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Abstract Given a large positive number x and a positive integer k, we denote by Qk(x) the set of congruent

elliptic curves E(n) : y2 = z3 − n2z with positive square-free integers n � x congruent to one modulo eight,

having k prime factors and each prime factor congruent to one modulo four. We obtain the asymptotic formula

for the number of congruent elliptic curves E(n) ∈ Qk(x) with Mordell-Weil ranks zero and 2-primary part of

Shafarevich-Tate groups isomorphic to (Z/2Z)2. We also get a lower bound for the number of E(n) ∈ Qk(x)

with Mordell-Weil ranks zero and 2-primary part of Shafarevich-Tate groups isomorphic to (Z/2Z)4. The key

ingredient of the proof of these results is an independence property of residue symbols. This property roughly

says that the number of positive square-free integers n � x with k prime factors and residue symbols (quadratic

and quartic) among its prime factors being given compatible values does not depend on the actual values.
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1 Introduction

A positive integer n is called a congruent number if it is the area of a right triangle with rational sides;

or equivalently, if the elliptic curve E(n) : y2 = z3 − n2z has positive Mordell-Weil rank. Let E be the

elliptic curve over Q defined by y2 = z3−z. Then E(n) is a quadratic twist of E. We are interested in the

behavior of arithmetic groups such as Mordell-Weil groups and Shafarevich-Tate groups in the quadratic

twist family of E.

Goldfeld conjectured that for any elliptic curve over Q there are 50% elliptic curves with Mordell-Weil

ranks zero and one respectively in its quadratic twist family. So far, this conjecture has not been verified

for any single elliptic curve. The modular curve X0(19) has genus one and its cusp at ∞ is rational

over Q. For the elliptic curve (X0(19), [∞]), Vatsal [14] proved that a positive proportion of its quadratic

twist family has Mordell-Weil ranks one (resp. ranks zero).

In this paper, we study the distribution of the number of congruent elliptic curves E(n) with Mordell-

Weil ranks zero and 2-primary part of Shafarevich-Tate groups non-trivial. We first introduce some

notation. Let E(n)(Q) be the Mordell-Weil group of E(n), and X(E(n)/Q) the Shafarevich-Tate group

of E(n). For a positive integer k, we denote by Qk the set of positive square-free integers n satisfying the

following:

(1) n ≡ 1 (mod 8) with exactly k prime factors, and
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(2) any prime factor of n is congruent to 1 modulo 4.

Let Qk(x) be the set of integers n ∈ Qk with n � x. Denote by Ck(x) the set of positive square-free

integers n � x with exactly k prime factors. Then a classical result implies that

#Ck(x) ∼ 1

(k − 1)!
· x

log x
(log log x)k−1.

Here the symbol ”∼” means that the ratio of its two sides approaches the limit 1 as x goes to infinity.

Our main result in this paper is the following.

Theorem 1.1. Let k be a positive integer. Denote by Pk(x) those n ∈ Qk(x) such that

rankZE
(n)(Q) = 0 and X(E(n)/Q)[2∞] � (Z/2Z)

2
.

Then

#Pk(x) ∼ 2−2−k(uk + (2−1 − 2−k)uk−1) ·#Ck(x).

Here {uk =
∏� k

2 �
i=1 (1− 21−2i) | k ∈ N} is a decreasing sequence with limit u ≈ 0.419, where �k

2 	 is the

maximal integer less than or equal to k/2.

Remark 1.2. The independence property of Legendre symbols of Rhoades [12] implies

#Qk(x) ∼ 1

2k+1 · (k − 1)!
· x

log x
· (log log x)k−1.

Hence, we have the density of Pk(x) in Qk(x),

lim
x→∞

#Pk(x)

#Qk(x)
=

1

2
(uk + (2−1 − 2−k)uk−1).

Similar result for the congruent elliptic curves E(n) with rankZE
(n)(Q) = 0 and X(E(n)/Q)[2∞]

� (Z/2Z)
4
is given in the following Theorem 1.3.

Theorem 1.3. Denote by P̃k(x) those n ∈ Qk(x) with all prime factors congruent to 1 modulo 8

such that

rankZE
(n)(Q) = 0 and X(E(n)/Q)[2∞] � (Z/2Z)

4
.

Then for any k � 2, #P̃k(x) has a lower bound with main term

∑
l+l′=k

ulul′

25+2k+ll′ ·
(
k

l

)
·#Ck(x).

Here ul is defined in Theorem 1.1 and
(
k
l

)
is the binomial coefficient.

Now we explain the strategy for the proof of Theorem 1.1.

• By our previous paper [15], n ∈ Pk(x) can be characterized by conditions of 4-rank and 8-rank of

the ideal class group of Q(
√−n).

• The 4-rank condition gives rise to an F2-matrix related to quadratic residue symbols among prime

factors of n, and the 8-rank condition is reduced to that for quartic residue symbols by Jung and Yue [10].

• By the independence property of residue symbols, namely Theorem 1.4, the number of those n � x

with prime factors in given residue classes modulo 16 and residue symbols among its prime factors being

given compatible values can be estimated uniformly. Consequently, the proof of Theorem 1.1 is reduced

to counting the number of certain F2-matrices.

To explain the independence property of residue symbols, we first introduce some notation. For d ∈ Qk

and q an integer such that ( qp ) = 1 for all prime divisors p of d, we denote by ( qd)4 the quartic residue

symbol defined in Section 2.2. For an odd integer a, we define [ 2a ] = 1 if a ≡ ±5 (mod 8) and [ 2a ] = 0

otherwise. Let k be a positive integer. Let α = (α1, . . . , αk) with all αl ∈ {1, 5, 9, 13} and
∏k

l=1 αl ≡ 1

(mod 8). Assume that B is a k × k symmetric F2 matrix such that its rank is k − 1 and the sum
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of all elements of any of its given row is 0. If we view B as a linear transformation over F2, then

b = ([ 2
α1

], . . . , [ 2
αk

])
T
lies in the image of B. Moreover, By = b has two different solutions y and y′ ∈ Fk

2

with y+y′ = (1, . . . , 1)T. We assume that z = (z1, . . . , zk)
T is the one of y and y′ such that z1 = 1. Then

we define Ck(x, α,B) to be all n = p1 · · · pk ∈ Ck(x) with p1 < · · · < pk such that

• pl ≡ αl (mod 16) for 1 � l � k,

• the Legendre symbol ( pl

pj
) = (−1)Blj for all 1 � l < j � k, and

• ( 2d
n/d )4

(2n/dd )
4
= (−1)

n−1
8 + d−5

4 with d =
∏
pzll .

Now we state the independence property of residue symbols.

Theorem 1.4. For k a positive integer, let α = (α1, . . . , αk) with αl ∈ {1, 5, 9, 13} and
∏k

l=1 αl ≡ 1

(mod 8). If B is a k × k symmetric F2-matrix such that its rank is k − 1 and the sum of all elements of

any of its given row is 0, then

#Ck(x, α,B) ∼ 1

23k+(
k
2)+1

·#Ck(x).

Rhoades [12] claimed a special case of the above theorem. Moreover, he proved an independence

property of Legendre symbols by the method of Cremona and Odoni [2] over Q. For Theorem 1.4, we

have to extend the method of Cremona and Odoni [2] to Q(i) because of the quartic residue symbols.

Now we explain the ingredients of the proof of Theorem 1.4.

(1) We identify the set Ck(x, α,B) with a set C′
k(x, α,B) which counts certain integers of Z[i] with k

prime factors.

(2) The method of Cremona and Odoni [2] reduces estimating #C′
k(x, α,B) to a sum with every term

counting primes in certain residue classes defined by residue symbols.

(3) To use Dirichet prime ideal theorem over Z[i], we transform a set counting primes of Z[i] into that

counting prime ideals.

(4) The representation theory of finite abelian group is used to count the number of residue classes.

Since the main tool is analytic number theory, we will use many standard symbols in analytic number

theory without definition, such as ∼, o(·), O(·),�, π(x),Li(x), ψ(x), ψ(x, χ) and ψ(x; a, q). These can be

found in any book on analytic number theory, for example Iwaniec and Kowalski [9].

In the end of this introduction, we give the organization of this paper. We devote Section 2 to giving

some preliminary results. Concretely, in Subsection 2.1 we summarize the method of Cremona and

Odoni [2] in a simpler case; since many residue symbols are used, we give their definitions and prove

some properties in Subsection 2.2; those analytic results over Q(i) are listed in Subsection 2.3. With

these preparations, we prove Theorem 1.4 in Section 3; in particular, we separate out the case k = 1

in Subsection 3.1 to make the ingredients (3) and (4) clearer and simpler. The distribution results are

carried out in Section 4. Conclusions are presented in Section 5.

2 Preliminaries

2.1 Basic idea

Since the method of Cremona and Odoni [2] plays an important role in our proof of the independence

property of residue symbols, we explain their basic idea in the following much simpler case

#Ck(x) ∼ 1

(k − 1)!
· x

log x
· (log log x)k−1.

Here Ck(x) denotes the set of positive square-free integers n � x with exactly k prime factors. For k = 1,

this follows from the prime number theorem. For k � 2, the key idea is to consider the induction map,

ϕ : Ck(x) → Ck−1(x), n → n/ñ,
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where ñ is the maximal prime divisor of n. Note that t ∈ Ck−1(x) is in the image of ϕ if and only if there

is a prime p such that t̃ < p � xt−1. Thus we get

#Ck(x) =
∑

t∈Ck−1(x)

#{p prime | t̃ < p � xt−1}.

Then [2, Lemma 3.1] implies that only those t ∈ (μ, ν]∩Ck−1(x) contribute to the main term of #Ck(x),

where μ = (log x)100 and ν = exp( log x
(log log x)100 ). Hence we reduce to estimating

∗∑
μ<t�ν

π(xt−1),

where ∗∑
a<t�b

f(t) :=
∑

t∈(a,b]∩Ck−1(∞)

f(t).

From the prime number theorem, we only need to estimate

∗∑
μ<t�ν

Li(xt−1).

[2, Lemma 3.1] and Section 1 give

#Ck(x) ∼ 1

(k − 1)!
· x

log x
(log log x)k−1.

This is the key idea of Cremona and Odoni [2]. In that paper, they have to use ψ(xt−1; a, q) instead

of π(xt−1). This forces them to use the explicit formula of ψ(x, χ), which brings the additional difficulty

in dealing with possible Siegel zeros in the error term. Due to Page theorem, the sum of all ψ(xt−1, χ)

with possible Siegel zeros contributes to an error term by the trivial estimation ψ(xt−1) of ψ(xt−1, χ).

Comparing with Cremona and Odoni [2], we have to deal with corresponding multiplicative number

theory over Q(i).

2.2 Residue symbols

In this subsection, we will introduce several residue symbols that will be used in this paper.

Let λ be a prime element of the ring Z[i] of Gaussian integers coprime to (1 + i), and α be a Gaussian

integer. Then the quartic residue symbol (αλ )4 is defined to be the unique element in {±1,±i, 0} such that

α
λλ̄−1

4 ≡
(
α

λ

)
4

(mod λ).

Here λ is the conjugate of λ. A reference for this is Ireland and Rosen [8].

We say a prime element λ of Z[i] Gaussian if it is not a rational prime. For two coprime Gaussian

primes λ1 and λ2, we easily deduce that (
λ1

λ̄2

)
4

(
λ̄1
λ2

)
4

= 1.

Moreover, we have the quartic reciprocity law(
λ1
λ2

)
4

=

(
λ2
λ1

)
4

(−1)
Nλ1−1

4
Nλ2−1

4 ,

where N denotes the norm from Q(i) to Q. If θ =
∏k

l=1 λl with λl prime element of Z[i] and coprime

with 1 + i, we define (
α

θ

)
4

=

k∏
l=1

(
α

λl

)
4

.
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We say that an integer θ ∈ Z[i] is primary if θ ≡ 1 (mod 2 + 2i). Then any primary integer can be

written uniquely as the product of primary primes. Since we will frequently consider ( 2θ )4, we compute

it in the following proposition.

Proposition 2.1. If θ = a+ 2bi is a primary integer with a, b ∈ Z, then (2θ )4 = i−b.

Proof. If θ has a rational prime factor p congruent to 3 (mod 4), then ( 2
−p )4

= 1 and there must be

even many such prime factors counted with multiplicity. So their product n is congruent to 1 (mod 4)

and ( 2
n )4 = 1. Hence we may assume that any prime factor of θ is Gaussian.

Now we induct on the number of prime factors of θ. If θ is a prime, then (2θ )4 = i−b by Iwaniec and

Kowalski [9, p. 53]. If θ has k � 2 prime factors, then θ = θ1θ2, where θl is a primary Gaussian integer

having less than k prime factors for l = 1, 2. Hence if we denote θl = al + 2bli with al, bl ∈ Z, then

Section 1 implies that (
2

θl

)
4

= i−bl .

Thus (2θ )4 = i−(b1+b2) by definition. On the other hand,

a+ 2bi = θ = θ1θ2 = a1a2 − 4b1b2 + 2(a1b2 + a2b1)i.

Therefore b = a1b2 + a2b1. Since θl is primary, we have al − 2bl ≡ 1 (mod 4). Consequently, b ≡
(1 + 2b1)b2 + (1 + 2b2)b1 ≡ b1 + b2 (mod 4). So by Section 1, the proof is completed.

For p a rational prime congruent to 1 modulo 4, there are exactly two primitive primes λ and λ̄

lying above p with p = λλ̄. For q a rational integer with ( qp ) = 1, the two quartic residue symbols

( qλ )4 = ( q
λ̄
)
4
= ±1. Then we use the symbol ( qp )4

to denote either ( qλ)4 or ( q
λ̄
)
4
. The symbol ( qp )4

has the

convenience that we do not need to choose which primary prime lies above p. Assume that d is a positive

integer with all prime factors congruent to 1 (mod 4). If q is a rational integer such that ( qp ) = 1 for any

prime factor p of d, then (
q

d

)
4

:=
∏
p|d

(
q

p

)vp(d)

4

,

where vp(d) denotes the p-adic valuation of d.

We introduce the general Legendre symbol over Z[i] as in [6, p. 196]. Let p be a prime ideal of Z[i]. If

p is coprime with (1 + i), then the general Legendre symbol (αp ) is defined to be the unique element of

{±1, 0} such that

α
Np−1

2 ≡
(
α

p

)
(mod p).

If λ is the unique primary prime in p, we also denote

(
α

λ

)
=

(
α

p

)
.

If θ =
∏k

l=1 λl with λl primary prime, then we define

(
α

θ

)
=

k∏
l=1

(
α

λl

)
.

Another residue symbol is needed. For p an odd prime and a a rational integer coprime with p, the

additive Legendre symbol [ap ] = 1 if the Legendre symbol (ap ) = −1 and [ap ] = 0 otherwise. Similarly,

for d a positive odd integer and a a rational integer coprime with d, we define [ad ] = 1 if the Jacobi symbol

(ad ) = −1 and [ad ] = 0 if (ad ) = 1.
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2.3 Analytic results over number fields

Let K be a number field of degree n with discriminant Δ. Denote by O the ring of algebraic integers

of K and NK the norm from K to Q. A non-zero element γ ∈ K is called totally positive if it is positive

under all real embeddings. If K has no real embedding, then γ is totally positive if and only if γ �= 0. For

an integral ideal † and γ ∈ K, the notation γ ≡ 1 (mod †) means that γ ∈ Op and γ ≡ 1 (mod pvp(†))
if p | †, where Op is the integer ring of the p-adic completion of K. Let P† be the group of principal

fractional ideals (γ) with γ totally positive and γ ≡ 1 (mod †), and I(†) the group of all the fractional

ideals that are coprime with †. We say that χ is a character modulo an ideal † if χ is a character induced

from I(†)/P†. For a character χ modulo †, we define χ(a) = 0 if a is not coprime with †. Then ψ(x, χ)

is defined to be

ψ(x, χ) =
∑

NKa�x

χ(a)Λ(a).

Here a runs over all the integral ideals with norm no bigger than x, and Λ(a) is the Mangoldt function

defined by {
logNKp, if a = pm with m � 1 ,

0, otherwise.

Now we state the explicit formula of ψ(x, χ) (see [9, p. 114]).

Proposition 2.2. If χ is a non-principal character mod † and 1 � T � x, then

ψ(x, χ) = −
∑

|Imρ|�T

xρ − 1

ρ
+O(xT−1 · log x · log(xn ·NK†)), (2.1)

where ρ runs over all the zeros of L(s, χ) with 0 � Reρ � 1 and |Imρ| � T , and the implied constant

depends only on K.

For further application, we introduce Page theorem and Siegel theorem over K. For Page theorem

over K (see Proposition 2.3(2)), we refer to Hoffstein and Ramakrishnan [7]; and for Siegel theorem

over K (see Proposition 2.3(1)), we refer to Fogels [3–5].

Proposition 2.3. (1) Let χ be a character modulo †, and D = |Δ|NK† > D0 > 1.

(i) There is a positive constant c (which only depends on n) such that in the region

Re(s) > 1− c

logD(1 + |Im(s)|) >
3

4
, (∗)

there is no zero of L(s, χ) with χ complex, for at most one real χ′ there maybe a simple zero β′ of L(s, χ′).
(ii) If β′ is the exceptional zero corresponding to the exceptional character χ′ modulo †, then for any

ε > 0 there is a positive constant c(n, ε) such that

1− β′ > c(n, ε)D−ε.

(2) For any z � 2 and c0 a suitable constant, there is at most a real primitive character χ to a modulus †
with NK† � z such that L(s, χ) has a real zero β satisfying

β > 1− c0
log z

.

For future purpose, the first term of (2.1) has to be estimated. Like the classical case, we get the

following explicit formula:

ψ(x, χ) = −x
β′

β′ +R(x, T ) (2.2)

with

R(x, T ) � x · log2(x ·NK†) · exp
(
− c1 log x

log |T ·NK†|
)
+ xT−1 log x · log |xn ·NK†|+ x

1
4 log x.
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Here the term −xβ′

β′ occurs only if χ is a real character having a zero β′ (then must be unique and simple)

with

β′ > 1− c2
logNK† ,

where c2 is a certain constant.

3 Independence property of residue symbols

To prove the independence property of residue symbols (see Theorem 1.4), we first identify Ck(x, α,B)

with a set that counts certain integers in Z[i]. For this purpose, we introduce some notation.

Denote by P the set of all primary primes in Z[i] with imaginary part positive. Let k be a positive

integer, and α = (α1, . . . , αk) with all αl ∈ {1, 5, 9, 13} such that
∏k

l=1 αl ≡ 1 (mod 8). Assume that

B = Bk×k is a symmetric F2-matrix such that its rank is k − 1 and the sum of all elements of any of its

given row is 0. Then we define C′
k(x, α,B) to be all η =

∏k
1 λl satisfying

• Nη � x and Nλ1 < · · · < Nλk with λl ∈ P for 1 � l � k,

• Nλl ≡ αl (mod 16) and (Nλl

Nλj
) = (−1)Blj for all 1 � l �= j � k, and

• ( θ
′
θ )(

2
η )4

= (−1)
∏k

1 αj−1

8 +

∏k
1 α

zj
j

−5

4 with θθ′ = η and θ =
∏k

1 λ
zl
l .

Here z = (z1, . . . , zk)
T ∈ Fk

2 satisfies Bz = ([ 2
α1

], . . . , [ 2
αk

])
T
and z1 = 1.

Let n = p1 · · · pk ∈ Ck(x, α,B) such that p1 < · · · < pk. For 1 � l � k, we choose the unique λl ∈ P
such that pl = λlλl. Then we claim that η :=

∏k
l=1 λl ∈ C′

k(x, α,B). Note that η obviously satisfies

the first and second conditions in defining C′
k(x, α,B). Now we prove that η also satisfies the third.

Considering the l-th row of both sides of Bz = ([ 2
α1

], . . . , [ 2
αk

])
T
, we get

k∑
j=1,j 
=l

zjBlj + zl

k∑
j=1,j 
=l

Blj =

[
2

αl

]
, Blj =

[
pj
pl

]
if j �= l,

since the sum of all elements of any of B’s given row is 0. Thus (2n/dpl
) = 1 if zl = 1 and (2dpl

) = 1 if

zl = 0. So the notations (2n/dd )
4
and ( 2d

n/d)4
are meaningful. In addition, according to their definitions

we have (
2n/d

d

)
4

(
2d

n/d

)
4

=

(
2pt+1 · · · pk
λ1 · · ·λt

)
4

(
2p1 · · · pt
λt+1 · · ·λk

)
4

=

(
2

η

)
4

·
t∏

l=1

k∏
j=t+1

(
pj
λl

)
4

(
pl
λj

)
4

=

(
2

η

)
4

·
t∏

l=1

k∏
j=t+1

(
λj
λl

)
4

(
λj
λl

)
4

(
λl
λj

)
4

(
λl
λj

)
4

.

Here we have assumed that d = p1 · · · pt for notational simplicity. Using quartic reciprocity laws for ( λl

λj
)
4

and ( λl

λj
)
4
, we get (

λj
λl

)
4

(
λj
λl

)
4

(
λl
λj

)
4

(
λl
λj

)
4

=

(
λj
λl

)(
λj
λl

)
4

(
λj

λl

)
4

.

Note that (
λj

λl
)
4
(
λj

λl
)
4
= 1. Then we obtain

(
2n/d

d

)
4

(
2d

n/d

)
4

=

(
2

η

)
4

(
θ′

θ

)
. (3.1)

Thus η ∈ C′
k(x, α,B). From this we obtain a bijection

Ck(x, α,B) → C′
k(x, α,B). (3.2)
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Now we divide the proof of Theorem 1.4 into two cases according to k = 1 or not in the following

subsections.

3.1 The case k = 1

For the case k = 1, we have α1 ∈ {1, 9}. Moreover, only B = 01×1 has rank k − 1 = 0. So C′
1(x, α1, 0)

consists of all primary primes λ ∈ P such that

Nλ � x, Nλ ≡ α1 (mod 16),

(
2

λ

)
4

= (−1)
α1−9

8 .

We denote by A16 those primary classes a of Z[i]/16Z[i] such that

(i) Na ≡ α1 (mod 16), and

(ii) ( 2a )4 = (−1)
α1−9

8 .

By Proposition 2.1, we obtain

#C′
1(x, α1, 0) =

1

2
π′(x,A16, 16). (3.3)

Here π′(y,A, γ) is the number of primes λ in Z[i] with Nλ � y and λ (mod γ) ∈ A, and the additional

factor 1
2 comes from λ ∈ C′

1(x, α, 0) with imaginary part positive.

Note that the Dirichlet prime ideal theorem over Q(i) involves prime ideals, while our estimation

concerns prime elements. This can be solved as follows. Let c be the ideal 16Z[i]. Then we define I(c)

and P (c) as in Subsection 2.3. By [11, Theorem 6.1], we have the exact sequence

1 → Z[i]× → (Z[i]/c)
× f→ I(c)/Pc → 1 , (3.4)

where f is induced from the map which sends every c-invertible Gauss integer a to the class of the

ideal (a). In fact, the exactness of (3.4) can be verified directly for the class number of Z[i] is 1. Denote

by π(y,A, a) those prime ideals p with norm no greater than y such that p (mod Pa) ∈ A.

Now we transform the primes counted in π′(x,A16, 16) into prime ideals. Let A16 be the image of A16

under f . For any prime ideal (λ) in a class of A16, there are exactly four primes lying in (λ), but only

one of them is primary. Then we get

π′(x,A16, 16) = π(x,A16, c) (3.5)

and

#A16 = #A16. (3.6)

By Dirichlet prime ideal theorem over Q(i) (see the prime ideal theorem and Proposition 2.2), we get

π(x,A16, c) ∼ #A16

#I(c)/Pc
· Li(x).

Let φ(16) be the number of (Z[i]/16Z[i])×. Then from the exact sequence (3.4), we have #I(c)/Pc =
φ(16)

4 .

Thus from (3.3) and (3.5), we obtain

#C′
1(x, α1, 0) ∼ 2#A16

φ(16)
· Li(x).

According to Lemma 3.1, we get

#C′
1(x, α1, 0) ∼ 1

24
· Li(x).

Noting #C1(x) ∼ Li(x) and the bijection (3.2), we finish the proof of Theorem 1.4 in the case k = 1.

Lemma 3.1. The cardinality of A16 is φ(16)/25.
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Proof. Let G be the set of the primitive residue classes 1 + (2 + 2i)Z[i] (mod 16). Then G is a sub-

group of (Z[i]/16Z[i])
×

and #G = φ(16)/4. By the definition of A16, the condition that the class is

primary selects the subgroup G from (Z[i]/16Z[i])
×
. To determine those elements of G selected by the

conditions (i) and (ii), we introduce two characters on G defined by

χ1(g) = i
Ng−1

4 , χ2(g) =

(
2

g

)
4

.

Hence we reduce to finding those g ∈ G such that

χ1(g) = i
α1−1

4 , χ2(g) = (−1)
α1−9

8 . (3.7)

This reminds us to study the behavior of χi on G. We can easily deduce that χ2
j(g) = ( 2

Ng ) for j = 1, 2.

Hence χ2
1 = χ2

2. In addition, χ1 and χ2 are characters of order 4, since χ2
j(−1 + 2i) = −1. Moreover,

we have χ1(−1 + 2i) = i and χ2(−1 + 2i) = i−1 by Lemma 2.1. Therefore χ1 �= χ2. So the character

subgroup G′ generated by χ1 and χ2 has 8 elements.

Now we show that G′ is the dual group of G/G1 ∩ G2 with Gi the kernel of χi. It suffices to prove

#G/G1 ∩G2 = 8. From the group isomorphism theorem, we only need to study G/G1 and G1/G1 ∩G2.

The former group G/G1 � μ4 as χ1 has order 4, where μ4 is the group of units of order 4. For the latter

group, we have the restriction map χ2|G1 : G1/G1 ∩G2 → μ4. Because of χ1 �= χ2, we know that χ2|G1

is non-trivial. From χ2
1 = χ2

2, we obtain

χ2(g1)
2 = χ1(g

2
1) = 1, g1 ∈ G1.

Hence χ2|G1 has order 2 and #G1/G1 ∩ G2 = 2. Thus we get #G/G1 ∩ G2 = 8. Therefore, G′ is the

dual group of G/G1 ∩G2 by counting cardinality.

By finite abelian group representation theory (see [13, p. 62]), G/G1 ∩G2 is also the dual of G′. Hence
any g ∈ G is a character of G′, and we denote

g(χ) = χ(g) for any χ ∈ G′.

Then for any integers x1 and x2, we claim that the following are equivalent:

(1) there is a g ∈ G with χj(g) = ixj for j = 1, 2,

(2) i2x1 = i2x2 .

Note that (1) is equivalent to finding a character g on G′ such that g(χ1) = ix1 and g(χ2) = ix2 . Since G′

is generated by χ1 and χ2 subjected to χ2
1 = χ2

2, the existence of such g is equivalent to g(χ2
1) = g(χ2

2).

By g(χ2
j) = χ2

j (g) = i2xj , we know that (1) and (2) are equivalent.

Note that i2·
α1−1

4 = (−1)2·
α1−9

8 = 1. Therefore there is a g0 ∈ G such that (3.7) holds. Moreover, by

transition of g0, we know that all g ∈ G satisfying (3.7) comprise the subset g0(G1 ∩G2), which occupies

an eighth of G. Hence we get

#A16 =
φ(16)

25
.

This completes the proof of the lemma.

3.2 The case k ��� 2

In this subsection, we will use the method of Cremona and Odoni [2] to prove Theorem 1.4 in the case

k � 2.

To define the similar map ϕ in Section 2, we define T (x) to be all n = p1 · · · pk−1 � x with p1, . . . , pk−1

strictly ascending such that

• pl ≡ αl (mod 16) for 1 � l � k − 1, and

• ( pl

pj
) = (−1)Blj for 1 � l < j � k − 1.

From the independence property of Legendre symbols of Rhoades [12], we have

#T (x) ∼ 2−(
k
2)−2k+2 ·#Ck−1(x). (3.8)
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We identify T (x) with a set T ′(x), similar to the identification of Ck(x, α,B). In addition, T ′(x) is defined
to be all η = λ1 · · ·λk−1 with Nη � x and Nλ1 < · · · < Nλk−1 such that

• λj ∈ P and Nλj ≡ αj (mod 16) for 1 � j � k − 1, and

• (Nλl

Nλj
) = (−1)Blj for 1 � l < j � k − 1.

Then we also have a bijection

T ′(x) → T (x), η → Nη. (3.9)

Now we prove Theorem 1.4 with k � 2.

Proof of Theorem 1.4. Let η̃ be the primitive prime divisor of η with maximal norm and imaginary

part positive. Then we define the map

ϕ : C′
k(x, α,B) → T ′(x), η → η/η̃.

Now we divide it into two cases according to zk = 0 or 1.

Now we assume that zk = 0. Let ε =
∏k−1

1 λj ∈ T ′(x). Then ε lies in the image of ϕ if and only if

there is a prime λ ∈ P with Nε̃ < Nλ � x/Nε such that

(i) Nλ ≡ αk (mod 16) and ( Nλ
Nλj

) = (−1)Bjk with 1 � j � k − 1, and

(ii) ( 2λ )4(
λ
θ ) = (2ε )4(

ε/θ
θ )(−1)

∏k
1 αj−1

8 +

∏k
1 α

zj
j

−5

4 with θ =
∏k−1

l=1 λ
zl
l .

Here ε̃ is the primitive prime divisor of ε with maximal norm and imaginary part positive. Thus from

Proposition 2.1, there is a unique subset Aε of invertible primary residue classes modulo 16ε such that

the following holds: for a prime λ, the integer λε belongs to C′
k(x, α,B) if and only if λ lies in P and Aε

with norm in (Nε̃, x/Nε]. Hence we obtain

#C′
k(x, α,B) =

∑
ε∈T ′(x)

g(ε) (3.10)

with

g(ε) = #{λ prime of Z[i] | λ ∈ P , λ ∈ Aε (mod 16ε), N ε̃ < Nλ � x/Nε}.
As #Aε plays an important part in the main term, we list its value in the following lemma with proof

postponed in the end of this subsection.

Lemma 3.2. Let φ(16ε) be the number of (Z[i]/16εZ[i])×. Then

#Aε =
φ(16ε)

2k+4
.

Like Cremona and Odoni [2], we use the notation

∗∑
Nη∈A

f(η)

to denote
∑

η∈T ′(∞),Nη∈A f(η) if A is a set consisting of positive integers. Let μ = (log x)100 and

ν = exp ( log x
(log log x)100 ). Then the following Lemma 3.3 is parallel to [2, Lemma 3.1].

Lemma 3.3. If either m = 20, n = μ or m = ν, n = x
k−1
k , then we have

∗∑
m<Nη�n

Li(x/Nη) = o

(
x · (log log x)k−1

log x

)
,

∗∑
μ<Nη�ν

Li(x/Nη) ∼ 1

k − 1
·#T ′(x) · log log x.

Like [2, Lemma 3.1], this lemma can be proved by summation by parts.

Now we can estimate #C′
k(x, α,B) in (3.10).
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First, for ε ∈ T ′(x) with Nε � 20, we have g(ε) � π(x/Nε), since every prime ideal corresponds to

exactly one primitive prime element. Here

π(y) =
∑

Np�y

1 ∼ Li(y)

by the prime ideal theorem over Q(i). So all those ε with Nε � 20 contribute O( x
log x ) to #C′

k(x, α,B).

Second, for ε ∈ T ′(x) with 20 < Nε � μ, similarly we have g(ε) = O(Li(x/Nε)). Hence these ε

contribute

∑
20<Nε�μ

O(Li(x/Nε)) = O

( ∑
20<Nε�μ

Li(x/Nε)

)
= o

(
x

log x
· (log log x)k−1

)

to #C′
k(x, α,B) by Lemma 3.3.

Similarly, for those ε ∈ T ′(x) with Nε belonging to (ν, x
k−1
k ], they also contribute o( x

log x ·(log log x)k−1)

to #C′
k(x, α,B). While for those Nε > x

k−1
k , they have no contribution. In fact, we have Nε̃ > x

1
k in

this case, but this contradicts that Nε̃ < Nλ � x/Nε < x
1
k .

Consequently we obtain

#C′
k(x, α,B) ∼ 1

2

∗∑
μ<Nε�ν

π′(x/Nε,Aε, 16ε)− 1

2

∗∑
μ<Nε�ν

π′(Nε̃,Aε, 16ε)

with π′(y,A, γ) defined under (3.3). The second sum of the above formula is bounded by

∗∑
μ<Nε�ν

π′(Nε̃,Aε, 16ε) � ν ·O
(

ν

log ν

)
= O

(
ν2

log ν

)
= o

(
x

log x
· (log log x)k−1

)
.

Therefore we have

#C′
k(x, α,B) ∼ 1

2

∗∑
μ<Nε�ν

π′(x/Nε,Aε, 16ε). (3.11)

Like the case k = 1, we transform from primes contributing to π′(x/Nε,Aε, 16ε) to prime ideals as

follows. We define c = cε to be the ideal generated by 16ε. Then we have the following exact sequence

1 → Z[i]× → (Z[i]/c)
× f→ I(c)/Pc → 1 . (3.12)

If we denote Aε = f(Aε), then like (3.5) and (3.6) we get π′(x,Aε, 16ε) = π(x,Aε, c) and

#Aε = #Aε, (3.13)

where π(x,Aε, c) is defined under (3.4). Hence by (3.11), we reduce to estimating

∗∑
μ<Nε�ν

π(x/Nε,Aε, c).

Via the standard relation of π(y,A, c) and ψ(y,A, c), we only need to estimate

∗∑
μ<Nε�ν

ψ(x/Nε,Aε, c), (3.14)

where

ψ(y,A, c) :=
∑
Na�y

a∈AmodPc

Λ(a).
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By the orthogonality of characters and the exact sequence (3.12), we have

ψ(y,Aε, c) =
4

φ(16ε)

∑
χmodcε

ψ(y, χ)
∑

[a]∈Aε

χ(a).

Here χ runs over all the characters of I(c)/Pc, and

ψ(y, χ) :=
∑

Na�y

χ(a)Λ(a).

Separating out all the principal characters χ0 mod cε from χ mod cε, we get

∗∑
μ<Nε�ν

ψ(x/Nε,Aε, c) = (I) +

∗∑
μ<Nε�ν

4

φ(16ε)

∑′

χmodcε

ψ(x/Nε, χ)
∑

[a]∈Aε

χ(a). (3.15)

Here (I) is the main term given by

(I) :=

∗∑
μ<Nε�ν

4 ·#Aε

φ(16ε)
· ψ(x/Nε, χ0)

and
∑′

denotes the sum over all non-principal characters of a fixed modulus.

To estimate the contribution of the non-principal characters in (3.15), we have to separate out those

terms with possible Siegel zeros. To this purpose, let †1 be the conductor of the exceptional primitive

character in Proposition 2.3(2) with z = 162ν. Separating out all the non-principal characters of modulus

multiple of †1 in (3.15), we get

∗∑
μ<Nε�ν

ψ(x/Nε,Aε, c) =: (I) + (II) + (III).

Here

(II) :=

∗∑
μ<Nε�ν,

†1|cε

4

φ(16ε)

∑′

χmodcε

ψ(x/Nε, χ)
∑

[a]∈Aε

χ(a),

(III) :=

∗∑
μ<Nε�ν,

†1�cε

4

φ(16ε)

∑′

χmodcε

ψ(x/Nε, χ)
∑

[a]∈Aε

χ(a).

(I)–(III) are estimated in the following lemma.

Lemma 3.4. We have the following estimations:

(I) ∼ 1

(k − 1) · 2k+2
·#T ′(x) · log x · log log x,

(II) = O(x log−99 ν),

(III) = o

(
x

log x

)
.

We postpone the proof of this lemma. From this lemma and the bijection (3.9), we arrive at

∗∑
μ<Nε�ν

ψ(x/Nε,Aε, c) ∼ 1

(k − 1) · 2k+2
·#T (x) · log x · log log x.

Hence from the equations (3.8) and (3.11), we have

#C′
k(x, α,B) ∼ 1

(k − 1) · 2k+3
·#T (x) · log log x
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∼ 1

(k − 1) · 2(k2)+3k+1
· log log x ·#Ck−1(x)

∼ 1

2(
k
2)+3k+1

·#Ck(x).

For the case zk = 1, we can prove similarly. Thus from the bijection (3.2), we complete the proof of

Theorem 1.4.

Now we prove Lemma 3.4.

Proof of Lemma 3.4. Now we estimate the first sum (I). By (3.13) and Lemma 3.2, we have #Aε =
φ(16ε)
2k+4 .

Then Lemma 3.3 implies that

(I) =
1

2k+2

∗∑
μ<Nε�ν

ψ(x/Nε) =
1 + o(1)

2k+2

∗∑
μ<Nε�ν

log(x/Nε)Li(x/Nε)

=
1 + o(1)

2k+2
· log x

∗∑
μ<Nε�ν

Li(x/Nε)

∼ 1

(k − 1) · 2k+2
·#T ′(x) · log x · log log x.

Next, we prove the second estimation. The trivial estimation gives

(II) �
∗∑

μ<Nε�ν,
†1|cε

ψ(x/Nε) � x

∗∑
μ<Nε�ν,

†1|cε

(Nε)−1.

For the last sum, we have

∗∑
μ<Nε�ν,

†1|cε

(Nε)−1 =
∑

μ<Nε�ν,

†1|cε,ε∈T ′(∞)

(Nε)−1 =
∑

μ<N†1s�ν

(N†1)−1 · s−1
∑

ε∈T ′(∞),†1|cε
Nε=N†1·s

1.

But for any s, the following holds: ∑
ε∈T ′(∞),†1|cε

Nε=N†1·s

1 � 1.

Therefore

(II) � xN†−1
1

∑
μ<sN†1�ν

s−1 � xN†−1
1 · log ν. (3.16)

To finish the estimation, we have to bound N†1 from below. By the Page theorem part of Proposition 2.3

with z = 162ν, the Siegel zero β of the primitive character with modulus †1 satisfies

β > 1− c0
log(162ν)

.

By the Siegel theorem part of Proposition 2.3, for any ε0 > 0, there is a c(ε0, 2) such that

β � 1− c(ε0, 2)D
−ε0 ,

where D = 4N†1. Thus if we choose ε0 = 1
200 , then N†1 > log100 ν. Hence (3.16) implies

(II) � x log−99 ν.

Finally, we estimate the third sum (III). There is no Siegel zero involved in the explicit formula (2.2).

So for any ψ(x/Nε, χ) in the sum (III), there exists a positive constant c such that

ψ(x/Nε, χ) � x

Nε
· log2 x · exp

(
− c log(x/Nε)

logNε

)
+

x

Nε5
log2 x+ x

1
4Nε−

1
4 log(x/Nε),
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where we have chosen T = Nε4 and used N† � 162Nε in (2.2). Corresponding to these three terms, (III)

is divided into three subsums

(III) = Σ1 +Σ2 +Σ3.

They can be estimated as follows:

Σ1 = x log2 x

∗∑
μ<Nε�ν,

†1 �|cε

1

Nε
· exp

(
− c

log x/Nε

logNε

)

� x log2 x · exp(−c′(log log x)100) ·
∗∑

μ<Nε�ν,
†1 �|cε

1

Nε

� x log3 x · exp(−c′(log log x)100),

Σ2 = x log2 x

∗∑
μ<Nε�ν,

†1 �|cε

Nε−5 � x log2 x · μ−4 � x log−200 x,

Σ3 � x
1
4 log x

∗∑
μ<Nε�ν,

†1 �|cε

Nε−
1
4 � x

1
4 log x · ν 3

4 � x
1
2 .

Therefore we arrive at

(III) = o

(
x

log x

)
.

This completes the proof of Lemma 3.4.

Now we prove Lemma 3.2.

Proof of Lemma 3.2. According to (i), (ii) and Lemma 2.1, we know that Aε represents those primary

classes a (mod 16ε) such that

(i′) Na ≡ αk (mod 16) and ( Na
Nλj

) = (−1)Bjk for 1 � j � k − 1, and

(ii′) ( 2a )4(
a
θ1
) = (2ε )4(

ε/θ1
θ1

)(−1)
∏k

1 αj−1

8 +

∏k
1 α

zj
j

−5

4 .

From Chinese Remainder Theorem, we have the following identification:

(Z[i]/16εZ[i])
× � (Z[i]/16Z[i])

× ×
k−1∏
j=1

(Z[i]/λjZ[i])
×

given by a → (a0, a1, . . . , ak−1), where aj is the corresponding image of a modulo λj and λ0 = 16. Then

the residue symbol ( ·
θ1
) is trivial on those (Z[i]/λjZ[i])

×
-components with λj � θ1, and other residue

symbols have similar properties. As pj = Nλj splits completely in Z[i] for 1 � j � k − 1, the norm map

induces an isomorphism (Z[i]/λjZ[i])
× � (Z/pjZ)

×. Hence the condition (
Naj

Nλj
) = 1 selects a half of the

(Z[i]/λjZ[i])
×-component.

For the component of (Z[i]/16Z[i])
×
, we use the same notation as Lemma 3.1. Assume that a1, . . . , ak−1

are chosen such that (
Naj

Nλj
) = 1 for 1 � j � k − 1. Then the remaining conditions of (i′) and (ii′) are

equivalent to finding g ∈ G such that

χ1(g) = i
αk−1

4 , χ2(g) = iδ. (3.17)

Here,

iδ =

(
2

ε

)
4

(
ε/θ1
θ1

)
·
∏
λj |θ1

(
aj
λj

)
· (−1)

∏k
1 αj−1

8 +

∏k
1 α

zj
j

−5

4 .

By the equivalence of (1) and (2) of Lemma 3.1, the existence of g ∈ G such that (3.17) holds is equivalent

to i2·
αk−1

4 = i2δ. Now we verify this. Using
∏k

j=1 αj ≡ 1 (mod 8), we get

i2δ =

(
22

η

)
4

=

(
2

Nη

)
=

(
2

α1 · · ·αk−1

)
=

(
2

αk

)
,
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while i2·
αk−1

4 = (−1)
αk−1

4 = ( 2
αk

) = i2δ. (3.17) selects an eighth ofG, similar to Lemma 3.1. Consequently,

#Aε =
φ(16ε)

2k+4
.

This completes the proof of the lemma.

4 Distribution of congruent elliptic curves

In this section, we will prove the main results (see Theorems 1.1 and 1.3) of this paper.

4.1 Gauss genus theory

We first introduce some conceptions related to 4-rank of ideal class group. We refer to Section 3 of our

previous paper [15]. Let n = p1 · · · pk ≡ 1 (mod 8) in Qk. Denote by A = An the ideal class group of

Q(
√−n). Assume that the group operation of A is written additively. Hence 2jA denotes the subgroup

consisting of 2j-powers of ideal classes of A, where j is a positive integer. Then the 2j-rank h2j (n) of A
is defined to be dimF2 2

j−1A/2jA. From this definition, we can easily get h4(n) = dimF2 A[2] ∩ 2A,

where A[2] denotes the subgroup consisting of ideal classes with square trivial. Gauss genus theory

connects A[2] ∩ 2A with the kernel of the Rédei matrix R of Q(
√−n).

The definition of R is as follows. We assume that the prime divisors of n are arranged such that

p1 < · · · < pk. Then the Rédei matrix R = Rn is a k × (k + 1) matrix over F2 given by (An | b). Here
A = An = (aij)k×k and b = ([ 2

p1
], . . . , [ 2

pk
])T, where aii =

∑
l 
=i ail and aij = [

pj

pi
] with i �= j. Then Gauss

genus theory implies that there is a two to one epimorphism

{X ∈ Fk+1
2 | RX = 0} → A[2] ∩ 2A (4.1)

with kernel {0, X0}, where X0 = (1, . . . , 1, 0)T. Thus we have h4(n) = k − rankF2R.

Remark 4.1. The original definition of the Rédei matrix has no assumption on the magnitudes of

prime factors of n. The purpose of this assumption is to get a unique Rédei matrix; the uniqueness makes

the estimation of the number of certain elliptic curves more convenient.

There are two important properties of the matrix A = An. We first introduce a notion. For a matrixM

over F2, we say that every row sum of M is 0 if the sum of all elements of any of M ’s given row is 0.

Similarly, we can define that every column sum ofM is 0. Then every row sum of A is 0 from its definition.

In addition, A is symmetric by the quadratic reciprocity law. So from symmetry, every column sum of A

is also 0.

4.2 Distribution of X(E(n)/Q)[2∞] � (Z/2Z)
2

For n ∈ Qk, [15, Theorem 1.1] characterizes that n ∈ Pk if and only if

h4(n) = 1, h8(n) ≡ d− 5

4
(mod 2), (4.2)

where d =
∏k

j=1 p
xj

j with X = (x1, . . . , xk, xk+1)
T a non-trivial solution to RX = 0 such that X �= X0.

Since h4(n) = 1, by Gauss genus theory (see the epimorphism (4.1)), there are two such choices X and

X ′ with X +X ′ = X0. Corresponding to X and X ′, we define d and d′ as above. Then X +X ′ = X0

implies that d′d = n ≡ 1 (mod 8), so d−1
4 ≡ d′−1

4 (mod 2). Hence either choice does not affect d−1
4

(mod 2). Like [15, Proof of Theorem 1.1], (4.2) can be divided into two cases according to rankA.

(i) The rank of A is k − 1. Then h4(n) = 1. Let x = (x1, . . . , xk)
T be a non-trivial solution to Ax = b

and d =
∏k

j=1 p
xj

j . Then [10, Theorems 3.3(iii) and 3.3(iv)] imply that h8(n) = 1 if and only if

(
2d

d′

)
4

(
2d′

d

)
4

= (−1)
n−1
8
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with d′d = n. Then by (3.1), this is equivalent to

(
θ′

θ

)(
2

n

)
4

= (−1)
n−1
8 ,

where θ (resp. θ′) is the primary integer lying above d (resp. d′) with every prime factor in P .

(ii) The rank of A is k−2. Then h4(n) = 1 if and only if b �∈ ImA. Let x = (x1, . . . , xk)
T �= 0, (1, . . . , 1)T

such that Ax = 0. We define d =
∏k

j=1 p
xj

j . Then d ≡ 5 (mod 8) and [10, Theorem 3.3(ii)] implies that

h8(n) = 1 if and only if (
d

d′

)
4

(
d′

d

)
4

= −1,

where d′d = n.

Remark 4.2. We remark that there is a typo in [10, Theorem 3.3(iv)], which is corrected in (i).

Now we begin to prove Theorem 1.1. Recall that our strategy is to count n � x with prime factors

in given residue classes modulo 16 and residue symbols among its prime factors with given compatible

values. The latter implies that the An-matrix of n is a given one over F2. From this and the two

possibilities of rankA, we denote by B = Bk the set of all the k × k symmetric F2 matrices with rank

k − 1 and every row sum 0; similarly we use B∗ to denote those k × k symmetric F2 matrices with rank

k − 2 and every row sum 0. According to An ∈ B or B∗, we can divide the proof into two parts.

First, we estimate the contribution of n with rankAn = k − 1 to #Pk(x). Let I denote the set of

α = (α1, . . . , αk) such that all αj ∈ {1, 5, 9, 13} and
∏k

j=1 αj ≡ 1 (mod 8). Given any α ∈ I and

B ∈ B = Bk, the contribution of those n = p1 · · · pk � x satisfying

• p1 < · · · < pk,

• An = B, and

• pj ≡ αj (mod 16) for 1 � j � k

to #Pk(x) is #Ck(x, α,B) by (i). If B �= B̃ ∈ B or α �= α̃ ∈ I, then Ck(x, α,B) and Ck(x, α̃, B̃) are

disjoint. Therefore the contribution of all those n ∈ Qk(x) with An ∈ B to #Pk(x) is

Σ1 =
∑
B∈B

∑
α∈I

#Ck(x, α,B).

By the independence property of residue symbols (see Theorem 1.4), this asymptotically equals

2−1−(k2)−3k ·#Ck(x) ·
∑
B∈B

∑
α∈I

1 = 2−2−k−(k2) ·#Ck(x) ·#B,

where we have used #I = 22k−1. So we reduce to computing #B, which can be accomplished by the

following result of Brown et al. [1].

Proposition 4.3. For non-negative integers r � k, let Bk,r denote all the k × k symmetric matrices

over F2 with rank r. Then

#Bk,r = 2(
r+1
2 ) · ur+1 ·

k−r−1∏
i=0

2k − 2i

2k−r − 2i
,

where ur is defined in Theorem 1.1.

Given any B ∈ B, we delete the last row and column of B. Then we get a B′ ∈ Bk−1,k−1. Since every

row sum of B is 0 and B is symmetric, we obtain a one to one correspondence between B and Bk−1,k−1.

Hence Proposition 4.3 implies that

#B = #Bk = 2(
k
2) · uk. (4.3)

So we arrive at

Σ1 ∼ 2−2−k · uk ·#Ck(x).
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Second, we estimate the contribution of n with An ∈ B∗ to #Pk(x). Then this implies that k � 2.

Let B ∈ B∗. We denote by IB the set of α = (α1, . . . , αk) with all αj ∈ {1, 5, 9, 13} and
∏k

j=1 αj ≡ 1

(mod 8) such that

rankF2(B | bα) = k − 1.

Here bα = ([ 2
α1

], . . . , [ 2
αk

])
T
. Given α ∈ IB, the contribution of those n = p1 · · · pk � x with

• p1 < · · · < pk,

• An = B, and

• pj ≡ αj (mod 16) for 1 � j � k

to #Pk(x) is #Ck(x, α,B)∗. Here Ck(x, α,B)∗ is defined to be all n = p1 · · · pk ∈ Ck(x) with p1 < · · · < pk
satisfying

• pl ≡ αl (mod 16) for 1 � l � k,

• ( pl

pj
) = (−1)Blj for 1 � l < j � k, and

• ( d
d′ )4(

d′
d )4 = −1.

Here d′d = n and d =
∏k

j=1 p
xj

j with x = (x1, . . . , xk)
T �= (1, . . . , 1)T a non-trivial solution to Ax = 0.

Like Theorem 1.4, we have the following independence property of residue symbols:

#Ck(x, α,B)∗ ∼ 2−1−3k−(k2) ·#Ck(x). (4.4)

Given n = p1 · · · pk ∈ Qk(x) with p1 < · · · < pk, we define α(n) to be the unique α ∈ I (not IAn)

such that αj ≡ pj (mod 16) for 1 � j � k. Then the contribution of all n ∈ Qk(x) with An ∈ B∗ and

α(n) ∈ IAn to #Pk(x) is

Σ2 =
∑
B∈B∗

∑
α∈IB

#Ck(x, α,B)∗ ∼ 2−1−3k−(k2)
∑
B∈B∗

∑
α∈IB

#Ck(x).

Therefore we reduce to counting #B∗ and #IB .
Now we count #B∗. Performing the same operations on B as the case B ∈ B, we obtain a B′ ∈

Bk−1,k−2. Moreover, we also get a one to one correspondence between B∗ and Bk−1,k−2. Thus from

Proposition 4.3 we have

#B∗ = 2(
k−1
2 ) · uk−1 · (2k−1 − 1). (4.5)

Now we count #IB with B ∈ B∗. We divide this into two steps.

First, we count the number of F2-matrix b = bk×1 such that

(1) the sum of all elements of b is 0, and

(2) rankF2(B | b) = k − 1.

Deleting the last element of b and the last row and column of B, we know that (B | b) corresponds to

(B′ | b′). This correspondence is also one to one. As the rank of (B′ | b′) is k− 1 and that of B′ is k− 2,

b′ is not in the image of B′. Thus there are exactly 2k−2 many such b′. Hence there are 2k−2 such b.

Next, we want to count the number of α ∈ IB such that bα = b, where b = bk×1 is any given F2 matrix

satisfying (1) and (2). Note that bα,j = [ 2
αj

] = bj determines αj (mod 8) for any 1 � j � k. Then any αj

has exactly two choices. Therefore there are 2k many α ∈ IB such that bα = b. Consequently, we have

#IB = 22k−2. (4.6)

Thus from (4.5) and (4.6), Σ2 asymptotically equals

2−1−3k−(k2)#B∗ · 22k−2 ·#Ck(x) = 2−2−2k(2k−1 − 1)uk−1 ·#Ck(x).

From (i) and (ii), we know #Pk(x) = Σ1 +Σ2. Therefore,

#Pk(x) ∼ 2−2−k(uk + (2−1 − 2−k)uk−1) ·#Ck(x).

So we finish the proof of Theorem 1.1.
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4.3 Distribution of X(E(n)/Q)[2∞] � (Z/2Z)4

In this subsection, we bound the number of congruent elliptic curves E(n) with rankZE
(n)(Q) = 0 and

X(E(n)/Q)[2∞] � (Z/2Z)
4
.

For a positive integer k � 2, we denote by Q̃k(x) the set of n ∈ Qk(x) with all prime factors congruent

to 1 modulo 8. Let l and l′ be positive integers. Assume that n = dd′ ∈ Q̃l+l′(x) with ω(d) = l and

ω(d′) = l′ such that

(i) ( p
p′ ) = 1 for any prime divisor p of d and p′ of d′,

(ii) h4(d) = h4(d
′) = 1, and

(iii) ( 2d )4 = (−1)
d−9
8 , ( 2

d′ )4 = (−1)
d′−9

8 and ( d
d′ )4 = (d

′
d )4 = 1.

Here ω(d) is the number of prime factors of d. [15, Theorem 1.2 and Remark 4.7] imply that n ∈ P̃l+l′(x).

In fact, [15, Theorem 4.5 and Corollary 4.6] give more general conditions such that n ∈ P̃l+l′ (x). But for

notational simplicity, we only consider (i)–(iii).

In order to count the number of those n satisfying (i)–(iii), we need some notation. Let σ = {σi}li=1 be

a strictly ascending subsequence of 1, . . . , l+ l′. Then we denote by σ′ = {σ′
i}l

′
i=1 the remained increasing

subsequence of 1, . . . , l + l′ by deleting those elements of σ. Let S denote the set consisting of all the σ.

Then #S =
(
l+l′
l

)
. Denote by R the set of α = (α1, . . . , αl+l′) with every αj ∈ {1, 9}. Then #R = 2l+l′ .

Recall that Bl denotes all the l × l symmetric F2 matrices with rank l − 1 and every row sum 0. In

addition, An is the symmetric matrix occurred in the definition of the Rédei matrix of the ideal class

group of Q(
√−n).

For α ∈ R, B ∈ Bl, B
′ ∈ Bl′ and σ ∈ S, we denote by Cl,l′(x, α,B,B

′, σ) those n = p1 · · · pl+l′ ∈
Q̃l+l′(x) with p1 < · · · < pl+l′ such that

• pj ≡ αj (mod 16) for 1 � j � l + l′,
• Ad = B and Ad′ = B′ with d =

∏l
j=1 pσj and d′ =

∏l′

j=1 pσ′
j
,

• ( p
p′ ) = 1 for any prime divisor p of d and p′ of d′,

• ( 2d )4 = (−1)
δ−9
8 and ( 2

d′ )4 = (−1)
δ′−9

8 with δ =
∏l

j=1 ασj and δ′ =
∏l′

j=1 ασ′
j
, and

• ( d
d′ )4 = (d

′
d )4 = 1.

Similarly to the independence property of residue symbols, namely Theorem 1.4, we have

#Cl,l′(x, α,B,B
′, σ) ∼ 1

24+3(l+l′)+(l+l′
2 )

·#Cl+l′ (x).

Moreover, from (i)–(iii) we know that Cl,l′ (x, α,B,B
′, σ) is contained in P̃l+l′ (x). The following lemma

shows that the sets Cl,l′(x, α,B,B
′, σ) are mutually disjoint up to the trivial overlap Cl,l′ (x, α,B,B

′, σ)
= Cl′,l(x, α,B

′, B, σ′).

Lemma 4.4. For positive integers l̃ and l̃′ with l̃ + l̃′ = l + l′, we define σ̃ and S̃ similarly. Assume

that α̃ ∈ R, B̃ ∈ Bl̃, B̃
′ ∈ Bl̃′ and σ̃ ∈ S̃. If (α̃, σ̃, B̃, B̃′) �= (α, σ,B,B′) and (α, σ′, B′, B), then

Cl,l′(x, α,B,B
′, σ) ∩ Cl̃,l̃′(x, α̃, B̃, B̃

′, σ̃) = ∅.
We postpone the proof of this lemma in the end of this subsection. Then the contribution of those

Cl,l′(x, α,B,B
′, σ) with α ∈ R, B ∈ Bl, B

′ ∈ Bl′ , σ ∈ S, 1 � l � k − 1 and l+ l′ = k to #P̃k(x) is

1

2

∑
l+l′=k

∑
α∈R

∑
B∈Bl

∑
B′∈Bl′

∑
σ∈S

#Cl,l′(x, α,B,B
′, σ)

∼ 1

2

∑
l+l′=k

#R ·#Bl ·#Bl′ ·#S
24+3(l+l′)+(l+l′

2 )
·#Cl+l′ (x)

=
∑

l+l′=k

ulul′ ·
(
l+l′

l

) · 2(l+l′)+(l
2)+(

l′
2)

25+3(l+l′)+(l+l′
2 )

·#Ck(x)

=
∑

l+l′=k

ulul′ ·
(
k
l

)
25+2k+ll′ ·#Ck(x).



Wang Z J Sci China Math April 2017 Vol. 60 No. 4 611

Here we have used (4.3). This completes the proof of Theorem 1.3.

Now we prove Lemma 4.4.

Proof of Lemma 4.4. If n satisfies (i) and (ii), then rankF2An = l + l′ − 2 = ω(n) − 2 by Gauss genus

theory in Subsection 4.1.

Note that if α̃ �= α. Then the lemma holds trivially. So we may assume that α̃ = α.

If σ̃ �= σ and σ′, then at least three of the following increasing sequences are non-empty:

σ ∩ σ̃, σ ∩ σ̃′, σ′ ∩ σ̃, σ′ ∩ σ̃′.

Assume that n ∈ Cl,l′ (x, α,B,B
′, σ) ∩ Cl̃,l̃′(x, α̃, B̃, B̃

′, σ̃). Then we denote by d1 the product of those

prime factors of n indexed by σ ∩ σ̃. Similarly, d2, d3 and d4 are the products of prime factors of n indexed

by σ ∩ σ̃′, σ′ ∩ σ̃ and σ′ ∩ σ̃′, respectively. Then at least three of d1, d2, d3 and d4 are non-trivial. Since

n ∈ Cl,l′ (x, α,B,B
′, σ) ∩ Cl̃,l̃′(x, α̃, B̃, B̃

′, σ̃), we get(
pσi

pσ′
j

)
= 1,

(
pσ̃i

pσ̃′
j

)
= 1 for all i and j meaningful.

Therefore for i �= j, (
qi
qj

)
= 1

for any prime factor qi of di and qj of dj . Switching certain rows and columns of An, we get a matrix

A′ = diag(A′
1, A

′
2, A

′
3, A

′
4)

with A′
j an ω(dj) × ω(dj) matrix for 1 � j � 4. Since every row sum of An is 0 and switching rows and

columns does not change this property, every row sum of A′ is 0. Thus every row sum of A′
j is also 0 for

1 � j � 4. Hence if dj �= 1, then rankA′
j � ω(dj)− 1. Therefore rankA′ � ω(n)− 3. But A′ is obtained

from An by switching rows and columns, we get rankAn = rankA′ � ω(n) − 3. This contradicts that

rankAn = ω(n)− 2. Consequently, we only need to prove the lemma with σ̃ = σ or σ′.
Now we assume that σ̃ = σ. If B̃ �= B or B̃′ �= B′, then

Cl,l′(x, α,B,B
′, σ) ∩ Cl̃,l̃′(x, α̃, B̃, B̃

′, σ̃) = ∅.

Now we assume that σ̃ = σ′. Then l̃ = l′. If B̃ �= B′ or B̃′ �= B, then

Cl′,l(x, α,B
′, B, σ′) ∩ Cl̃,l̃′(x, α̃, B̃, B̃

′, σ̃) = ∅.
Note that we obviously have

Cl,l′(x, α,B,B
′, σ) = Cl′,l(x, α,B

′, B, σ′).

So we complete the proof of the lemma.

5 Conclusions

Due to the existence of quartic residue symbols in the characterization of Shafarevich-Tate groups, we

use multiplicative number theory over Q(i) to derive an independence property of residue symbols. In

fact, this method can be generalized to higher order residue symbols. This requires one to handle the

ideal class group and unit group of certain number field in the estimation of integers counted by these

symbols. Furthermore, we can predict that there may exist more complicated dependences among residue

symbols.
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