
Mei H, Liu XZ. Internetware: An emerging software paradigm for Internet computing. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY 26(4): 588–599 July 2011. DOI 10.1007/s11390-011-1159-y

Internetware: An Emerging Software Paradigm for Internet Computing

Hong Mei (梅 宏), Fellow, CCF, and Xuan-Zhe Liu (刘譞哲), Member, CCF

Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education, Beijing 100871, China

School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China

E-mail: meih@pku.edu.cn; liuxzh@sei.pku.edu.cn

Received February 26, 2011; revised May 23, 2011.

Abstract The Internet is undergoing a tremendous change towards the globalized computing environment. Due to the
open, dynamic and uncontrollable natures of the Internet, software running in the Internet computing environment has some
new features, which bring challenges to current software technologies in terms of software model, software operating platform,
software engineering approaches and software quality. Researchers in China have proposed the term “Internetware” to present
the emerging software paradigm. Sponsored by the National Basic Research 973 Program, several research practices have
been done on the Internetware in the past decade. This paper summarizes the progress and status of the Internetware
researches. A technical solution framework for the Internetware paradigm is proposed from four aspects: the Internetware
software model defines what the Internetware is to be; the Internetware middleware determines how to run the Internetware
applications; the engineering methodology determines how to develop the Internetware applications; the Internetware quality
assurance determines how well the Internetware applications can perform. The paper also discusses the ongoing research
issues and future trends of Internetware.

Keywords software engineering, Internetware, Internet computing

1 Introduction

Software is a computer program that models the
problem space of the real world as well as its solution.
Software paradigm (or program paradigm) describes a
software model and its construction theory from the
perspective of software engineers or programmers[1]. As
shown in Fig.1, a software paradigm usually concerns
four aspects: what is to be constructed and executed
(software or program model); how to develop the re-
sulted software artifacts or entities (development tech-
niques, e.g., programming languages, engineering ap-
proaches and supporting tools); how to run the arti-
facts or entities (runtime system supports, such as the
operating systems or middleware platforms); and how
well the constructed and executed software can perform
(the promised software qualities, e.g., correctness, per-
formance, reliability, user experiences, and their assu-
rance mechanisms via construction and operation).

With the rapid development of computer science and
technology, the application domain and runtime envi-
ronment evolve as well. As shown in Fig.2, the com-
puting application domain keeps expanding, from sci-
ence computing to enterprise/personal computing and
then to “anytime-anywhere” ubiquitous computing.

The runtime environment is evolving from the single-
machine to the networked and current the Internet en-
vironment. With the evolution of application domains
and runtime environments, the scale and complexity
of software systems keep increasing. Powerful software
technology is the key to meet the ever-increasing ap-
plication demands for high productivity and quality
supports. Software paradigm acts as the core driven
force the evolution of software technology. Software
paradigm always pursues to better utilize underlying
hardware capabilities or runtime features. It attempts

Fig.1. Software paradigm.

Survey
This effort is sponsored by the National Basic Research 973 Program of China under Grant No. 2009CB320700, and the National

Natural Science Foundation of China under Grant No. 60821003.
©2011 Springer Science +Business Media, LLC & Science Press, China



Hong Mei et al.: Internetware: An Emerging Software Paradigm for Internet Computing 589

Fig.2. Evolution of software paradigm.

to provide a more expressive and natural computing
model from the application perspective. In the his-
tory of computer science and technology, there have
emerged some software paradigms, including the struc-
tured paradigm, the object-oriented paradigm, the
component-based paradigm and currently the popu-
lar service-oriented paradigm. One observed fact is
that, when the software paradigm evolves, revolution-
ary challenges and tremendous opportunities come to
software technology as well.

For every paradigm, we might find that, the WHAT-
IS-TO-BE, the HOW-TO-DEVELOP and the HOW-
TO-RUN issues are always prior to be solved in 5∼10
years since the paradigm emerged, and then we come
to the HOW-WELL issue. For example, we can review
the history of the object-oriented (OO) paradigm. The
object-oriented software model attempts to natively de-
scribe the structure of the objective world, such as the
abstraction and encapsulation of objects/classes, and
its relationships such as inheritance. Since the 1980s,
many programming languages emerged to support the
OO program development, for example, Smalltalk and
C++ were born in the 1980s, while Java became pop-
ular in the 1990s. When OO systems were widely ap-
plied in the 1990s, more attentions were paid to their
high-quality. For example, OO analysis can identify
the requirements with use case models; OO design can
elaborate the analysis model to produce design specifi-
cations; OO testing techniques can verify the correct-
ness and consistency of the OOA/OOD models as well
as the implementation.

The fast development of the Internet has made itself

perform as a globally ubiquitous infrastructure. More-
over, beyond its basic connection capabilities, the In-
ternet is now growing up into a “Global and Ubiquitous
Computer”. The present Internet not only consists of
a huge and ever-growing number of diverse comput-
ing devices, but also serves as a platform with much
more powerful supports for problem solving. The Inter-
net computing environment distinguishes from the tra-
ditional computer systems, with several new features,
such as the distribution and decentralization of con-
trol, the diversity of network connections, the openness
and changes of network environments, the autonomy of
computing nodes, the heterogeneity of human, devices
and software, the personalization of usage patterns.

The “Internet-as-a-Computer” has significant im-
pacts on computer science and technology. Some
new concepts, application modes and technologies
have emerged, such as the popular Grid Comput-
ing, Cloud Computing, Services Computing, Perva-
sive Computing, Semantic Web, Web 2.0, Social Net-
working, Smarter Planet. These new concepts, appli-
cation modes or technologies view the “Internet-as-a-
Computer” from different perspectives. From the per-
spective of resource sharing, Grid Computing aims at
the transparent aggregation of resources from network
nodes. From the perspective of resource management
and on-demand delivery, Cloud Computing aims at the
concentration and virtualization of resources over data
centers. From the perspective of human-computer in-
teraction, Pervasive Computing aims at making future
network applications operated and accessed ubiqui-
tously. From the perspective of “Everything as a



590 J. Comput. Sci. & Technol., July 2011, Vol.26, No.4

Service”, Services Computing aims at the coordination
and dynamism of services.

From the perspective of software paradigm, we try
to investigate the software running in the Internet com-
puting environment. Unlike traditional software sys-
tems running on local single machines, software systems
on the Internet might consist of several distributed and
autonomous software entities. These entities can col-
laborate with one another in various fashions. In this
way, a “software Web” emerges, which is similar to the
WWW resulted from Web pages and hyperlinks among
them. Like the WWW offering information services
such as information publishing and sharing, the soft-
ware Web provides plentiful services of various func-
tionalities online for the users. The software Web is
able to be aware of the dynamic changes of the con-
texts, and then continuously evolves with functionality
and quality-of-service.

Due to the open, dynamic and ever-changing natures
of the Internet computing environment, software on the
Internet has some new features compared with the tra-
ditional software. Take software collaborations for ex-
ample. They are always realized by means of interac-
tions among software entities. In the object-oriented
paradigm, both the objects and their interactions are
fixed, because one class/object has to explicitly de-
clare the invocation of another class/object. In the
component-based paradigm, component collaborations
are more loosely-coupled. For example, Java Enterprise
Edition (Java EE) can support the dynamic lookup and
binding of proper components (using Java Naming and
Directory Interface). Although the interactions are still
fixed, the interacted components can be dynamically

changed. In the service-oriented paradigm, service col-
laboration becomes much more flexible. Different ser-
vices can interact with one another in different flows to
accomplish the same goal. For instance, in WS-BPEL,
it is allowed to compose different function-identical can-
didate services, and their interaction styles might vary
as well.

However, in the Internet computing environment,
more and more goals are unclear, undetermined or
even undesired before collaboration finally performs. In
other words, these collaborations are “emergent” rather
than predefined. Such emergent collaborations may oc-
cur in many scenarios, for example, in the prevention
and control of epidemic (such as SARS and H1N1).
Under normal circumstances, the Chinese Center for
Disease Control and Prevention (CDC) might not have
fixed relationships with other organizations (such as air-
port, hotel and hospital). However, some emergencies
(such as H1N1) will result in the on-demand collabora-
tions of these organizations. One possible scenario can
be described in Fig.3. When a passenger is thought to
be infected with H1N1 a message will be sent to the
early-warning system of CDC. CDC will immediately
request the airport management system for passenger
list on the same flight. Then CDC will contact the hotel
to arrange rooms for isolating all the passengers, and
notify the hospital to take cases of the “infected” pas-
sengers in the hotel. In this scenario, accomplishing the
emergent goal requires powerful and flexible technolo-
gies to support on-demand collaborations among these
organizations.

Compared with the features supported by existing
software paradigms, the features for software on the

Fig.3. On-demand collaboration scenario.



Hong Mei et al.: Internetware: An Emerging Software Paradigm for Internet Computing 591

Internet might not be totally new. However, some im-
provements should be considered. We argue that a new
software paradigm for the Internet computing environ-
ment is required. It shall systematically support the
development, operation and quality assurance for soft-
ware on the Internet.

Researchers in China proposed the “Internetware”[1-3],
which literally means “the Software paradigm for the In-
ternet”. Sponsored by the National Basic Research 973
Program of China, systematic efforts have been made
on Internetware research and practices. In the past
decade, two 973 projects has been carried out consecu-
tively: “Research on Theory and Methodology of Agent-
Based Middleware on Internet Platform” (2002∼2008),
and “Research on Networked Complex Software: Qual-
ity and Confidence Assurance, Development Method,
and Runtime Mechanism” (2009∼present). About 80
researchers from Chinese universities and institutes
(including Peking University, Nanjing University, Ts-
inghua University, Institute of Software of the Chinese
Academy Sciences, the Academy of Mathematics and
Systems Science of Chinese Academy Sciences, East
China Normal University, and IBM China Research
Laboratory) have participated in the projects.

This paper will present the concept and principles
of Internetware, and introduce the progress and cur-
rent status of Internetware research. The paper is or-
ganized as follows. Section 2 describes the Internet-
ware paradigm and states the key challenges. Section
3 presents the architecture-centric technical solution
framework of Internetware from three aspects: Inter-
netware model, Internetware operating platform, and
Internetware engineering approach. Section 4 discusses
future research. Section 5 ends the paper with conclu-
sion remarks.

2 Internetware: A New Software Paradigm

2.1 Basic Concepts of Internetware

Essentially, Internetware is constructed by a set of
autonomous software entities distributed over the In-
ternet, together with a set of connectors enabling the
collaboration among these entities in various fashions.
The Internetware software entities are able to be aware
of the dynamic changes of the running environments,
and continuously adapt to these changes by means of
structural and behavioral evolutions.

As shown in Fig.4, from the micro perspective, Inter-
netware software entities collaborate with one another
on demand. From the macro perspective, the entities
can self-organize an application domain or community-
of-interest[3]. As a result, the development of Inter-
netware can be viewed as the continuous and iterative
composition of various “disordered” resources into “or-
dered” software systems. This implies that the Internet-
ware development is a bottom-up, inside-out and spiral
process.

Obviously, Internetware distinguishes from tradi-
tional software in terms of forms, structures and be-
haviors. The Internetware applications should be au-
tonomous, cooperative, situational, evolvable, emergent
and trustworthy[1].
• Autonomous. It means that Internetware entities

are usually distributed, relatively self-contained and
independent. They usually perform according to the
composition or deployment strategies defined by their
providers, and continuously satisfy the providers’ goals.
Internetware can adapt itself when necessary, by sens-
ing and collecting information of environment changes.
For example, in the above scenario, the CDC, airport,

Fig.4. Behavior, organization and composition modes of Internetware.



592 J. Comput. Sci. & Technol., July 2011, Vol.26, No.4

hotel and hospital are all autonomous entities, and per-
form on-demand collaborations with one another.
• Cooperative. It means that a set of Internetware

entities might collaborate with one another, and consti-
tute new Internetware applications. Most of the time,
the collaborations are rather dynamic than static to
adapt to the user requirements and environments on-
demand. The collaboration mechanisms between Inter-
netware entities may be various, and can be changed if
necessary.
• Situational. It means that Internetware sys-

tems can be aware of the runtime contexts and scena-
rios, including underlying devices, operating platforms,
networking conditions, application contexts, or the
changes of other Internetware, etc. Hence, both the In-
ternetware entities and their operating platforms might
be capable of exposing their runtime states and behav-
iors in some way.
• Evolvable. It means that the structures and be-

haviors of Internetware applications might dynamically
change. The Interntware applications usually consist
of autonomous entities over the Internet, and provide
online and continuous (e.g., 24 hours ×7 days) services
for a number of users. Hence, the Internetware applica-
tions cannot be completely shut down. Internetware ap-
plications have to perform online evolutions to accom-
modate the user requirements and the environments.
Possible evolutions may include the adding/removal of
entities, the changes of functionalities on-the-fly and
just-in-time, the interaction styles between entities, the
change of system topologies, etc.
• Emergent. It means that Internetware systems

have un-designed behaviors in or undesired effects on
the runtime instances or interactions and they might
iteratively result in more and more changes of system
structure and behavior. In this way, the Internetware
systems have some typical features of complex systems.
• Trustworthy. It means that Internetware systems

should promise the comprehensive tradeoffs among
several quality attributes. As Internetware applications
online serve a number of users, the trustworthiness of
Internetware might cover a wide spectrum, with pro-
perties such as reliability, security, performance, user
experience, etc. Quality assurance might be relevant to
several aspects, including the autonomous entities, the
interaction styles, the network environments, the usage
patterns, the malicious attacks, and the effects caused
by system evolution, etc.

2.2 Challenges Statement for Internetware

Considering the four aspects of software paradigm
shown in Fig.1, the Internetware paradigm has to ad-
dress the following technical challenges:

• Software Model (what is to be). The Internetware
model should specify the form, structure and beha-
vior of the software entity as well as the collaborations.
These will determine the principles and features of the
corresponding software technologies (programming lan-
guages, development approaches and runtime mecha-
nisms). The Internetware software model should leve-
rage both legacy software and new features. The basic
Internetware entities can be built upon current pop-
ular technologies, such as object-oriented technologies
or services computing technologies. But new capabil-
ities should be provided, for example, the diverse and
flexible connectors to enable on-demand collaborations
among entities, the context-aware and situation-aware
capabilities.
• Software Operating Platform (how to run). It reali-

zes the elements and their relationships of the software
model. Internetware operating platform should pro-
vide a runtime space to operate Internetware entities
and their collaborations. It should equip legacy soft-
ware systems with Internetware features, and should
also manage the applications and itself in a more intel-
ligent and automatic manner.
• Engineering Approach (how to develop). The en-

gineering approach should systematically control the
whole lifecycle of Internetware development, inclu-
ding requirements specification, design, implementa-
tion, deployment, maintenance and evolution. The In-
ternetware engineering approach should identify self-
organized communities and application domains, facili-
tate the self-organizations, and involve all stakeholders,
especially the actual end users.
• Quality Assurance (how well software systems per-

form). Software systems on the Internet usually serve
a large number of users in an online and simultane-
ous style[4]. Internetware quality framework should not
only define quantitative and qualitative measurement
methods for various quality attributes such as perfor-
mance, reliability and usability, but also make compre-
hensive tradeoffs among these attributes. To promise
the Internetware quality, it requires the quality assu-
rance mechanisms by both engineering approach at de-
velopment time (e.g., testing, verification and valida-
tion) and middleware at runtime (e.g., online evolution,
autonomic system management).

3 Technical Solution Framework for
Internetware

Realizing the above challenges, the researchers in
China have made some attempts and efforts in terms
of theories, models, approaches, technologies and ap-
plications for Internetware paradigm. The results
can be concluded as an “architecture-centric” technical



Hong Mei et al.: Internetware: An Emerging Software Paradigm for Internet Computing 593

solution framework[5], which covering three aspects.
• The Internetware software model concerns three

aspects: entities, collaborations and environments, as
well as their relationships. An Internetware entity
should have basic business functionality interfaces to
enable the collaborations. It should also have the capa-
bilities to expose its own states and behaviors. Facil-
itated by context modeling, the environment informa-
tion should be monitored and captured by the entities.
Governed by the software architecture model, the col-
laborations among entities can be also globally planned
and adapted.
• The Internetware middleware takes charge of ope-

rating Internetware applications. In the middleware,
the container takes charge of realizing the Internetware
entities, and provides some advanced capabilities and
services. For example, the flexible connectors can me-
diate different protocols among entities; the dynamic
binding of policies can satisfy the constraints. Runtime
Software Architectures (RSA) is employed to govern the
on-demand collaborations. By leveraging autonomic
computing for management, the Internetware middle-
ware supports the self-organization and self-adaptation
of Internetware applications, and promises high quality-
of-services (such as reliability, performance) at runtime.
Particularly, the structure of Internetware middleware
should be open and expandable, so new capabilities and
services can be on-demand loaded or customized.
• The Internetware engineering approach follows the

core principle of “Software Architecture of the Whole
Lifecycle”. Software architecture acts as the blueprint
and controls every stage of Internetware development.
To support the online development of Internetware
applications, the Internetware entities and their on-
demand collaborations are implemented and governed
based on software architecture. To better control the
development process, domain modeling techniques are
employed to organize heterogeneously distributed re-
sources of a specific domain.

In the remainder of this section, we will introduce
the efforts and results of the three aspects respectively.

3.1 Internetware Software Model

To support the features of Internetware, the Inter-
netware software model mainly focuses on entities, col-
laborations and context-awareness[5].

First of all, Internetware entities should be in
the form of software components, so they can be
independently deployed. They should have not only
business functionality interfaces for computation, con-
trol and connection, but also some new advanced ca-
pabilities, e.g., the reflective interfaces to expose the
states and behaviors, and monitor the environments as

well. Moreover, they can employ some advanced facili-
ties (such as rule engines) to plan and adapt their own
business functions based on reflection.

Secondly, in the Internet computing environment,
software entities might cooperate with one another in
various manners. The collaborations cannot be prede-
fined, and might be emergent at runtime. It requires
the separation of collaboration logics from software en-
tities.

Thirdly, in the Internet computing environment, the
software entities may be added, removed or changed
anytime, whereby the interactions of software entities
are more flexible and changeable. The Internetware
software model has to pay careful attention to contex-
tual factors from several aspects, such as the network
environments, user preferences, and collaborative enti-
ties, etc.

Addressing these issues, several efforts have been
made on Internetware software model. The researchers
in Peking University proposed the autonomous compo-
nent model[6-10]. Such a model is built upon the cur-
rent software component technologies, including EJB
components or Web services components. The entities
include the component meta-model and reflective inter-
faces for adapting states and behaviors, and can further
leverage the environment meta-model and reflective in-
terfaces to capture the context information. The enti-
ties with rule engine can reason out the proper actions
based on the context information and some rules, so
that the adaptation can be done more intelligently and
automatically.

The researchers in Nanjing University leverage the
software agent and service computing technologies for
the Internetware software model[11-13]. They realize the
software entities as agent-based software services, and
model the environment using ontology techniques. The
components can perform multi-mode interactions, cap-
ture the user-system-environment interaction behav-
iors, and reason the adaptation based on environment
ontology.

3.2 Internetware Operating Platform

The operating platform usually provides a set of nec-
essary infrastructural services for running application
software[2]. In the network computing environment, op-
erating platform has to provide more capabilities, e.g.,
supporting different interoperability protocols, hetero-
geneous components collaboration, network resources
aggregation and management, etc. Middleware is a spe-
cial kind of system software to enable the interactions
among distributed application software with common
services support (e.g., interoperability)[14]. Middleware
technologies, such as J2EE/EJB, CORBA/CCM and



594 J. Comput. Sci. & Technol., July 2011, Vol.26, No.4

.NET/COM, have been widely adopted in enterprise
computing environment.

However, current middleware cannot well support
applications in the Internet computing environment[15].
To support the new requirements of Internetware, some
Internetware middleware prototypes have been deve-
loped based on some popular technologies. For ex-
ample, the PKUAS[16] and OnceAS[17] are both Java
EE compliant application servers; Artemis-* is targeted
at the software agents[11-12]; and OnceSE[18] is imple-
mented to support Web services. The Internetware
middleware supports Internetware applications in four
aspects[5]: 1) the incarnation of Internetware entities;
2) the support for on-demand collaborations; 3) the au-
tonomic management of Internetware middleware; and
4) the extensibility of Internetware middleware.

3.2.1 Incarnation of Internetware Entities

The basic functionality of Internetware middleware
is to realize Internetware entities, either based on cur-
rently popular technologies (e.g., Java EE and Web
services) or for new technologies (e.g., software agent).
The Internetware middleware has to provide the con-
tainer with necessary capabilities. For example, for an
autonomous component, PKUAS allows a normal Java
class which implements some business functions to be
deployed into its container. PKUAS provides an open
framework to facilitate heterogeneous components with
different interoperability protocols, e.g., RMI, SOAP
and HTTP[16]. It also allows flexible binding of vari-
ous facilities such as security policies, the database con-
nections or even the intelligent facilities for rule-based
component self-adaptation[6]. Furthermore, PKUAS
allows dynamic add/removal of components[19] and up-
grade/degrade of connectors[20], and supports the on-
line evolution of Internetware applications[21].

3.2.2 Supports for On-Demand Collaborations

The Internetware middleware has to support the on-
demand collaborations of Internetware entities. To sys-
tematically control the collaborations from a global and
comprehensive view[10], Internetware middleware em-
ploys the Runtime Software Architecture (RSA) and re-
flection mechanisms[22] in several prototypes (including
PKUAS, JOnAS① and Apache Axis②). RSA takes the
causal connections of the running system, and bene-
fits from the reflective middleware’s deep control of the
whole system. Such a causal connection ensures that
all the changes of RSA can immediately result in corre-
sponding changes of the running system, or vice versa.

The collaborations between entities are then fully under
the governance of RSA.

3.2.3 Autonomic Management of Internetware
Middleware

As Internetware middleware is responsible for sup-
porting the applications online and promising qualities,
it has to manage the applications and itself more intel-
ligently and automatically[15-16]. The management of
Internetware middleware can be based on the classical
autonomic computing MAPE (monitor-analyze-plan-
execute) loop. The autonomic management of Internet-
ware middleware should consider the scope, operability
and trustworthiness. Based on RSA, an architecture-
based and model-driven self-adaption technique, called
SM@RT (it means “software model at runtime”), is
proposed for the autonomic management[23-25]. In
SM@RT, the software architecture of the middleware
as well as its applications defines the scope and con-
notation of middleware management. With the RSA-
based monitor and control, the correctness and effec-
tiveness are ensured through software architecture anal-
ysis and evaluation[24]. Addressing key challenges of
autonomic computing (knowledge representation, anal-
ysis and decision making), the formal descriptions of
architectural decisions represent the knowledge. Ar-
chitecture styles and patterns, domain-specific software
architectures and application architectures specify the
common-sense, domain-specific and application-specific
knowledge, respectively. The architecture descriptions
make knowledge representation more well-structured
and easy-to-interpret. Either the SA dynamics by im-
perative descriptions or the self-adaptive SA by declar-
ative descriptions can be used to plan adaptations[25].
In other words, middleware can automatically derive
the adaptation plan based on the knowledge, e.g., using
rules like 〈event, condition, action〉 to derive the proper
actions for the given event and condition. The actions
might re-factor partial software architecture, by inter-
preting the knowledge derived from the descriptions of
bad patterns and the corresponding good patterns. Fi-
nally, new styles can be merged with the existing ones,
to make SA of the whole systems perform as desired.

3.2.4 Extensibility of Internetware Middleware

All the capabilities of Internetware middleware
require the middleware be well-structured, flexible
and extensible. For example, PKUAS is com-
pletely component-based with a micro-kernel-based
structure[16]. The middleware capabilities, including

①JOnAS is an open-source JEE application server developed by OW2.
②Apache Axis is an open-source Web services engine developed by Apache.



Hong Mei et al.: Internetware: An Emerging Software Paradigm for Internet Computing 595

those containers, protocols, services, facilities, mecha-
nisms and frameworks, are all encapsulated into compo-
nents. The micro kernel takes charge of the customiza-
tion, extension and autonomic management of these
platform components. With the open structure, new
advanced capabilities can be dynamically added. For
example, PKUAS allows the fault-tolerant service[21]

to be dynamically plugged in-and-out; OnceAS allows
customization of the data persistence service, the con-
straint services for the access control[17], and the re-
laxed transactions processing service at runtime[18];
Artemis-* supports the reliable messaging service[26]

and integrates the trust computing features for repu-
tation ranking[13], etc.

3.3 Internetware Engineering Approach

Software development methodology determines the
directions and principles of software development pro-
cess. It always aims at improving the development ef-
ficiency and quality.

For Internetware development, a software architec-
ture centric engineering approach is proposed. The
engineering approach leverages the ABC (architecture-
based component composition) methodology[7]. ABC
employs software architectures as the blueprints to de-
velop software systems. It aims at composing reusable
components under software architecture, and shortens
the gaps between high-level design and implementation
with supporting tools and mapping mechanisms. The
Internetware engineering approach supports the devel-
opment from three aspects.

3.3.1 Software Architecture of the Whole Lifecycle

The guiding principle of Internetware development
methodology is “Software Architecture of the Whole
Lifecycle”[7]. It means that, software architecture acts
as a blueprint and plays the central role in every phase
of Internetware lifecycle, including requirement analy-
sis, design, composition, deployment and maintenance.
In other words, software architectures govern the deve-
lopment at a systematic and global level.

The requirement analysis of Internetware outlines
the concepts of software architecture. In the Inter-
netware development, the requirement analysis arti-
fact should be transformed into software architecture
more conveniently, naturally, and directly. There have
been some architecture-oriented requirement analysis
approaches proposed, which are used directly to obtain
the conceptual software architecture[27-29]. For exam-
ple, the feature model from feature-oriented require-
ment analysis[30] can facilitate the generation of the
conceptual software architecture semi-automatically.

The design of Internetware leverages the design view
of software architecture. Based on the requirement
specifications of the conceptual architecture, designers
can make architectural design decisions[31], refine the
candidate components and connectors. Finally, the
static and dynamic software architecture models will be
constructed. Designers or the development tools should
maintain the traceability between the requirement spec-
ifications and design models[32]. The Internetware de-
sign should reuse any existing reusable assets, e.g.,
the components retrieved from component libraries[33],
patterns captured from open source software[34], or
collective-intelligence derived from online community
services[35].

After the design phase, the overall system architec-
ture is obtained. The basic functional units of Inter-
netware are the existing and running entities. Corre-
spondingly, the main implementation task of Internet-
ware development is not programming, but composition
of these entities[36]. The composition of Internetware
systems includes discovery and selection of candidate
entities based on the software architecture design. The
collaboration of the entities should follow the architec-
tural specifications as well. The composition can be
either automatic (e.g., by means of agent-based[8] or
model-driven techniques[37]), semi-automatic (e.g., by
means of assistance to compatible components[38]) or
totally manual. When the entities or collaborations do
not fit the software architecture, necessary adaptations
are required.

The deployment of Internetware usually involves a
number of items that require manual configurations by
the deployers. Most of the information can be directly
obtained or transformed from the design and compo-
sition stages[23]. In some cases, new emerging enti-
ties as well as the interactions might require changing
the partial or whole organization of existing entities,
which lead to the tedious and trivial task. Therefore,
the deployment view of software architecture is used
to maintain information coming from the design and
implementation[22].

Internetware development is usually an iterative re-
finement. It maintains the mapping and transforma-
tion of software architectures of the real target system.
In the stage of maintenance and evolution, the run-
time view retrieves the actual runtime states of the sys-
tem. Thus, it provides the most accurate and complete
information. In current Internetware solution frame-
work, the RSA usually cooperates with reflective mid-
dleware, captures the runtime information, makes ana-
lysis, and performs the online maintenance and evolu-
tion without stopping the whole running system[19].



596 J. Comput. Sci. & Technol., July 2011, Vol.26, No.4

3.3.2 Implementation of Internetware Entities and
Their Collaborations

Naturally, the development of Internetware entities
is actually to develop new software systems with Inter-
netware features, or enhance existing traditional soft-
ware systems to have Internetware features[5]. Cur-
rently, both the types can be supported and governed
by the software architecture (SA).

Take the Internetware adaptation for example.
Firstly, SA models are used to analyze the qualities of
Internetware adaptation for locating the elements to be
adapted. Then, SA models with dynamic capabilities
record what should be done at runtime to achieve the
desired qualities. Finally, the designed adaptation is ex-
ecuted by RSA without stopping the running system.
The RSA can automatically detect if the running sys-
tem has ill structures, and dynamically refactor them
into good structures. Particularly, reasoning rules can
also be integrated into SA, and enable dynamic adap-
tation with rule engines.

The on-demand collaborations of Internetware en-
tities are still controlled by SA. Beyond Internetware
entities development, the development of on-demand
collaborations should take into account of the features
of both entities (e.g., distribution, autonomy and he-
terogeneity), and the entity interactions (e.g., diversity,
complexity and changeability).

3.3.3 Domain Modeling for Internetware

Domain engineering is a promising way to address
the creation of domain models and architectures and
the identification of reusable assets. In a sense, the
domain analysis is a process in a bottom-up fashion,
which coincides with the engineering of Internetware.

In the Internetware engineering approach, the disor-
dered resources over Internet are specified into domain
model, which represents high-level business goals of a
set of Internetware systems. Requirement specifications
are generated for a new application by tailoring and
extending the domain model. Finally, new entities and
collaborations are implemented. When time elapses,
the new application may be scattered somewhere on the
Internet as a service, and becomes a new disordered re-
sources. In turn, these new disordered resources can
be added into the further domain model. For the
purpose of knowledge-driven domain analysis, ontol-
ogy can facilitate to realize the (semi-)automated iden-
tification of concepts as well as their relationships[27],
and consolidate the knowledge into more representative

forms[39-40].

3.4 Effects and Impacts of Internetware

In summary, several important and valuable results
in the Internetware research have been obtained in the
past ten years, and in academia, over 100 high-quality
referred papers have been published in very influential
international journals and top conferences.

Meanwhile, Internetware has gradually shown its re-
search potential. For example, IBM Global Technol-
ogy Outlook (GTO)③ adopted some of the ideas and
principles of Internetware in its 2010 GTO topic “Fu-
ture Software Technology Trends”. GTO regards that
the software paradigm for “Internet as a Computer”
does reveal a new perspective on software technology
in the future. Some results have been open-sourced
on famous communities, for example, some capabilities
of Internetware middleware, e.g., online evolution and
dynamic clustering, are now adopted by the Jon2AS
application server, and open-sourced in OW2 commu-
nity. Since 2009, a special international symposium
for Internetware research has been held, with attendees
from China, USA, Europe, Australia, Japan and Korea.
More and more attentions have been paid to the Inter-
netware research, from both domestic and international
counterparts.

4 Ongoing Research Work

Based on the existing research results, some new In-
ternetware research issues are in progress to accommo-
date recent trends of network computing environment.

Firstly, heterogeneous networks are converging.
Telecom network, mobile network, sensor network and
other ad hoc networks are now capable of connect-
ing and collaborating with the Internet. This results
in the hybrid complex network environment. The In-
ternet will play the central role of connecting the IT
world, physical world and human world as a new com-
plex “cyberspace”. Computing devices, human soci-
ety and physical objects will be seamlessly integrated
together. In such a cyberspace, software systems will
orchestrate the information, process, decision and inter-
actions among the human world, IT world and physical
world. In other words, the cyberspace will be “software-
intensive”[41]. Correspondingly, the software systems in
the cyberspace might become larger in scale and more
complicated.

Secondly, the cyberspace significantly extends the
application width and depth，and the focus on software

③IBM GTO is an annual Information Technology report, accomplished by more than 3 000 researchers world wide. GTO forecasts
future trends in IT. It is famous due to accurate and deep analysis as well as leading some important IT evolutions, such as e-Business,
SOA and Smarter Planet.



Hong Mei et al.: Internetware: An Emerging Software Paradigm for Internet Computing 597

quality shifts as well. From ISO-9126 definition, soft-
ware quality consists of the internal quality (attributes
which do not rely on software execution and can be
statically measured); external quality (attributes which
are applicable to running software); and the quality
in use (attributes which are only available when the
final product is used in real conditions). The inter-
nal quality determines the external quality, and the
external quality determines the quality in use. In-
ternal and external qualities are relatively objective,
since they can be guaranteed by developers or con-
strained by the agreements between users and devel-
opers. However, in the cyberspace, software systems
directly serve millions of users with various online ser-
vices. The diversity of network environments, devices,
and user preferences make the quality assurance more
challenging and complex. Internetware systems should
be of “high-confidence”[14], which is more “user-centric
and user-oriented”. In other words, more attentions
should be paid to the quality in use. Quality in use will
be relatively subjective, since it significantly relies on
users’ individual preferences, experiences, and ranks.
For assuring the quality in use, based on the assurance
mechanisms of system quality, high-confidence has to
comprehensively measure a set of quality attributes as
well as their tradeoffs.

These two trends lead to some new research issues
of software technologies. For example, the European
Union FP7 Program supports the project “Emergent
Connectors for Eternal Software Intensive Networked
Systems”, it studies the on-the-fly and emergent col-
laboration of heterogeneous software systems running
in heterogeneous network environment. Both the NSF
and PCAST (President Council of Advisors on Sci-
ence and Technology) in USA suggest that the Cyber-
Physical Systems[41] might bring revolutionary changes
to software technologies for orchestrating computing
process and physical process.

New “networked” operating systems also emerged.
For example, the TinyOS[42] is developed for Wire-
less Sensor Networks, and Android and Apple iOS are
developed for smart phones and tablets. To contin-
uously meet the user preferences, new features can
be on-demand loaded and customized. The resource
management is another important issue of networked
operating systems. Spurred by Cloud Computing,
more and more resources (including hardware infras-
tructures, operating platforms, databases and applica-
tions) are concentrated in data centers. With virtua-
lization technologies, these resources can be virtualized
on demand to satisfy various applications.

Some new software development methodologies also
emerged. For example, human factors have more

significant impacts on the software development pro-
cess, e.g., the user-generated contents and applications,
social-networking, and collective intelligence from open
source communities[43].

High-confidence also covers wide research inter-
ests. For example, the Trusted Computing Base,
Trusted Computing, Open Trusted Computing, and
High-Confidence Software, all support the “software
confidence” from different perspectives and at different
levels.

The Internetware paradigm has to accommodate it-
self to the new trends. Some research efforts are now
in progress. For example, for the Internetware software
model, the autonomous component model will be ex-
tended to support the Internet-of-Things environment.
For the Internetware operating platform, current Inter-
netware middleware will leverage resource virtualiza-
tion and dynamic scheduling. New middleware is to be
developed, such as the lightweight Web browser-based
middleware running on different devices (PC, smart
phone, and tablet like iPad). For the Internetware engi-
neering approach, various quality analysis mechanisms
are integrated to take comprehensive insights of qual-
ity. Also, end-user programming is employed to develop
applications by users themselves.

5 Conclusion

This paper introduces the Internetware paradigm for
Internet computing, and summarizes the research and
practice of Internetware. The main achievements pro-
vide an architecture centric technical framework for In-
ternetware paradigm, including the Internetware soft-
ware model, the Internetware middleware, and the In-
ternetware engineering approach.

The decade long research and practice on Inter-
netware reveal the WHAT-IS-TO-BE, the HOW-TO-
DEVELOP, and the HOW-TO-RUN issues of software
in the Internet computing environment. As the Inter-
net plays the central role in the complex network en-
vironment (the cyberspace), the HOW-WELL will be-
come the key issue of Internetware before putting such
a new software paradigm into new Internet-based ap-
plications. We believe that there are more potential
research issues in software technology in the future.

References

[1] Mei H. Internetware: Challenges and future direction of soft-
ware paradigm for Internet as a computer. In Proc. the 34th
IEEE Annual Computer Software and Applications Confe-
rence (COMPSAC), Seoul, Korea, Jul. 19-23, 2010, pp.14-16.

[2] Yang F Q, Lü J, Mei H et al. Some discussion on the devel-
opment of software technology. Acta Elect Sin., 2003, 26(9):
1104-1115. (in Chinese)



598 J. Comput. Sci. & Technol., July 2011, Vol.26, No.4

[3] Lü J, Ma X X, Tao X P et al. Research and progress of In-
ternetware. Sci. China Ser. F: Info. Sci. 2006, 36(10):
1037-1080. (in Chinese)

[4] Wang H M et al. Trustworthiness of Internet-based software.
Sci. China Ser. F: Info. Sci., 2006, 49(6): 759-773.

[5] Yang F Q, Lü J, Mei H. Technical framework for Internetware:
An architecture centric approach. Science in China Series F:
Info. Sci., 2008, 51(6): 610-622.

[6] Jiao W P, Mei H. Automated adaptations to dynamic soft-
ware architectures by using autonomous agents. Eng. Appl.
Art. Intell., 2004,17(7): 749-770.

[7] Mei H, Huang G et al. An architecture centric engineering
approach to Internetware. Sci. China Ser. F: Info. Sci.,
2006, 49(6): 702-730.

[8] Jiao W P, Mei H. Supporting high interoperability of compo-
nents by adopting an agent-based approach. Software Qual.
J., 2007, 15(3): 283-307.

[9] Jiao W P. Multiagent cooperation via reasoning about the
behavior of others. Comp. Intel., 2010, 26(1): 57-83.

[10] Mei H, Huang G et al. A software architecture centric self-
adaptation approach for Internetware. Sci. China Ser. F:
Info. Sci., 2008, 51(6): 722-742.

[11] Lü J, Tao X P, Ma X X et al. Research on agent-based model
for Internetware. Sci. China Ser. F: Info. Sci., 2005, 35(12):
1233-1253. (in Chinese)

[12] Lü J, Ma X X, Tao X P et al. On environment-driven soft-
ware model for Internetware. Sci. China Ser. F: Info. Sci.,
2008, 51(6): 683-721.

[13] Ma X X, Cheung S C, Cao C, Xu F, Lü J. Towards a De-
pendable Software Paradigm for Service-Oriented Computing.
Dong J et al. (eds.), High Assurance Services Computing,
Springer, DOI 10.1007/978-0-387-87658-0 9, pp.163-192.

[14] Mei H, Liu X Z. Software technologies for Internet computing:
Current status and future outlook. Chinese Sci. Bull., 2010,
55(31): 3510-3516.

[15] Issarny V, Caporuscio M, Georgantas N. A perspective on
the future of middleware-based software engineering. In Proc.
Future of Software Engineering, Minneapolis USA, May 23-
25, 2007, pp.244-258.

[16] Huang G, Wang Q X, Cao D G et al. PKUAS: A domain-
oriented component operating platform. Acta. Elect. Sin.,
2002, 30(12Z): 39-43. (in Chinese)

[17] Huang T, Chen J N, Wei J et al. OnceAS/Q: A QoS-enabled
web application server. J. Software, 2004, 15(12): 1787-1799.
(in Chinese)

[18] Huang T, Ding X N, Wei J. An application-semantics-based
relaxed transaction model for Internetware. Sci. China Ser.
F: Info. Sci., 2006, 49(6): 774-791.

[19] Wang Q X, Shen J R, Wang X P et al. A component-based ap-
proach to online software evolution. J. Software Main Evol.:
Res. Prac., 2006, 18(3): 181-205.

[20] Shen J R, Sun X, Huang G et al. Towards a unified for-
mal model for supporting mechanisms of dynamic component
update. In Proc. The Fifth Joint Meeting of the European
Software Engineering Conference and ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering (ESEC-
FSE2005), Lisbon, Portugal, Sept. 5-9, 2005, pp.80-89.

[21] Li J G, Chen X P, Huang G, Mei H, Franck C. Select-
ing fault tolerant styles for third-party components with
model checking support. In Proc. the 12th International
Symp. Component-Based Software Engineering (CBSE),
East Stroudburg University, USA, Jun. 14-26, 2009, pp.69-
86.

[22] Huang G, Mei H, Yang F Q. Runtime software architecture
based on reflective middleware. Sci. China Ser. F: Info.
Sci., 2004, 47(5): 555-576.

[23] Huang G, Song H, Mei H. SM@RT: Applying architecture-
based runtime management into Internetware systems. Int.
J. Softw. and Infor., 2009, 3(4): 439-464.

[24] Huang G, Liu X Z, Mei H. An online approach to feature in-
teraction problems in middleware based systems. Sci. China
Ser. F: Info. Sci., 2008, 51(3): 225-239.

[25] Huang G, Liu T C, Mei H et al. Towards autonomic comput-
ing middleware via reflection. In Proc. the 28th Annual In-
ternational Computer Software and Applications Conference
(COMPSAC), Hong Kong, China, Sept. 28-30,2004, pp.122-
127.

[26] Cao J N, Feng X Y, Lü J et al. Reliable message delivery
for mobile agents: Push or pull? IEEE Trans. Syst. Man.
Cyber., Part A: Systems and Humans, 2004, 34(5): 577-587.

[27] Jin Z, Lu R Q. Automated requirements modeling and ana-
lysis: An ontology-based approach. Sci. China Ser. E, 2003,
33(4): 297-312. (in Chinese)

[28] Hou L S, Jin Z, Wu B D. Modeling and verifying web services
driven by requirements: An ontology-based approach. Sci.
China Ser. F: Info. Sci., 2006, 49(6): 792-820.

[29] Mei H, Zhang W, Zhao H Y. A metamodel for modeling sys-
tem features and their refinement, constraint and interaction
relationships. Software Syst. Mod., 2006, 5(2): 172-186.

[30] Zhang W, Mei H. A feature-oriented domain model and its
modeling process. J. Software, 2003, 14(8): 1345-1356. (in
Chinese)

[31] Cui X F, Sun Y C, Mei H. Towards automated solution
synthesis and rationale capture in decision-centric architec-
ture design. In Proc. Working IEEE/IFIP Conference on
Software Architecture, Vancouver, Canada, Feb. 18-22, 2008,
pp.221-230.

[32] Zhao W, Zhang L, Liu Y et al. SNIAFL: Towards a static
non-interactive approach to feature location. ACM Trans.
Software Engin. Meth., 2006, 15(2): 195-226.

[33] Pan Y, Wang L, Zhang L et al. Relevancy based semantic
interoperation of reuse repositories. In Proc. the 12th ACM
SIGSOFT Symposium on Foundations of Software Engineer-
ing (FSE2004), Delhi, India, Feb. 5-7, 2004, pp.211-220.

[34] Zhong H, Zhang L, Xie T, Mei H. Inferring resource specifica-
tions from natural language API documentation. In Proc. the
24th IEEE/ACM International Conf. Automated Software
Engineering (ASE2009), Auckland, New Zealand, Nov. 16-
20, 2009, pp.307-318.

[35] Liu X Z, Huang G, Mei H. Discovering homogeneous web ser-
vices community in the user-centric web environment. IEEE
Trans. Serv. Comput., 2009, 2(2): 167-181.

[36] Mei H, Chang J C, Yang F Q. Software component composi-
tion based on ADL and middleware. Sci. China Ser. F: Info.
Sci., 2001, 44(2): 136-151.

[37] Cao J N, Ma X X, Chan A T S, Lü J. Architecting and imple-
menting distributed web applications using the graph-oriented
approach. Software-Practice & Experience, 2003, 33(9): 799-
820.

[38] Liu X Z, Huang G, Mei H. A community-centric approach to
automated services composition. Sci. China Ser. F: Info.
Sci., 2010, 53(1): 50-63.

[39] Lu R Q. From hardware to software to knowware: IT’s third
liberation? IEEE Intell. Syst., 2005, 20(2): 82-85.

[40] Lu R Q, Jin Z. From knowledge based software engineering
to knowware based software engineering. Sci. China Ser. F:
Info. Sci., 2008, 51(6): 638-660.

[41] Edward A Lee. Cyber-physical systems: Are computing foun-
dations adequate? NSF Workshop on Cyber-Physical Sys-
tems: Research Motivation, Techniques and Roadmap, Posi-
tion Paper, Oct. 16-17, 2006, Austin, USA.

[42] Polastre J, Hui J, Levis P, Zhao J, Culler D E, Shenker S, Sto-
ica I. A unifying link abstraction for wireless sensor networks.



Hong Mei et al.: Internetware: An Emerging Software Paradigm for Internet Computing 599

In Proc. ACM SenSys 2005, San Diego, USA, Nov. 2-4, 2005,
pp.76-89.

[43] Herbsleb J D. Global software engineering: The future of
socio-technical coordination. In Proc. Future of Software En-
gineering (FOSE 2007), Minneapolis, USA, May 23-25, 2007,
pp.188-199.

Hong Mei is a full professor
of School of Electronics Engineer-
ing and Computer Science, Peking
University, China. He received the
Ph.D. degree in computer science
from Shanghai Jiao Tong University
in 1992. His current research inter-
ests are in the area of software en-
gineering, software reuse and soft-
ware component technology, and dis-

tributed object technologies. He is a member of the Expert
Committee for Information Technology of National High-
Tech Research and Development 863 Program of China, a
chief scientist of National Basic Research 973 Program of
China, and the director of Technical Committee on System
Software (TCSS) of China Computer Federation (CCF). He
is also a fellow of CCF.

Xuan-Zhe Liu is an assistant
professor in the School of Electronics
Engineering and Computer Science,
Peking University, China. He re-
ceived his Ph.D. degree from Peking
University in 2009. His research in-
terests are in the area of software
engineering, services computing, and
social computing. He is a CCF mem-
ber.


