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Abstract

Electrodynamic study of solid-state plasmon spherical resonators applicable in the range from microwave to optical frequencies
is undertaken. Influence of dimensions and electromagnetic properties of media on the resonance frequency and Q-factor of these
resonators is analyzed. It is shown that transcendental equations resulting from electrodynamic analysis of plasmon resonators
can be also applied to the analysis of whispering gallery resonators if the resonator’s medium is isotropic, although this is a
completely different kind of a resonator. Special attention is focused on the Q-factor analysis and theoretical and practical Q-
factor limits for the magnetic plasmon and the electric plasmon resonators. In the addition, the impact of the finite size of a
resonator on the resonance frequency and Q-factor is considered. Computations of the resonance frequency and Q-factor of
magnetic plasmon resonators are supported by experiments performed at microwave frequencies.
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Introduction

Solid-state electromagnetic (EM) resonators are one of the key
elements in microwave and optoelectronic applications. They
are used as frequency stabilizers [1], filters [2], biosensors
[3-5], and solar cell components [6—8], and can also be appli-
cable in medicine [9] and precise material measurement sys-
tems [10]. One of the most important parameters of a solid-
state resonator (SSR) is a Q-factor, which is the ratio of stored
EM energy to the power dissipated per cycle. For unshielded
resonators, dissipated power depends not only on dielectric
and magnetic medium losses but also on radiation losses.
Some SSRs exhibit Q-factors as large as 10 [9] at microwave
[10] or optical frequencies [11]. Others, like spherical yttrium-
iron-garnet (YIG) resonators, can be tuned with a static mag-
netic field bias (SMFB) in a broad microwave frequency range
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[2]. There are two distinct classes of resonances in SSRs:
ordinary EM resonances occurring in non-dispersive low-loss
media of given shape or plasmon resonances (PRs) occurring
in samples made of dielectric (magnetic) medium exhibiting
negative permittivity (permeability). For the ordinary EM res-
onances, the average electric and magnetic energy stored in
the resonator per oscillation cycle are equal to each other at a
resonance frequency. On the contrary, such equality does not
take place in case of electric (magnetic) PRs, where the aver-
age electric (magnetic) energy stored in the resonator per cycle
is hundreds of times larger than the average magnetic
(electric) energy. That property has recently been proven for
the magnetic PRs (MPRs) [12]. Formally, the analysis of free
oscillations of the EM resonance system can be formulated as
an eigenvalue problem for Maxwell equations. Rigorous so-
lutions of Maxwell equations are available for spherical and
cylindrical resonators containing isotropic media [13], while
for the resonator having other shapes numerical solutions can
be usually obtained with sufficient accuracy. PRs have been
often analyzed employing either electro- or magneto-static
approximation. Such approach allows to determine PR fre-
quencies of small spherical particles having diameter d << A,
where A is the free-space wavelength. The use of the quasi-
static approach to the analysis of the electric PRs has been
known for over 100 years and it is described in textbooks on
plasmonics [14, 15]. It should be only mentioned that accord-
ing to the quasi-static approximation the dominant electric PR
(a so-called electric dipole mode) in a spherical sample located
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in the free space occurs when dielectric constant of the sphere
is equal to £, =—2. What can also be distinguished are
magneto-static spin modes, which are often related in the lit-
erature to free oscillations of gyromagnetic spheroids.
Magnetostatic theory of these modes was developed by
Walker [16] and Fletcher [17]. The dominant mode occurring
in the gyromagnetic sphere is referred in the literature as the
mode of uniform precession, which occurs when scalar per-
meability of the clockwise circularly polarized (CCP) EM
field in an infinitesimally small sample is equal to u,=—2.
Although this condition has been known for decades, only
recently [12, 18], it has been shown that the mode of uniform
precession is in fact the fundamental MPR occurring in the
gyromagnetic sphere. Unfortunately, the quasi-static theory
does not allow to determine the Q-factor of a plasmonic reso-
nator and, in addition, the theory fails for larger samples.
Despite obvious similarities, the modes of uniform precession
occurring in gyromagnetic resonators have usually been con-
sidered as a different class of problems than dielectric plas-
mons. In the view of the above, the main goal of this paper is
to present a general study of the Q-factor of the family of
electric and magnetic PRs as well as whispering gallery mode
(WGM) dielectric resonators, employing unified electrody-
namic theory in order to show how the Q-factor is limited
by medium and radiation losses. In addition, the impact of
the finite size of the resonator on the resonance frequency
and Q-factor is considered.

Electrodynamic Analysis

It is well known that complex permittivity of gaseous plasma
and metals exhibits negative values at a certain range of fre-
quencies, which depends on the angular plasma frequency, w,,
according to the Drude model [19]:

w2

R e (1)
& —jr

where ¢, is the permittivity at infinite frequency (usually in
the range 1-10) and I"is a damping factor. Plasma frequency
depends on the square root of the density of the free charge
carriers and it can vary from MHz range for atmospheric plas-
ma to optical frequencies for noble metals. The dominant
electric PR appears also in an infinitesimally small dielectric
sphere located in the free space at a frequency corresponding
to the ¢, = —2 condition.

For ferrimagnetic materials, such as microwave ferrites and
garnets biased with the internal SMFB H,,, permeability be-
comes a Polder’s tensor with a diagonal component y and an
oft-diagonal component s occurring in the plane orthogonal to
the internal SMFB H,,. If CCP high-frequency (HF) magnetic
field is orthogonal to H,, magnetic properties of ferromagnetic
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medium can be characterized by the following effective com-
plex scalar permeability [20]:

Hy+w+jaw

(2)

py=p+ K= p,—jp =1+ 5
HY =W +2jaHyWw

where Hy, = Hy/Ms, W = f/f /i = ¥Ms, My s the saturation
magnetization of ferrimagnetic medium, vy = 35.19 MHz/(kA/
m), « is the Gilbert damping factor, and f is the complex
frequency. In the description of ferromagnetic materials, the
Gilbert damping factor « is often exchanged with the ferro-
magnetic linewidth AH =2aH,, as alternative measure of
losses. In case of spherical YIG samples, the internal SMFB
H, is related to the external bias H, by the formula
Hy = He—%—éHa, where dH, is the effective anisotropy
field, which depends on the orientation of the ferrimagnetic
crystal with respect to Hy,. For a specific orientation (0H,, = 0),
the relationship between the normalized internal and external
static magnetic fields is Ho, = H.— %, where H,,= H,/Ms.
For lossless gyromagnetic medium, Eq. (2) can be simplified
as follows:

1
H()r—W

=1+ (3)

As it can be noticed, ferromagnetic resonance occurs at
wemr = Ho,. However, recent studies [18] of YIG filters and
oscillators revealed that the dominant MPR mode excited in
the infinitesimally small ferromagnetic sphere occurs when
t,=—2, which leads to the following condition
Wupr = Ho, + % The normalized internal SMFB, H,,, can
be replaced with the external one, H,,, leading to the following
condition wypp = H,,

Time dependence of the solution of the eigenvalue problem
for free oscillations of a resonance system can be expressed in
the form of complex eigenfrequencies, @, = w, + jw!, corre-
sponding to specific modes with the Q-factors that, by defini-

tion, can be evaluated as O, = % Rigorous solutions of

Maxwell equations, that describe free oscillations of SSRs,
- =
a) 1 b) 1
i T
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Fig. 1 a Dielectric and b ferrimagnetic sphere in dielectric medium
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are known for isotropic spheres situated in isotropic medium
(see Fig. 1).

Resonance condition for the TM,, modes (subscripts in-
dicate the mode orders along ¢ r spherical coordinates) of
free oscillations of an isotropic sphere having permittivity ¢,
as given by Eq. (1), immersed in dielectric medium having
permittivity €, can be formulated in the following form [12]:

sd{nJH%(kRI)—kJ,,,%(le)}Hfi)%(koRl)—s, (4)

2 2
{nHi_z%(kORl)7k0Hij%<kORl)}Jn+%(le) =0

where k = &/c(e,)", ko = &/c(eq)"”, &, is the relative com-
plex permittivity of the sphere, ¢, is the relative complex per-
mittivity of medium surrounding the sphere, n and p are ele-
vation and radial mode indices, respectively, c is the speed of
the EM wave in vacuum, and J (H) is a Bessel (Hankel)
function.

Similarly, resonance condition for the TE, o, modes of free
oscillations of the isotropic sphere having permeability g, as
defined in Eq. (2), relative complex permittivity €5 and im-
mersed in dielectric medium having permittivity €, can be
formulated in the following form:

{n g Ry (kR PH ), (ko ), (5)

{ani)%(koRl J=koH 2, (koR)) }J,H%(le) =0

The radial mode index p denotes subsequent roots of Eq.
(4) or (5), while the azimuthal mode index m has no impact on
the resonance frequency, so it is assumed to be m =0.
Transcendental equations are also available for more compli-
cated multilayered dielectric structures having spherical sym-
metry [13]. It will be shown that basic properties of the electric
plasmon resonance and TM,,o, WGMs can be analyzed
employing the solution of Eq. (4), while basic properties of
MPR and TE,,o, WGMs can be analyzed employing Eq. (5).

Experimental Setup

Measurements of the resonance frequencies and Q-factors of
MPRs have been performed employing Agilent Technologies’
PNA-X vector network analyzer (VNA). Experimental setup
is shown in Fig. 2. A gyromagnetic YIG sphere was mounted
on the top of a thin fused silica rod and it was coupled to VNA
ports with two orthogonal semi-loops. The experimental setup
with the YIG sample was placed between the magnet poles
from Bruker EPR spectrometer. For fixed positions of the
coupling semi-loops the coupling coefficients vary when res-
onator is tuned with the DC magnetic field. The loaded Q-
factor (Q-factor including coupling losses) of the YIG resona-
tor was measured directly with VNA and, subsequently, the
unloaded Q-factor was determined by measuring three

components of the scattering matrix, namely, Sq;, S,,, and
S, ata certain frequency range in the vicinity of the resonance
frequency [20].

Results of Computations and Experiments

Electric PRs have been analyzed by solving Eq. (4) assuming
that permittivity of plasmonic spheres is defined in Eq. (1) and
the spheres are situated in vacuum (g; = 1). Equation 4 is
nonlinear with respect to @w and, as such, it can be solved with
either Levenberg-Marquardt or Newton method.
Computations have been performed for various diameters of
the plasmonic sphere and for fixed parameters of the permit-
tivity model (., = 1) and the starting point for the root finding
of Eq. (4) was assumed as & = w),/ /3. Figure 3a shows the
obtained relation between the normalized diameter of the plas-
monic sphere and the resonance frequency as compared to the
quasi-static approximation of the resonance frequency f; of an
infinitesimally small sphere. For the infinitesimally small
sample, the resonance frequency is approaching
Re(®) = w,/+/3, which corresponds to &, = —2. For larger
samples, the resonance frequency is getting smaller than w),/

v/3 and, consequently, the corresponding permittivity de-
creases as well. The results shown in Fig. 3a are known as
the red-shift phenomenon when the size of metal particles
becomes larger. Figure 3b shows the relation between the size
of the sample and the Q-factor computed for a few values of
the damping factor I". Results for I'= 0 represent the Q-factor

due to radiation losses only, which behaves as Q,.« (%) 7 (see
an analytical fitting function given in the inset in Fig. 3b).
Additional curves plotted in Fig. 3b were calculated assuming
the damping factor of gold (red curve) and silver (blue curve).
Parameters of a Drude model for various metals that can be
used for more accurate computations can be found in the lit-
erature [21]. As it is seen in Fig. 3b, radiation losses are dom-
inant for large metal particles (d/A > 0.05), so it is necessary to
make them sufficiently small to obtain a larger Q-factor of the
plasmonic mode. Despite a moderate level of the Q-factor
achievable with the electric PRs, they have found applications
in sensors, photothermal cancer therapy [9], and solar cells
[6-8].

Subsequently, let us consider MPRs, which have been
employed in YIG microwave filters and oscillators for de-
cades, although their physical nature has been described only
recently [12, 18]. Optical MPRs have been, so far, unknown
[22]. The analysis of MPRs based on the solution of Eq. (5) for
permeability given in Eq. (3) is presented in Fig. 4, which
shows deviation of the normalized frequency w from the
quasi-static limit (wypgp = Ho, —&—% ) and the corresponding
Q-factor versus normalized diameter of the YIG sphere.

@ Springer



948

Plasmonics (2019) 14:945-950

Fig. 2 Top and side view of the

setup for the measurement of the

resonance frequency and Q-factor

as a function of the static mag-

netic field bias in gyromagnetic

spheres
SMA connector
to VNA cable

In contrast to electric PRs discussed earlier, computations
and measurements were performed for variable frequency as
YIG resonators are tuneable. However, it can be noticed that
the resonance condition varies with d/\ in a qualitatively sim-
ilar manner for the electric (see Fig. 3a) and magnetic (see Fig.
4a) PRs. Figure 4 shows the results of Q-factor computations
with Eq. (5) versus normalized diameter of the ferromagnetic
sphere. Additionally, experiments for the YIG sphere having
d=0.5 mm and AH = 0.5 Oe are presented, which are in good
agreement with computations (see blue curve in Fig. 4b). If
magnetic losses are neglected, as in Eq. (3), the Q-factor due

to radiation losses can be approximated by the expression: Q,.

«(4) “ (see dashed lines in Fig. 4b). This is different than for
the electric PR (compare the inset in Fig. 3b) due to the fact
that the results presented in Fig. 4b are obtained for variable
frequency. If the frequency was kept constant, Q, would have
exactly the same dependence as for the electric PR. It should
be also mentioned that contrary to the damping factor I"in the

solder

SMA connector
to VNA cable

semirigid coaxial DC magnetic
cable field

YIG

sphere Cu cylinder

solder solder

fused silica

support orthogonal

semi-loops

electric PR, experiments show that the Gilbert damping factor
in Eq. (2) varies with frequency for a given YIG sphere, while
the ferromagnetic linewidth AH is frequency independent
[12]. As a result, the Q-factor due to magnetic losses, Q,, =
Hy,/AH, increases linearly with frequency (see black dashed
line in Fig. 4b). Eventually, the total Q-factor of the unshielded
YIG resonator typically approaches maximum at some fre-
quency, when Q,, = O,, which is confirmed theoretically and
experimentally, as shown in Fig. 4b. Theoretically, smaller
samples can achieve a larger Q-factor; however, in practice,
this is limited by the imperfect quality of their surface [23],
which should be optically polished to get the highest Q-factor.
The smallest diameter of commercially available YIG resona-
tors is about d = 0.25 mm with AH~ 0.3 Oe, which leads to the
Q-factor of the unshielded YIG resonator as large as 10 [4].
WGMs are another interesting class of resonances in spher-
ical samples that can be solved with the transcendental equa-
tions given in Eqs. (4) and (5). These modes can be of either
TM,,p, or TE,,, type and can exhibit record low radiation
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Fig.3 (a) Dielectric constant (left scale) and the corresponding resonance
frequency normalized to the resonance frequency obtained for the
infinitesimally small plasmonic sphere (right scale) at the electric PR
found with Eq. (4) versus normalized diameter of the dielectric sphere,
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and (b) Q-factor due to dielectric and radiation losses versus normalized
diameter of the dielectric sphere. Black dashed line denotes a fitting
function for I'=0 (radiation losses only)
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Fig. 4 (a) MPR condition (left scale) and the corresponding effective
permeability (right scale) versus normalized diameter of a YIG sphere
having Mg= 140 kA/m. (b) Q-factor due to magnetic (solid lines) and

losses (large Q,) in low-loss non-dispersive dielectric samples
from microwave to optical frequencies. Figure 5a presents
normalized frequency of a TE,;; WGM as a function of di-
electric constant. It is seen that frequency separation between
the subsequent modes become similar for larger n. For large
dielectric constant, the normalized frequency practically does
not depend on permittivity, which is related to the fact that vast
majority of EM energy is concentrated inside the sphere and
distributed around its circumference. Figure 5b shows the Q-
factor due to radiation losses computed as a function of the
elevation mode index n.

The Q-factor due to radiation losses of WGM resonators
made of low-loss dielectrics having 5,' > 10, which is common
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radiation losses (dashed lines) evaluated for M= 140 kA/m, AH=10.5 Oe
and 3 different diameters of YIG spheres

for several materials at microwave frequencies, can be as high
as Q,> 10® for the elevation mode index x> 12. In that case,
the total unloaded Q-factor Q,, predominantly depends on di-
electric losses provided that tand > 10_8, so that dielectric
losses are larger than radiation losses (Q,;<Q,). This is the
reason for using WGM resonators for the most sensitive and
the most accurate measurements of the complex permittivity
at microwave frequencies [10]. At optical frequencies, most
dielectrics have small permittivity (e.g., &, ~2.125 for fused
silica [24, 25], z—:r' ~5.84 for diamond, and s,' ~4.66 for cubic
zirconia [26]) and their dielectric loss tangent is at the order of
10 at room temperatures, which is 4 orders of magnitude
less than at microwave frequencies. Consequently, as it is seen

Fig. 5 (a) Normalized frequency of the TE,g; WGM versus dielectric constant in spherical samples. (b) Q-factor due to radiation losses versus the

elevation angle mode index n of the TEo; WGM
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in Fig. 5b, radiation losses are no longer negligible. For in-
stance, in fused silica sphere, situated in free space, the eleva-
tion mode index should be n>60 to obtain Q, =~ 10%.
Nevertheless, fused silica WGM resonators having Q-factor
at the order of 10° have been reported, which means that they
had to operate on the mode with the elevation mode index of
ca. 70. As it is seen in Fig. 5b, WGM resonators made of
higher permittivity materials, such as cubic zirconia or dia-
mond, would allow operation at lower elevation order modes
than for fused silica WGM resonators, maintaining large Q,.

Conclusions

It has been shown that basic properties of spherical PRs but
also WGM resonators, operating from microwaves to optical
frequencies, can be rigorously determined employing unified
electrodynamic analysis. For PRs, the Q-factor due to radia-

tion losses varies at a given frequency as Q. (4) . In prac-
tice, the Q-factor is limited in WGM resonators by dielectric
losses, provided that the mode order is large enough to make
sure that Q< Q,. Similar properties can be observed in elec-
tric PRs where the Q-factor is limited by the imaginary part of
permittivity. In case of magnetic PRs, like YIG sphere, three
kinds of losses have comparable influence on the Q-factor:
magnetic intrinsic losses are dominant at lower frequencies,
radiation losses limit the Q-factor at higher frequencies, and
surface roughness limits the Q-factor especially for very small
samples.
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