Skip to main content
Log in

15.4% Efficiency all-polymer solar cells

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We report all-polymer solar cells (All-PSCs) with record-high power conversion efficiency (PCE) through tuning the molecular weights of the polymer donor (PBDB-T) to form optimal active layer morphology. By combining the polymer donors with a newly reported polymer acceptor (PJ1), an unprecedented high PCE of 15.4% and fill factor over 75% were achieved for the All-PSCs with the medium molecular weight polymer donor (PBDB-TMW), which is the highest value for All-PSCs reported so far. Detailed morphology investigation revealed that the proper phase separation in the PBDB-TMW:PJ1 blend should account for the superior device performance as PBDB-TMW exhibits appropriate miscibility with the polymer acceptor PJ1. These results demonstrated that the device performance of All-PSCs could be fully comparable to that of small molecular acceptor-based PSCs. The formation of optimized morphology via precise control of molecular weights of polymer donors and acceptors is crucial to achieve this goal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Lee JW, Ma BS, Choi J, Lee J, Lee S, Liao K, Lee W, Kim TS, Kim BJ. Chem Mater, 2020, 32: 582–594

    Article  CAS  Google Scholar 

  2. Zhang Y, Xu Y, Ford MJ, Li F, Sun J, Ling X, Wang Y, Gu J, Yuan J, Ma W. Adv Energy Mater, 2018, 8: 1800029

    Article  Google Scholar 

  3. Lee C, Lee S, Kim GU, Lee W, Kim BJ. Chem Rev, 2019, 119: 8028–8086

    Article  CAS  Google Scholar 

  4. Liu X, Zhang C, Pang S, Li N, Brabec CJ, Duan C, Huang F, Cao Y. Front Chem, 2020, 8: 302

    Article  CAS  Google Scholar 

  5. Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174

    Article  CAS  Google Scholar 

  6. Duan C, Ding L. Sci Bull, 2020, 65: 1508–1510

    Article  CAS  Google Scholar 

  7. Zhu L, Zhong W, Qiu C, Lyu B, Zhou Z, Zhang M, Song J, Xu J, Wang J, Ali J, Feng W, Shi Z, Gu X, Ying L, Zhang Y, Liu F. Adv Mater, 2019, 31: 1902899

    Article  CAS  Google Scholar 

  8. Zhao R, Wang N, Yu Y, Liu J. Chem Mater, 2020, 32: 1308–1314

    Article  CAS  Google Scholar 

  9. Zhao R, Liu J, Wang L. Acc Chem Res, 2020, 53: 1557–1567

    Article  CAS  Google Scholar 

  10. Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dötz F, Kastler M, Facchetti A. Nature, 2009, 457: 679–686

    Article  CAS  Google Scholar 

  11. Liu X, Zhang C, Duan C, Li M, Hu Z, Wang J, Liu F, Li N, Brabec CJ, Janssen RAJ, Bazan GC, Huang F, Cao Y. J Am Chem Soc, 2018, 140: 8934–8943

    Article  CAS  Google Scholar 

  12. Zhang L, Wang Z, Duan C, Wang Z, Deng Y, Xu J, Huang F, Cao Y. Chem Mater, 2018, 30: 8343–8351

    Article  CAS  Google Scholar 

  13. Wei Q, Liu W, Leclerc M, Yuan J, Chen H, Zou Y. Sci China Chem, 2020, 63: 1352–1366

    Article  CAS  Google Scholar 

  14. Zhang ZG, Yang Y, Yao J, Xue L, Chen S, Li X, Morrison W, Yang C, Li Y. Angew Chem Int Ed, 2017, 56: 13503–13507

    Article  CAS  Google Scholar 

  15. Meng Y, Wu J, Guo X, Su W, Zhu L, Fang J, Zhang ZG, Liu F, Zhang M, Russell TP, Li Y. Sci China Chem, 2019, 62: 845–850

    Article  CAS  Google Scholar 

  16. Wu J, Meng Y, Guo X, Zhu L, Liu F, Zhang M. J Mater Chem A, 2019, 7: 16190–16196

    Article  CAS  Google Scholar 

  17. Yao H, Ma L-, Yu H, Yu J, Chow PCY, Xue W, Zou X, Chen Y, Liang J, Arunagiri L, Gao F, Sun H, Zhang G, Ma W, Yan H. Adv Energy Mater, 2020, 10: 2001408

    Article  CAS  Google Scholar 

  18. Jia T, Zhang J, Zhong W, Liang Y, Zhang K, Dong S, Ying L, Liu F, Wang X, Huang F, Cao Y. Nano Energy, 2020, 72: 104718

    Article  CAS  Google Scholar 

  19. Wang W, Wu Q, Sun R, Guo J, Wu Y, Shi M, Yang W, Li H, Min J. Joule, 2020, 4: 1070–1086

    Article  CAS  Google Scholar 

  20. Wu Q, Wang W, Wang T, Sun R, Guo J, Wu Y, Jiao X, Brabec CJ, Li Y, Min J. Sci China Chem, 2020, 63: 1449–1460

    Article  CAS  Google Scholar 

  21. Zhang Z, Li Y. Angew Chem Int Ed, 2020, anie.202009666

  22. Kouijzer S, Michels JJ, van den Berg M, Gevaerts VS, Turbiez M, Wienk MM, Janssen RAJ. J Am Chem Soc, 2013, 135: 12057–12067

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2019YFA0705900), the National Natural Science Foundation of China (21875072), the Fundamental Research Funds for the Central Universities (South China University of Technology, D2190310), Guangdong Innovative and Entrepreneurial Research Team Program (2019ZT08L075) and the Open Funds of State Key Laboratory of Fine Chemicals (KF1901).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunhui Duan or Fei Huang.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Jia, T., Pan, L. et al. 15.4% Efficiency all-polymer solar cells. Sci. China Chem. 64, 408–412 (2021). https://doi.org/10.1007/s11426-020-9935-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9935-2

Navigation