulin in the balance of glucose
production and uptake.

2.1.3 Neural model: ACh secretion

To the extent of our knowledge, there is a lack of in vivo
experiments in humans regarding the continuous secretion
of ACh from the vagus nerve terminals in the endocrine
pancreas after vagal stimulation. However, it is reasonable
to assume that the kinetics of ACh secretion does not
change from one nerve terminal to another. Therefore, in
this first proposal, a model based on the ACh secretion
by parasympathetic activation on the heart has been used
[22, 60]. In particular, the model proposed by Dexter and
colleagues [22] was selected.

As reported in the literature, basal insulin secretion is not
affected by a blockade of the nervous signaling (e.g., by
vagotomy or atropinization) [3, 26]. This is an indicator that
there is not significant tonic cholinergic stimulation of the
β cells in the fasting state. As a result, only the activation
of the vagus nerve terminals elicited by food intake depletes
a pool of ACh vesicles, where 0 ≤ V (t) ≤ 1 is the
normalized quantity of ACh vesicles available for release
(dimensionless). The change in ACh concentration in the
interstitial space, which is represented by block 7 in Fig. 2,
is given by:

V̇ (t) = −ρV (t)s(t) + KR(1−V (t)) with V (0)=1,(5)

R(t) = mρV (t)s(t), (6)

ĊACh(t) = −KDCACh(t) + R(t) with CACh(0) = 0, (7)

where CACh(t) (nM) represents the interstitial concentra-
tion of ACh; KD (min-1) is the rate of ACh enzymatic
degradation; s(t) is the vagal firing patterns or stimulus; KR

(min-1) represents the rate of renewal of vesicles; ρ (unit-
less) is the fraction of the total vesicles (V) released by each
vagal stimulation; and m (nM) is the maximal concentration
of ACh that can be released per stimulus.

The real physiological nervous stimulus consists of a
burst of action potentials (APs) or spikes (0 or 1 events)
with a certain firing frequency, i.e., inter spike time. In order
to develop a detailed physiological model, in this work, the
nervous stimulus has being modeled as a train of squared
pulses (s(t) = 1 during the pulse and s(t) = 0 otherwise), each
of them with a duration δ (ms) that resembles that of the real
action potential (see Fig. 6). The activation of the train of
pulses occurs in the instant the meal is taken tmeal (i.e., as
soon as the food is ingested).

Following a first order Boltzmann dynamics, ACh con-
centration (nM) in the interstitial space eventually reaches
a mean plateau value with time (with some superimposed

ripple) that increases with increasing frequencies of stim-
ulation. Only the value at the steady state reflects the
action of the neural system, so a simplified version of the
neural model considering only the mean concentration of
ACh in the steady state was incorporated to the unified
neural-metabolic model:

V = KR

ρ mean(s(t)) + KR

, (8)

CACh = m ρ V mean(s(t))

KD

. (9)

This simplified neural model solely depends on the firing
frequency of the stimulus, since the higher the frequency,
the higher the mean of the stimulus along time, leading to a
higher steady-state value for ACh concentration (CACh).

2.1.4 Insulin secretion

The model used for describing glucose-dependent insulin
secretion is based on that proposed by Toffolo et al. [57] and
Breda et al. [16], and reported by Dalla Man et al. [19] as:

S(t)=γ Ipo(t), (10)

İpo(t)=−γ Ipo(t)+Ip1(t)+Ip2(t)

+Sb with Ipo(0)=Ipob, (11)

Ip1(t)=
{

kDiĠ(t) if Ġ > 0,
0 otherwise,

(12)

İp2(t)=
{−α[Ip2(t)−β(G(t)−h)] if β(G(t)−h)≥−Sb

−α[Ip2(t)+Sb] otherwise Ip2(0) = 0

(13)

where S(t) (pmol/kg/min) is the total glucose-dependent
secreted insulin; γ (min-1) is the transfer rate constant
between portal vein and liver Ipo(t) represents the amount
of insulin in the portal vein, subindex b refers to the basal
state; Ip1(t) (pmol/kg) is responsible for the first phase
of secretion, and Ip2(t) (pmol/kg) characterises the slower
second secretion phase; kDi (pmol/kg per mg/dL) is the
pancreatic responsivity to the glucose rate of change; α is
the delay between glucose signal and insulin secretion; β

(pmol/kg/min per mg/dL) is the pancreatic responsivity to
glucose and h (mg/dL) is the threshold level of glucose
above which the β cells initiate to produce new insulin.
As stated in [19], h has been set to the basal glucose
concentration (Gb) to guarantee the steady state in basal
conditions.

The pre-absorptive phase of insulin secretion from the β

cell is dependent of the interstitial concentration of ACh.
In addition, as the literature reports, there is a significant
dependence on plasma glucose levels in the effects of ACh
on insulin secretion [12, 26]. Both in vitro and in vivo
studies have shown that the effect of ACh is present from 5-
nM glucose levels (i.e., normal basal glucose levels) and its
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efficacy in insulin release significantly increases with higher
glucose levels [12, 26]. Consequently, the novel equations
defining ACh action on neurally mediated pre-absorptive
insulin release has been defined as:{

Sc(t) = γ Ipc(t),

İpc(t) = −γ Ipc(t) + Z(t),
(14)

Z(t) =
{

KAChCACh(t)(G(t) − h) if G(t) > h,

0 otherwise,
(15)

where Sc(t) (pmol/kg/min) is the total amount of insulin
secreted during the cephalic phase; Ipc represents the
amount of cephalic insulin in the portal vein, with Ipc(0) =
0; γ (min−1) is again the transfer rate constant between
portal vein and liver; and KACh (pmol/kg per nM per
mg/dL) is the pancreatic responsivity to the ACh interstitial
concentration.

As a result, the total amount of insulin secreted by
the β-cells, ST (t) (pmol/kg/min), comprises the glucose-
dependent insulin and the insulin elicited by neural
stimulation:

ST (t) = S(t) + Sc(t). (16)

No delay on the ACh action on cephalic insulin release
was included in the proposed model because it was shown
to be negligible during the simulations in the time scale of
the kinetics of insulin secretion.

2.1.5 Insulin kinetics

The model of insulin kinetics that has been used is based on
the two compartment model developed by Dalla Man and
colleagues [19]. In this unified neural-metabolic model, it
takes the total insulin secretion from the β cell (both glucose
and ACh dependent insulin) as an input and determines
the plasma insulin. In doing that, it takes into account the
insulin degradation rate that occurs in both the liver and the
periphery. The set of differential equations that describes
this subsystem corresponds to block 4 in Fig. 2 and is the
following:
⎧⎪⎨
⎪⎩
İl (t)=−(m1+m3(t))Il(t)+m2Ip(t)+ST (t) Il(0) = Ilb,

İp(t)=−(m2+m4)Ip(t)+m1Il(t) Ip(0)=Ipb,

I (t)= Ip

VI
I (0) = Ib,

(17)

where Ip and Il (pmol/kg) are insulin masses in plasma
and in liver respectively; I (pmol/L) is the plasma
insulin concentration; Ib represents the basal state; ST (t)

(pmol/kg/min) is the total insulin secretion form β-
cell; VI (L/kg) is the insulin distribution volume; and
m1, m2, and m4 (min-1) are rate parameters. The hepatic
extraction of insulin HE, i.e., the insulin flux which leaves

the liver irreversibly divided by the total insulin flux leaving
the liver, is time varying [19]:

HE(t) = −m5ST (t) + m6with HE(0) = 0, (18)

and therefore:

m3(t) = HE(t)m1

1 − HE(t)
. (19)

An additional similar block of insulin kinetics but using
solely the cephalic insulin secreted (see block 7 in Fig. 2)
was included in order to have an independent quantification
of its plasma concentration:⎧⎪⎨
⎪⎩
İcl(t)=−(m1+m3(t))Icl(t) + m2Icp(t)+Sc(t) Icl(0)=0,
İcp(t)=−(m2+m4)Icp(t) + m1Icl(t) Icp(0)=0,

Ic(t)= Icp

VI
Ic(0)=0.

(20)

In this way, an independent effect of the part of the total
plasma insulin correspondent to the CPIR in the glucose
hepatic production can be achieved.

2.1.6 Unified neural-metabolic model: effect of cephalic
released insulin

The cephalic insulin acts on the liver causing a prompt
inhibition of gluconeogenesis and enhancing the action of
postprandial insulin on the hepatic glucose uptake, therefore
increasing insulin sensitivity (see Fig. 2) [3, 21, 37, 46].
Hence, in this model the insulin sensitivity changes over
time based on the concentrations of the cephalic insulin in
plasma Ic(t) (pmol/L):

ṠI (t) = −p4SI (t) + p4(SIb + kSI
Ic(t))SI (0) = SIb, (21)

where SIb (min–1 per pmol/L) is the basal insulin sensitivity,
set to its value when there is no neural control (i.e., Ic(t) =
0), kSI

( L kg

pmol2
) defines the action of the cephalic plasma

insulin and p4 (min-1) is the rate constant describing the
dynamics of glucose hepatic production inhibition.

2.2 Experimental data

Experimental data found in the literature were employed for
the parameters identification task. The data were extracted
from the graphs reported in literature using the software
ScanIt [5]. For the identification of the ACh release
subsystem, the results obtained by Dexter et al. [22] in
a study of the changes in heart rate elicited by vagal
stimulation were used (see Fig. 3).

For the rest of the subsystems, the mean results of six
female healthy subjects in presence and absence of the
ganglionic blocker trimethaphan reported by Ahrén et al. [3]
were used (see Fig. 4). The presence of trimethaphan allows
achieving a purely metabolic system without any neural
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Fig. 3 Mean interstitial concentration of acetylcholine (nM) over time

control, whereas in its absence, the neural contribution is
also shown.

2.3 Parameter identification

A sensitivity analysis was carried out to reduce the number
of simultaneously identified parameters. Those that had the
lowest effect to the system were fixed to their value reported
in existing populational models (see Table 2) [19, 22]. In
addition, the parameters related with the ACh secretion
were fixed to the values defined by Dexter et al. [22] to be
consistent with the hypothesis of similar kinetics of release
from different vagus nerve terminals. To further reduce the
of degrees of freedom and to develop a consistent model, the
parameters of each subsystem were progressively identified
in three steps by minimizing the coefficient of variation
(CV), calculated as the ratio of the root mean squared
error (RMSE) to the mean of the dependent variable.
An Evolution Strategy with Covariance Matrix Adaptation
(CMA-ES) algorithm for nonlinear global optimization was
employed [7, 28]. Figure 5 summarizes the identification
process and the overall integration of the model.

During the optimization process, the parameters were
constrained to lie within a range of values with (i)
physiological significance and (ii) lie in the range of values
reported in the literature, as shown in Table 1. The final
estimation values of the parameters can be found in Table 2.
The models were numerically integrated using a RK4
integrator with a fixed integration step size of 0.1 ms for
the neural model and 1 min for the unified neural-metabolic
model.

3 Results

3.1 Independent neural model identification

The values of the parameters of the independent neural
model, including the duration of the pulses identified in the

Fig. 4 Average serum insulin and plasma glucose levels (N=6).
a Insulin profile. The small insert shows the insulin levels 10 min
after meal intake (depicted with *), which corresponds to the cephalic
period. b Glucose profile. At time 0 the meal was served

validation process are reported in Table 2. Figure 6 depicts
the profiles of vesicles secretion and ACh concentration
in the interstitial space, together with the correspondent
stimulus, achieved with the independent neural model.
To improve the visualisation of the results, an exemplary
train of pulses (stimulus) with a firing frequency of
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Fig. 5 Summary of the steps carried out for the parameters identification task

Table 1 Constraints used in the parameter identification process and their explanation

Process Parameter Constraints Units Explanation

Neural model of ACh release δ 4.2 ms Absolute refractory period of APs is 1 ms
and the maximum duration 5 ms [33]

Bergman minimal model (extended) p2 0.01–0.1 min−1 Covers the great variability of values
reported in the literature [20, 40, 59]

SIb (0.66 − 6.79) · 10−4 min−1 per μmol/mL Reported by Bergman et al. [11]

SG 0.002-0.039 min−1 Covers the range reported by Dalla Man
et al. [20] and Steil et al. [44]

Gastrointestinal absorption model tmaxG 35–45 min Cover the value reported by Hovorka
et al. [31]

Insulin secretion kDi 1–3 pmol/kg per mg/dL Covers the values reported by Dalla Man
et al. [19]

α 0.01–0.5 min−1 Covers the values reported by Dalla Man
et al. [19]

β 0.1–0.2 pmol/kg per mg/dL Covers the values reported by Dalla
Man et al. [19]

Insulin kinetics m5 0.015–0.025 min kg/pmol Covers the values reported by by
Dalla Man et al. [19] and to ensure
stability in the steady state

m6 0.6–0.7 min kg/pmol Covers the values reported by by
Dalla Man et al. [19] and to ensure
stability in the steady state

Neural stimulus d 0.5–3 min No literature found.

f 0.25–25 Hz Range reported by Holst et al. [30]

Cephalic insulin release KACh 0.1–5 pmol/kg per nM –

Action of cephalic insulin p4 0.005–0.5 min−1 –

kSI
1 · 10−5 − 0.1 L kg

pmol2
–
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Table 2 Model parameters

Process Parameter Value Units

Neural model of ACh release KD 0.00139† min−1

KR 0.0035† min−1

ρ 0.6† Dimensionless

m 55† nM

δ 4.2 ms

Bergman minimal model (meal extended) p2 0.094 min−1

SIb 6 · 10−4 min−1 per μmol/mL

SG 0.0104 min−1

VG 1.88* dL/kg

Gastrointestinal absorption model Ag 0.85� Dimensionless

tmaxG 40 min

Insulin secretion γ 0.5* min−1

kDi 1.54 pmol/kg per mg/dL

α 0.29 min−1

β 0.18 pmol/kg per mg/dL

Insulin kinetics VI 0.05* L/kg

m1 0.19* min−1

m2 0.48* min−1

m4 0.194* min−1

m5 0.023 min kg/pmol

m6 0.67 Dimensionless

HEb 0.6* Dimensionless

Neural stimulus d 0.96 min

f 20 Hz

Cephalic insulin release (cephalic phase) KACh 3.17 pmol/kg per nM

Action of cephalic insulin p4 0.01 min−1

kSI
9.3 · 10−5 L kg

pmol2

*Values taken from [19], †values taken from [22], �values taken from [31]

10 Hz and a total duration of the train of pulses of
15 s was modeled. It can be clearly seen how the
concentration of ACh in the interstitial space increases
until reaching a plateau level with some ripple as long
as the stimulus was present and decreases exponentially
afterwards.

3.2 Completemodel identification

All the parameters identified for each biological process can
be found in Table 2. Figure 7 shows graphically the fitting of
the model in absence (Fig. 7a) and presence (Fig. 7b) of the
neural control to the corresponding experimental data. The
quality of the fitting regarding the glucose profiles is CV =
10.2% and CV = 5.1% in presence and absence of CPIR,
respectively. For the profiles of plasma insulin the obtained
fitting errors are CV = 8.4% and CV = 6.5% in presence
and absence of CPIR, respectively.

3.3 Impact of the CIPR

A comparison between the postprandial glucose and insulin
profiles obtained in presence and absence of the neural
contribution is depicted in Fig. 8. The temporal evolution
of the insulin sensitivity as a result of the neural control is
depicted as well, showing a peak at 17 min after meal intake
and progressively decreasing with time afterwards. The
amount of plasma insulin secreted during the cephalic phase
(incremental area under the curve iAUCCPIR) corresponds
to a 0.84% of the total plasma insulin secreted in the
considered interval (from 0 to 140 min).

Table 3 presents the iAUC of the insulin and glucose
profiles obtained in presence and absence of the neural
contribution and reports the percentage of reduction of the
postprandial plasma levels (19.6% and 24.6% of reduction
for postprandial levels of plasma glucose and insulin
respectively).
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Fig. 6 Neural model of ACh release. a Neural stimulus of 10 Hz and 15 s of overall duration and zoom to visualize the train of pulses and its
discretization. b Profile of ACh concentration in the interstitial space. c Profile of vesicles secretion (V(t)) from the nerve terminals

4 Discussion

The proposed model closely replicates the characteristics
of the CPIR reported in literature. Firstly, the peak of
cephalic insulin release shows a maximum at 5.5 min after
meal ingestion, which is within the interval of 3–6 min
previously reported in experimental studies [47, 49, 52].
Secondly, it represents approximately 0.84% of the total
insulin secreted, which is slightly lower than the previously
reported range of 1 ± 3 % [47]. However, it is in agreement
with the values reported by Ahrén et al. (0.80± 0.22%) [3],
whose experimental results were used for the model’s iden-
tification. In addition, the insulin sensitivity shows a maxi-
mum at 17 min after meal intake due to the enhanced action
of insulin on hepatic glucose uptake, being also consistent

with previous research [3, 37]. From Fig. 8 and Table 3, it
can be seen that inclusion of the small amount of neurally
mediated pre-absorptive insulin has a powerful and essential
effect in reducing postprandial plasma glucose and insulin
levels after the meal intake. This outcome describes the
causal inverse relationship between the neurally mediated
pre-absorptive insulin and the postprandial hyperglycemia
and hyperinsulinemia reported by previous studies [3, 21,
47, 53]. As a result, the proposed neural model of pre-
absorptive insulin secretion seems to capture well the phys-
iological effect of the cephalic insulin on hepatic glucose
metabolism.

However, the lack of knowledge regarding the neural
stimulation of the endocrine pancreas hinders the devel-
opment of comprehensive mathematical models of its
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Fig. 7 Comparison of the results of the fitted model with the exper-
imental data. a Metabolic model without neural control. b Metabolic
model including the neural control. Left: Glucose profile. Right:

Insulin profile. Model results (continuous line) and fitting data set (red
points). The model parameters reported in Table 2 were used. Meal
time (*), occurs 20 min after the beginning of the simulation

behavior. In this study, we assumed that the vagus nerve’s
terminals in different organs have similar kinetics of
ACh secretion. Despite appearing to be numerically valid
because it allows an accurate representation of the charac-
teristics of the CPIR, it does not represent the real neural-
pancreatic interaction. In addition, the CIPR on humans is
highly dependent on the type, intensity, and duration of the
stimuli [9, 48, 51]. Therefore, further experimental research
is needed to identify the characteristics of the nervous sig-
nals to the pancreas and their relation with the meal type and
size [27].

Moreover, scarcity of large and complete experimen-
tal data sets complicates the development of an accu-
rate model in some aspects. Firstly, experimental studies
have reported high variability in the pre-absorptive phase
of insulin secretion among individuals [10, 47]. Conse-
quently, the mean profile of only six healthy subjects
will probably not reflect this intra-subject variability. Sec-
ondly, the degrees of freedom of the model was very
large to allow an adequate identification of the param-
eters. Even though the step-wise strategy was imple-
mented to reduce the number of simultaneously estimated

parameters, it is well known that modeling with insuf-
ficient data generally leads to over-fitting, and therefore
poor generalization. Hence, experimental data describing
each subsystem in the presence and absence of neural reg-
ulation is needed to accurately identify and validate this
model.

Finally, the neural control of the pancreatic secretion
was modeled by considering the cholinergic signaling
mechanisms. Disregarding the non-cholinergic pathways
might also account for some uncertainties in the results.
However, the degree of uncertainty is unclear because of the
discrepancies found in the literature regarding the impact
of atropine on the inhibition of the CPIR. In fact, some
studies report an effective action [15, 50]; whereas in
others, its effect is lower [3]. These variations have been
explained by the use of different experimental conditions,
types of food stimuli and gender of subjects (men have
been shown to have a higher sensitivity to atropine
[3, 50]).

All these limitations might explain the deviations of the
model from the experimental data during the postprandial
phase, especially regarding the plasma glucose profiles



Med Biol Eng Comput (2019) 57:1173–1186 1183

Fig. 8 Postprandial glucose,
insulin, and insulin sensitivity
profiles along time in presence
and absence of the cephalic
phase. a Glucose profile.
b Insulin profile. The small
insert depicts the insulin levels
corresponding to the cephalic
phase (from the ingestion of the
meal to 15 min after it).
c Insulin sensitivity profile. The
meal (*) was given 20 min after
the beginning of the simulations

(see left panels in Fig. 7a–b). Despite them, the unified
neural-metabolic successfully reproduce the characteristics
of the CPIR and gives insight into the dynamics of
its postprandial effects. This finding, while preliminary,
suggests that existing models of glucose homeostasis, which
currently neglect the neural contribution, would benefit
from acquiring a better understanding of the physiological
basis of the interaction between the brain and the
pancreas.

Table 3 Relative decrease in postprandial glucose and insulin plasma
levels for each cephalic model with respect to the absence of neural
control

Without
neural
control

With
neural
control

% of reduction

iAUC postprandial
plasma insulin

15.4 nmol/L 11.6 nmol/L 24.6%

iAUC postprandial
plasma glucose

174.8 mmol/L 140.1 mmol/L 19.6%

5 Conclusion

To the best of our knowledge, this work is the first attempt at
defining a physiological neurally mediated metabolic model
in healthy subjects. In it, the pancreas secretion is no longer
controlled solely by hormones and metabolites, as current
models do, but also includes the essential effect of the neural
control in achieving an optimal glucose control.

Notwithstanding the limitations of the proposed model,
the results closely represents the physiological effect of the
cephalic insulin, as well as the glucose and insulin profiles
in the presence of the neural innervation observed in healthy
people. Hence, it presents a more detailed physiological
model of the complex regulation of the healthy endocrine
pancreas. This is important as in silico models provide
a good platform to optimize systems and provide insight
without the need for initial clinical validation on animals
[23, 38].

In addition, it lays the foundation for the development
of physiological models that reproduce to a great extent
the complex regulation of glucose homeostasis in people
with diabetes. This will allow existing simulators of diabetes
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mellitus to provide improved environments for testing
treatments and monitoring interventions [18, 54]. It also
opens the door to new approaches for the design of a bio-
inspired artificial pancreas for type 1 diabetes treatment [29,
39], by completely closing the controlling loop using the
neural signals to inform the controller about meal ingestion
information.

In conclusion, the proposed work gives insight into the
physiological basis of the nervous control of the pancreatic
secretion and suggests the potential benefit of considering
the neural information for restoring glucose control in
people with diabetes.
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Amparo Güemes received
the B.S. degree in Biomed-
ical Engineering from the
Universidad Politécnica de
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