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Abstract DNAmethylation (DNAm)-basedageclocks
have been studied extensively as a biomarker of human
ageing and a risk factor for age-related diseases.
Despite different tissues having vastly different rates of
proliferation, it is still largely unknown whether they
age at different rates. It was previously reported that
the cerebellum ages slowly; however, this claim was
drawn from a single clock using a relatively small sam-
ple size and so warrants further investigation. We col-
lected the largest cerebellum DNAm dataset (N = 752)
to date. We found the respective epigenetic ages are all
severely underestimated by six representative DNAm
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age clocks, with the underestimation effects more pro-
nounced in the four clocks whose training datasets do
not include brain-related tissues.We identified 613 age-
associated CpGs in the cerebellum, which accounts for
only 14.5% of the number found in the middle tempo-
ral gyrus from the same population (N = 404). From
the 613 cerebellum age-associated CpGs, we built a
highly accurate age prediction model for the cere-
bellum named CerebellumClockspeci f ic (Pearson cor-
relation=0.941, MAD=3.18 years). Ageing rate com-
parisons based on the two tissue-specific clocks con-
structed on the 201 overlapping age-associated CpGs
support the cerebellum has younger DNAm age. Nev-
ertheless, we built BrainCortexClock to prove a sin-
gle DNAm clock is able to unbiasedly estimate DNAm
ages of both cerebellum and cerebral cortex, when they
are adequately and equally represented in the training
dataset. Comparing ageing rates across tissues using
DNA methylation multi-tissue clocks is flawed. The
large underestimation of age prediction for cerebel-
lums by previous clocks mainly reflects the improper
usage of these age clocks. There exist strong and con-
sistent ageing effects on the cerebellar methylome, and
we suggest the smaller number of age-associated CpG
sites in cerebellum is largely attributed to its extremely
low average cell replication rates.

Keywords Ageing rate · Epigenetic clocks · Cerebel-
lum · DNA methylation
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1 Introduction

Ageing is characterized by progressive loss of cellu-
lar functions, leading to increased risk of morbidity
and mortality [1]. A significant challenge in the age-
ing field is how to accurately measure ageing. Fur-
ther investigation of ageing biomarkers will not only
increase our knowledge of the mechanisms of age-
ing, but also facilitate monitoring the various inter-
ventions for improving human healthspan and reju-
venation experiments. In the past decades, a variety
of ageing biomarkers, such as telomere attrition [2],
DNA methylation (DNAm) changes [3,4], and alter-
ations in gene expression [5,6] and metabolite con-
centration [7,8], have attracted even more attention
and were used to build age estimators or age clocks
to measure the biological age [9]. Among them, age
clocks based on DNAm changes, also called epigenetic
clocks, were demonstrated to be the most accurate and
robust age estimators; they are the most promising age-
ing biomarkers that can be applied to individuals [10].
Age-related DNAm changes are widespread across the
genome, throughout the life course [3,11–13] and exist
in a wide variety of tissues [4,14].

Since 2013, many DNAm-based age clocks have
been published. Among them, Hannumn’s clock [3]
and Horvath’s clock [4] are two first and most widely
used DNAm clocks, especially Steve Horvath first
demonstrated that a relatively accurate age prediction
(median absolute error 3.6 years) is possible for mul-
tiple distinct tissues via a single linear model that
includes only a small number of CpGs [4]. Differ-
ent tissues may have distinct DNA methylation pro-
files; therefore, many tissue-specific clocks have been
developed and demonstrated better age prediction per-
formance than the multi-tissue clock; tissue-specific
clocks have been developed for buccal cells [15], brain
cortex [16], skin [17,18], breast [19], and so on. Age
acceleration, a popular concept that is defined as the dif-
ference between predicted DNAm age and the chrono-
logical age, derived from Hannnum’s clock or Hor-
vath’s clock has been documented to be associatedwith
a variety of age-related conditions and diseases [20–
23]. However, Zhang et al. reported that the associa-
tion between age acceleration and mortality decreased
to non-significant with increased accuracy of chrono-
logical age prediction of age models [24]. A recent
preprintmanuscript reported that the attenuated biolog-
ical associations are due to clocks trained on large-size

sample sets having incorporated lifestyle-associated
non-age-correlated CpGs [25]. Meanwhile, instead of
directly regressing on the chronological age, two other
DNAm clocks—PhenoAge [26] and GrimAge [27],
which were regressed on estimated phenotypic age and
mortality risk, respectively—were reported to better
predict lifespan and healthspan than previous chrono-
logical age clocks.

Ageing is generally considered a gradual process
that happens to the body as a whole. It is still an open
question whether different organs/tissues have differ-
ent ageing rates. Furthermore, how can we truthfully
compare the ageing rates between different tissues?
Horvath’s pan-tissue clock gives excellent accuracy in
estimating DNAm age for many different cells and tis-
sues [4], which may suggest that those different cells
and tissue typesmay have similar ageing rates. In 2015,
Horvath et al. claimed that the cerebellum ages slower
than many other parts of the human body based on the
observations that the DNAm age of the cerebellum is
much lower than other tissues based on the pan-tissue
clock [28]. In addition, Horvath and his colleagues also
claimed that women’s breast tissues have a relatively
higher DNAm ageing rate [4,29]. If it is true that some
tissues have significantly different DNAm ageing rates
than other tissues, then we can go further to identify
what drives the difference. This is a very important
angle to understand the mechanisms of age-associated
DNA methylation changes. Even though there have
been reported many strong age-associated CpG sites,
there is still very little known about the underlying
mechanisms that drive age-associated DNA methyla-
tion changes [30–32].

In recent years, manymore cerebellumDNAmethy-
lation samples have become publicly available, and
many diverse DNAm age clocks have also been devel-
oped [33].We set out to examine the claim that the cere-
bellum ages slowly within a much larger size dataset
and find out the mechanisms. To achieve that, we
first collect the largest cerebellum DNA methylation
sample dataset, then compare their estimated epige-
netic ages from six representative DNAm age clocks.
After that, we perform age EWAS for cerebellums and
middle temporal gyrus, separately on the same large-
size elderly population (n = 404) to reveal the distinct
age-associated methylomic changes of the cerebellum.
Lastly, we construct cerebellum-specific clocks and
further examine the claim that the cerebellum ages
slower.
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2 Methods

2.1 DNAm datasets

The DNAm samples were collected from the public
data repository—Gene Expression Omnibus (GEO).
The cerebellum samples are from six datasets, includ-
ing GSE134379 [34], GSE59685 [35], GSE105109
[36],GSE125895 [37],GSE61431 [38], andGSE72778
[39]. They were included according to the following
criteria: contain at least 20 cerebellum samples; with
age annotations, and raw IDAT files or methylated and
unmethylated intensity files are available. The cere-
bellum samples were used to reveal the underestima-
tion issues for the cerebellum tissue by six representa-
tive clocks and were also used to train cerebellum age
clocks. Apart from cerebellum samples, GSE134379
[34] also includes DNAm microarray data of the mid-
dle temporal gyrus from the same 404 individuals;
thus, it was used to perform age EWASs on the two
brain tissues. GSE59685 [35] includes 531 DNAm
samples of five tissues, i.e., cerebellum, entorhinal
cortex, frontal cortex, superior temporal gyrus, and
whole blood, from donors (N = 122) archived in the
MRC London Brainbank for Neurodegenerative Dis-
ease. GSE59685 and GSE134379 were also used to
compare the DNAm ages of different tissues which
were estimated by our trained cerebellum clocks. The
DNAm samples of the non-cerebellar brain tissues in
four datasets, i.e., GSE134379 [34], GSE74193 [40],
GSE80970 [41], and GSE61431 [38], were used to
train the CerebralCortexClockcommon clock, and the
four datasets were selected to ensure a relatively equal
sample distribution across all age groups in the adult
population.

2.2 Data preprocessing

For all the DNAm datasets, after downloading from the
GEO, they were read into R by using the iadd2 func-
tion from the ‘bigmelon’ package [42] when raw IDAT
files were available. For those datasets in which only
text-formatted intensity files exist, the methylated and
unmethylated intensities were extracted and read into
R directly. Then, the raw methylation beta values are
calculated as β = M

M+U+100 , where M denotes methy-
lated intensities and U denotes unmethylated intensi-
ties. For all those samples, we estimated their sex by

using the estimateSex function [43] from the wateR-
melon package [44]; any samples with mismatches
between its reported sex and the estimated sex from
the DNAm data were excluded for downstream analy-
sis.Also, the beta value density distributions of samples
within each dataset were manually checked to remove
any samples with abnormal distribution profiles.

2.3 DNA methylation age prediction

The DNAm age prediction of the six representative
clocks, i.e., Hannum2013 [3], Horvath2013 [4], Hor-
vath2018 [30], Levine2018 [26], Zhang2019 [24],
and Shireby2020 [16], was completed by using the
methyAge function from the ‘dnaMethyAge’ R pack-
age [45]. Only methylation beta values are required to
feed into the methyAge function. Note, when calculat-
ing the DNAm age of Horvath2013, the raw beta values
are firstly normalized with an adjusted BMIQ which
has a fixed reference; this is consistent with Horvath’s
original publication [4]. To calculate the DNAm age of
Zhang2019, the beta values of each sample are first sub-
jected to Z-score normalization [24]. For the remaining
clocks, no normalization steps were applied. The dif-
ference between DNAm age and chronological age is
measured as follows:

RM SD =
√
√
√
√

1

m

m
∑

i=1

(yi − ŷi )2 (1)

M AD = 1

m

m
∑

i=1

|yi − ŷi | (2)

where yi represents the chronological age of the ith

sample, ŷi represents the predicted DNAm age of the
ith sample, and m denotes the number of all sam-
ples. RMSDmeans rootmean squared deviation;MAD
means mean absolute deviation.

2.4 Epigenome-wide association study

The age EWASs were performed on GSE134379 [34]
which includesDNAmmicroarray data of two brain tis-
sues (CBL and MTG) in every individual from a large
elderly population (N = 404). The CBL samples and
MTG samples were normalized by the adjustedDasen
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[46] from the ‘wateRmelon’ package [44] separately.
These probes target CpGsmapped to sex chromosomes
or reported to have cross-hybridizing issues and were
removed from downstream analysis [47]. To find out
age-associated differentially methylated CpGs across
the genome in the twobrain tissues,wefitted the follow-
ing linear regression model for each CpG site involved
in the two tissues separately:

βi ∼ w1i ∗ Age + w2i ∗ Sex + w3i ∗ Plate + w4i ∗ Beadchip + w5i ∗ Disease_statue + intercept (3)

where βi is the methylation beta value of the ith CpG,
and w1i is the coefficient of chronological age for
the ith CpG. The t statistic of the coefficient w1i is
checked in the Student’s t distribution to determine the
p-value. After that, the p-values of all studied CpGs
were adjusted with the Bonferoni correction method.
A CpG is called to be significant age-associated when
its adjusted p-value (or FDR) is less than 0.01.

2.5 The construction of DNAm clocks

Prior to any training steps, all DNAm samples were
normalized by a modified version of adjustedDasen
[46] method from the ‘wateRmelon’ package [44], in
which the modified adjustedDasen is supplied with a
fixed reference to reduce the batch variance between
different datasets. Also, the chronological age is log-
transformed.

The new clocks mentioned in this study were all
trained by the penalized linear regression algorithm—
Elastic net [48], which is essentially a linear combina-
tion of the L1 and L2 penalties of the lasso regression
and ridge regression. The loss function of Elastic net is
defined as

1

2

∑

wi (yi −βT
i c−c0)

2+ 1

2

∑

λγ j (1−α)c2+α|c|
(4)

where the βi denotes the methylation beta value of
i th CpG, c is the coefficient vector of all the CpG
accounted, and α is the critical parameter that controls
the weights of the L1 and L2 penalties and has been
defined prior to the training.

We used the cv.glmnet function from the ‘glm-
net’ R package [49] to train the Elastic net models.

To train the CerebellumClockspeci f ic, the input sam-
ples are the 752 cerebellum samples from six inde-
pendent datasets, the input CpG set of each sample
was restricted to the 613 age-associated CpGs in the
cerebellum, alpha was set to 0.5, and 10-fold cross-
validationwas used to determine the optimal coefficient
combination. We made use of leave-one(dataset)-out
cross-validation to infer the age prediction performance

of the CerebellumClockspeci f ic. Specifically, we have
six independent cerebellum datasets, and then for each
round of the total six rounds of cross-validation pro-
cess, one dataset was taken out and their DNAm ages
were estimated by the model trained on the remain-
ing five datasets; after six rounds, the DNAm ages of
samples from the six datasets were derived, and they
were not overfitted by the training process. In the same
way, the CerebellumClockcommon was trained on the
same 752 cerebellum samples, but the input CpG sets
were restricted to the 201 shared age-associated CpGs.
Another difference was that the alpha value was set to
0.2 to let the final model include more CpGs from the
201 CpGs.

The training of CerebralCortexClockcommon also
employed Elastic net linear regression, the training
samples were those of non-cerebellar brain tissues
from four independent datasets, the input CpG set of
each sample was also restricted to the 201 shared age-
associated CpGs, and the alpha was set to 0.2. As we
only have four separate datasets, and only GSE74193
[40] has a wide age range, we employed a 10-fold cross
validation to measure the age prediction performance
of CerebralCortexClockcommon . That is to say, we first
randomly separate all the training samples into equal
10 portions; for each round of the total 10 rounds of
cross-validation processes, we took one portion out,
and theirDNAmageswere then estimated by themodel
trained on the remaining 9 portions. After 10 rounds,
the DNAm ages of samples from all ten portions were
obtained, and they were not overfitted by the training
process.

BrainCortexClock is trained on 640 cerebellum
samples,which are fromGSE134379 [34],GSE105109
[36],GSE125895 [37],GSE61431 [38], andGSE72778
[39], and 720 cerebral cortex samples, which are from
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GSE134379 [34], GSE61431 [38], GSE80970 [41],
by Elastic net linear regression algorithm, and the
input CpG sites were restricted to the 201 shared age-
associated CpGs, and alpha was set to 0.2. As with
the training of CerebralCortexClockcommon , ten-fold
cross-validation was used to measure the age predic-
tion performance of BrainCortexClock, and it was fur-
ther tested by applying to an independent dataset of
GSE59685 [35].

The coefficients of involved CpGs in eachmodel are
listed in Supplementary Tables 1.

2.6 Software

All the analyses were conducted in R (version 3.6.0)
[50] under a Linux environment. The scatter plots
in Figs. 1, 3, and 4 were produced by the getAccel
function with proper settings from the ‘dnaMethyAge’
R package [45]. The three constructed models of

CerebellumClockspeci f ic, CerebellumClockcommon , and
CerebralCortexClockcommon are readily available to be
applied in independent DNAm samples by calling the
methyAge function from the ‘dnaMethyAge’ R pack-
age [45] with the ‘clock’ parameter setting as ‘Cere-
bellum_specific,’ ’Cerebellum_common,’ and ‘Cor-
tex_common,’ respectively. GO analyses were con-
ducted using the gometh function in the ‘missMethyl’
package [51] which tests gene ontology enrichment
for significant CpGs while accounting for the differ-
ing number of probes per gene present on the 450k.

3 Results

3.1 Characteristics of the DNAm cerebellum datasets

The cerebellum is a structure of the hindbrain, which
plays a vital role in motor control [52]. Unlike periph-
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Fig. 1 The cerebellum samples are severely underestimated by
the six representative DNAm clocks. Each subplot illustrates
results from different clocks: a Hannum2013, b Levine2018, c
Zhang2019, dHorvath2018, eHorvath2013, and f Shireby2020.
The colorful dots represent 752 cerebellum samples from six
independent datasets, with different colors representing different

datasets. The x-axis is chronological age, and the y-axis is the
estimated DNAm age. The black dashed line represents the iden-
tical diagonal line between chronological age and DNAm age,
and the red dashed line represents the regression line derived from
regressing the DNAm age against the chronological age. RMSD,
root mean squared deviation; MAD, mean absolute deviation
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eral tissues, such as blood or saliva, that can be non-
invasively and repeatedly sampled, cerebellum samples
are often collected from postmortem participants; as a
result, there is a very limited number of DNAm cere-
bellum samples available. After rigorous searching on
the Gene Expression Omnibus (GEO) database, where
publicly available DNAm datasets are often deposited,
we found a total of 6 datasets, each including more
than ten cerebellum samples measured by Illumina
450k or EPIC array. After rigorous quality control
(see ‘Methods’), 752 cerebellum samples remained and
were used for downstream analysis. The biggest con-
tributor for the final large cerebellum dataset is from
GSE134379 [34], which contains 404 cerebellum sam-
ples. As cerebellum tissues were invasively collected
from postmortem subjects, 90% of the collected sam-
ples were from individuals aged above 60 years old,
with the median age at 80 years old. More detailed
age, sex, and disease distribution information for each
dataset is listed in Table 1. The DNAm microarray
data from those datasets were originally produced to
investigate disease-associated methylomic variations
in the brain regions, especially for Alzheimer’s dis-
ease and Schizophrenia. As a result of this, our col-
lected cerebellum samples include 333 samples with
normal health status, 398 samples with Alzheimer’s
disease, and 21 with Schizophrenia. The cerebellum is
a relatively protected region, unlike other brain regions
(such as prefrontal cortex); there generally are no sig-
nificant AD-associated differences in the cerebellum
[35,37,53]. Therefore, we included all these cerebel-
lum samples, even those with disease diagnosis, for
downstream analysis and also the following cerebel-
lum DNAm age clock construction.

3.2 Severe underestimation for cerebellum samples
by various DNAm age clocks

Since 2013, many specialized and robust DNAm-based
clocks have been reported. As recently suggested by
Liu et al., those different clocks may have captured
different biological processes of ageing considering
their overall weak associations in the estimated DNAm
age deviations [54]. Inspired by this, we investigated
the DNAm ages of our collected 752 cerebellum sam-
ples predicted by six representative clocks: Hannum’s
whole blood clock (Hannum2013) [3] and Horvath’s
pan-tissue clock (Horvath2013)[4] are the two most
widely used DNAm age clocks and especially Hor-
vath2013 is reported toworkwell acrossmany different
tissue and cell types;Horvath’s blood&skin clock (Hor-
vath2018) [30] is another multi-tissue clock and was
reported to outperform Horvath2013 in epigenetic age
prediction across several tissues; Levine’s PhenoAge
clock (Levine2018) [26] was not directly regress-
ing on chronological age and reported better predic-
tion performance for all-cause mortality than other
chronological age regressed clocks; Zhang’s blood
clock (Zhang2019) [24] is reported the most accurate
and robust age prediction model for blood samples;
Shireby’s brain cortex clock (Shireby2020) [16] is a
brain cortex specific clock and provides much better
age predictions than other clocks in brain cortex tis-
sues.

As shown in Fig. 1, almost all of the cerebellum
samples are severely underestimated—they are all
distributed below the diagonal lines. Hannum2013,
Levine2018, and Zhang2019 are three age clocks
trained almost exclusively on blood samples; the root-

Table 1 Characteristics of the clean cerebellum samples from six datasets

ID Number Female, Male Age: mean (range) Disease group Reference

GSE134379 404 200, 204 83.7 (54–103) Alzheimer: 225 Normal: 179 [34]

GSE59685 111 64, 47 83.9 (40–105) Alzheimer: 59 Normal: 52 [35]

GSE105109 95 41,54 81.2 (58–99) Alzheimer: 67 Normal: 28 [36]

GSE125895 66 32, 34 67.3 (51.8−92.3) Alzheimer: 24Normal: 42 [37]

GSE61431 44 16, 28 61.6 (25–96) Schizophrenia: 21 Normal: 23 [38]

GSE72778 32 21, 11 83.2 (15–114) Alzheimer: 23 Normal: 9 [39]

Total 752 374, 378 80.63 (15–114) Alzheimer: 398Schizophrenia: 21 Normal: 333
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mean-square deviations (RMSDs) of their predictions
are all very large (above 40 years), with Pearson cor-
relations (r) ranging from 0.182 in Levine2018 and
0.56 in Zhang2019 (Fig. 1a–c); Horvath2018 is amulti-
tissue clock that was trained on eight different tis-
sues cell types but not including brain-related tissues;
it produced a similar prediction trend (Fig. 1d) for
cerebellum samples as the three blood clocks—large
deviations (RMSD=66.9 years) and low correlation
(r=0.452). In contrast, the underestimation effect is less
apparent for Horvath2013 and Shireby2020 (Fig. 1e
and f), their RMSDs are just above 20 years, and
the Pearson correlation coefficient reached 0.699 by
Shireby2020 and 0.694 by Horvath2013. We speculate
the smaller underestimation effects by the two clocks
are due to their training datasets having included a small
ratio of cerebellum samples or entirely on brain cortex
tissues. Specifically, Horvath2013 was trained on 3931
samples from 27 different tissues and cell types which
include several different brain-related tissues including
282 cerebellum samples [4], while Shireby2020 was
trained exclusively on brain cerebral cortices despite
cerebellums not being involved [16]. It is worth not-
ing that the regression lines of the estimated DNAm
age against the chronological age by Horvath2013 and
Shireby2020 both indicate that the cerebellum samples
from young individuals aged below 30 years old are
very likely to be overestimated (Fig. 1e and f).

3.3 Smaller number of age-associated CpGs in the
cerebellum methylome

We went further to investigate the underlying reasons
why the cerebellum is systematically underestimated
by the six age clocks.We hypothesized that, if the cere-
bellum truly ages slower than most other brain tissues,
then due to a smaller ageing effect, there would be a
much smaller number of CpGs passing the same cut-
off to be identified as age-associated, and even those
captured age-associated CpGs would mostly exhibit
a smaller rate of methylation level changes with age.
Inspired by this, we carried out two epigenome-wide
association studies (EWAS) on age for the cerebel-
lum (CBL) and the middle temporal gyrus (MTG) sep-
arately, based on the same dataset GSE134379 [34]
which includes DNA methylation microarray samples
of the two brain regions for every subject from a large
elderly population (n=404).

We identified a total of 613 significant (Bonferroni-
correctedp-value≤0.01) age-associatedCpGs inCBL;
in contrast, 4213CpGswere found to be age-associated
in MTG (Fig. 2a, b and Supplementary Tables 1). The
top three age-associatedCpGs inCBLare cg24079702,
cg22454769, and cg06639320, which are all mapped
to the FHL2 gene, whereas the three loci exhibited
similar age effect sizes though were less significant in
MTG. When the age-associated CpGs in the two tis-
sues were compared, only 32.8 % (201) of the CpGs
in CBL were also identified as age-associated in MTG
(Fig. 2d).More interestingly, when looking at the direc-
tion of ageing effect, CBL and MTG showed very dif-
ferent patterns in their age-associated CpGs. The CBL-
only group has almost equal numbers of positive and
negative age associations; in contrast, more than three-
quarters (76%) of the MTG-only CpGs gain methyla-
tion with ageing. Moreover, the majority (94%) of the
age-associated CpGs shared in the two tissues increase
methylation levelswith ageing (Fig. 2d); this is not very
unexpected, as it has been shown thatCpG sites exhibit-
ing age-association in multiple tissues are more likely
to gain methylation with age [14].

If the cerebellum ages slower, then it is reasonable
to expect that the age-associated CpGs in the cerebel-
lum would also have smaller ageing effect sizes; we
then compared the ageing effect sizes of age-associated
CpGs between CBL and MTG (Fig. 2b). Indeed, as
shown in Fig. 2c, the ageing effect size of positive
age-associated CpGs in CBL is generally smaller than
that in the MTG (Wilcoxon test, Bonferroni-corrected
p = 0.01), though their difference is not significant
in the negative age-associated CpGs (p = 0.11). As
regards the 201 shared age-associated CpGs (Fig. 2e),
the difference in ageing effect size between CBL and
MTG—smaller in CBL thanMTG—is much more sig-
nificant (Pairwise Wilcoxon test, Bonferroni-corrected
p <1.5e−15).

Gene ontology analyses showed several enriched
terms for the MTG-specific CpGs and Cerebellum-
specificCpGs(SupplementaryTables 2)which included
terms related to chromatin such as DNA binding,
nucleosome assembly, and negative regulation of tran-
scription by RNA polymerase II. The MTG-specific
CpGs were enriched for pathways such as telomere
organization, noradrenergic neuron differentiation, and
dopaminergic neuron differentiation. Telomere short-
ening and neuron differentiation are both characteris-
tics of cell mitotic divisions in cerebral cortex; thus,

123



46 GeroScience (2024) 46:39–56

L
B

C
GT

M

Wilcoxon, p = 1.5e−15

0.001

0.002

0.003

CBL MTG

Ab
so

lu
te

 E
ffe

ct
 S

iz
e

CBL MTG

Effect Size

b c

d e

a

FHL2

0.1122

0.0103

Negative Positive

CBL MTG CBL MTG

−0.002

0.000

0.002

0.004

Ef
fe

ct
 S

iz
e

201 412 4012

94%

6%

76%

24%

50%50%

CBL

Fig. 2 Comparison of age-associated methylation change
between the cerebellum (CBL) and the middle temporal gyrus
(MTG). a Manhattan plots illustrate the age EWASs results of
CBL andMTG. Red dots denote significant age-associated CpGs
(adjusted p-value ≤ 0.01). b Two volcano plots show the effect
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gain methylation (positive associate with age) or lose methyla-
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e Boxplots comparing the absolute values of age effect sizes in
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it suggests the MTG has a higher cell replication rate
than cerebellum. In addition, the enrichedGO terms for
the cerebellum-specific CpGs were related to molecu-
lar functions such as DNA binding activity.

3.4 Constructing DNAm age clocks for the
cerebellum

3.4.1 Training the cerebellum specific DNAm clock

Our analyses in the previous section have clearly
demonstrated that the six representative DNAm age
clocks, including the pan-tissue clock and the cere-
bral cortex clock, all severely underestimated epige-
netic ages of cerebellum samples. In addition, we have
shown that the cerebellum has a much smaller num-
ber of age-associated CpGs. Then, we went further to
find out whether it is possible to build an accurate age
prediction model for the cerebellum.

We trained a cerebellum-specific age model, named
CerebellumClockspeci f ic, by regressing the methyla-
tion beta values of the 613 age-associated CpGs from
the 752 clean cerebellum samples against their corre-
sponding chronological ages via the Elastic Net penal-
ized linear regression algorithm [48]. The prediction
performance of this model was measured by leave-
one(dataset)-out cross validation (see ‘Methods’). As
shown in Fig. 3a, the cross-validation results demon-
strate that the trained cerebellum age models yield
accurate age predictions for nearly all cerebellum
datasets, except that most of the elderly subjects in
GSE72778 were relatively underestimated. The over-
all Pearson correlation is above 0.94, with RMSD at
4.26 years and MAD is 3.18 years. The accurate age
prediction performance of the cerebellum age model
demonstrates that there is a persistent and significant
ageing process undergoing in the cerebellum tissues.

3.4.2 Applying the cerebellum clocks in other tissues

To further examine the claim that cerebellum ages
slower, we made another hypothesis: other tissues,
including cerebral cortex and blood, would be signifi-
cantly overestimated for their DNAm ages when mea-
sured by the cerebellum clock. To test this hypoth-
esis, we then applied CerebellumClockspeci f ic along
with Horvath2013 and Shireby2020 in two separate
datasets, GSE134379 and GSE59685, which both

include cerebellum samples and samples of other tis-
sues from the same subject. As expected, the cere-
bellum samples were apparently underestimated com-
pared to other tissues byHorvath2013 andShireby2020
in both GSE134379 and GSE59685 (Fig. 3). Interest-
ingly, even though blood was also not included in the
training set of Shireby2020, the predicated DNAm
ages of blood samples in GSE59685 are still much
higher than their counterparts in the cerebellum tissue
(Fig. 3h).

However, when estimated by the cerebellum clock,
the non-cerebellar samples were actually underesti-
mated rather than overestimated compared to the cere-
bellum samples (Fig. 3i). This finding counters our pre-
vious expectation; we suggest that the underestimation
effect for other tissues by the cerebellum clock may
rather imply that this age model is working poorly in
non-cerebellar tissues. In addition, we discovered that
the cerebellum clock tends to overestimate the ages of
non-cerebellar samples under 60 years old (Figs. 3e and
i). This is further confirmed by looking at the over-
estimation facts for cortex tissues from young sub-
jects by the cerebellum clock (Supplementary Fig-
ure 1). The penalized regression algorithm selected
275 age-associated CpGs from the 613 age-associated
CpGs in the cerebellum, where the majority of them
(73%) are on the CBL-only list, meaning they do
not exhibit significant age correlations in MTG. Thus,
the observed apparent underestimation effect for those
non-cerebellar samples is not biologically meaning-
ful, instead indicating artefacts resulting from improper
usage of the age model CerebellumClockspeci f ic.

3.5 Slower ageing rate in cerebellum according to two
oppositely designed models

The above model CerebellumClockspeci f ic thus
captures cerebellum-specific age-related changes. In
order to make more fair ageing rate comparisons,
we then trained another cerebellum age model with
the same regression algorithm and the same train-
ing samples, except the input CpG set is restricted
to the 201 CpGs that are age-associated in both CBL
and MTG. The leave-one(dataset)-out cross validation
demonstrated that the new cerebellum clock, named
CerebellumClockcommon , still gives very good age
predictions for those cerebellum samples (Fig. 3b).
Notably, CerebellumClockcommon substantially over-
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Fig. 3 The cerebellum age clocks and their applications in other
tissues. The leave-one(dataset)-out cross validation evaluates the
age prediction performance of a CerebellumClockspeci f ic and
b CerebellumClockcommon in cerebellum samples. Subplots c,
d, e, and f compare the DNAm age of CBL and MTG esti-
mated by Horvath2013, Shireby2020, CerebellumClockspeci f ic,

and CerebellumClockcommon , respectively. Similarly, subplots g,
h, i, and j compare the DNAm age of five different tissues esti-
mated by the same four clocks. CBL cerebellum, MTG middle
temporal gyrus, EC entorhinal cortex, FC frontal cortex, STG
superior temporal gyrus, WB whole blood

estimated the ages of brain cerebral cortices in both
GSE134379 and GSE59685, though the ages of blood
samples in GSE59685 were still underestimated
(Figs. 3f and j).

To further confirm the overestimation effect for
non-cerebellar brain tissues by the new cerebellum
clock, we applied the CerebellumClockcommon to two
other independent datasets which, combined, include
a large number of samples from three parts of cere-
bral cortex with a wide age range (20∼100 years
old). The results shown in Fig. 4a demonstrate that
CerebellumClockcommon substantially overestimates
thewhole age range of non-cerebellar brain tissues. The

overall Pearson correlation coefficient reached 0.951,
indicating the new cerebellum clock has also captured
the strong ageing effect on the methylome of those
tissues. More importantly, the slope of the regression
line obtained from regressing the predicted DNAm age
against the chronological age is greater than 1 (Slope
= 1.2), indicating that these non-cerebellar tissues have
higher ageing tick rates than the cerebellum.

Likewise, we constructed another cerebral cortical
clock, in which the training dataset includes samples
from different parts of cerebral cortex, and the input
CpG set was limited to 201 shared age-related CpGs.
The resultingmodel, namedCerebralCortexClockcommon
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Fig. 4 a The DNAm ages of samples of three different parts of
human cerebral cortex (DPC dorsolateral prefrontal cortex, PC
prefrontal cortex, STG superior temporal gyrus) in two datasets
are systematically overestimated by CerebellumClockcommon . b
The cerebellum samples are all severely underestimated by the
CerebralCortexClockcommon . The CerebellumClockcommon and

CerebralCortexClockcommon were trained from the same set of
CpGs (n=201) but in different tissues. The blue dashed line rep-
resents the identical diagonal line between chronological age and
DNAm age, and the red dashed line represents the regression line
derived from regressing theDNAmage against the chronological
age

(Fig. 4b), performed well for samples from tissues that
have been included in the training dataset (Supple-
mentary Figure 2). We then applied it to the clean
cerebellum dataset (n=752) we collected. As expected,
all the cerebellum samples were largely underesti-
mated by CerebralCortexClockcommon . Furthermore,
the increasing deviations of the estimated DNAm ages
from their chronological ages and the lower than 1 slope
value of the regression line (Slope= 0.54) indicate that
the cerebellum ticks at a slower rate than other brain
cortex tissues.

Altogether, we arrive at the same conclusion from
the two oppositely directed analyses—the cerebellum
has a smaller ageing tick rate when measured by mod-
els constructed by the same set of CpGs which were
selected given they are age-associated in both CBL and
MTG.

3.6 Why does the cerebellum appear to age slowly

We then sought to understand the underlying reasons
why the cerebellum clock (CerebellumClockcommon)
overestimated the ages of non-cerebellar brain tissues and
the cerebral cortex clock (CerebralCortexClockcommon)
underestimated the cerebellum tissue. Comparing the
overallmethylation levels, the cerebellumhas an appar-

ent lowermedianmethylation level thanMTG(Fig. 5a),
and it also has the lowest median methylation level
among the five tissue types included in GSE59685
(Fig. 5b). When grouping all CpGs into four genomic
categories, i.e., island, open sea, shelf, and shore, the
mean (Fig. 5c) and median (Fig. 5d) methylation com-
parison analysis both agreed that the cerebellum is less
methylated in the island and the shore. Thus, it is rea-
sonable to infer that the overall lower methylation level
in the cerebellum mainly originated from its lower
methylation level in the CpG island and the shore. It
should be noted that we did not detect any significant
correlations between mean methylation level change
with age in any tissue types or the four genomic cate-
gories (Supplementary Figures 3 and 4), indicating the
overall lower methylation level in the cerebellum is not
due to a different ageing rate.

Next,we focusedon the201commonage-associated
CpGs that were used to build CerebellumClockcommon

andCerebralCortexClockcommon .Firstly,wehaveshown
that 94% of them gained methylation with age. Sec-
ondly, there are 140 CpGs on the island and 48 CpGs
on the shore; they accounted for 93.5% (p < 2.2e−16)
of the 201 commonCpGs (Fig. 5e). Consistentwith that
CBL has generally lowermethylation levels in the CpG
islands and shores thanMTG, we found that the major-
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Fig. 5 Boxplots illustrating the cerebellum (CBL) have a lower
median overall methylation level than a MTG or b other four
tissues (i.e., EC, FC, STG, and WB). c Median and d mean
methylation comparison both agree the cerebellum has a lower
methylation level in the CpG island and shore. Among the 201

common age-associated CpGs, 70% of them are located on the
island, and 24% of them are located on the shore. The barplot in
f shows the proportions of CpGs, which have larger age effect
sizes or higher median methylation levels in CBL and MTG

ity (85%, 171) of the common age-associated CpGs
also have lower mean/median methylation levels in the
cerebellum (Fig. 5f). Lastly, more than three-quarters
of the 201 CpGs turned out to have a smaller age-
ing effect size in the CBL than MTG when regress-
ing the methylation beta values against age, sex, and
batches (Fig. 5f),meaning thoseCpGshave higher rates
of age-associated methylation change in the MTG than
the cerebellum. Altogether, the lower methylation lev-
els, the positive age associations, and smaller ageing
effect sizes of the majority of the common 201 CpGs
in the cerebellumexplainwhyCerebellumClockcommon

not only systematically overestimated the ages of
non-cerebellar brain tissues (Intercept=11) but also
with overestimation effect more prominent with age
(Slope=1.2). Similarly, they also explain why the cere-
bellum samples were systematically underestimated by
the CerebralCortexClockcommon .

3.7 A single clock unbiasedly estimates DNAm age
of cerebellum and cerebral cortex

Though we have demonstrated that cerebellum
shows different ageing patterns even on the shared
201 CpGs compared with cerebral cortex, the suc-
cessful construction of CerebellumClockcommon and
CerebralCortexClockcommon inspired us to investigate
whether it is possible to build a single clock that
works well, i.e., no systematic offset, for samples from
both cerebral and cerebellar cortices. To start with, we
selected a roughly equal number of cerebral cortex sam-
ples and ensured they have similar age distribution to
the cerebellum samples (Fig. 6a). Then, the Elastic Net
was applied to regress themethylation values of the 201
CpGs against the chronological age of samples from
the two brain cortex tissues. Remarkably, the leave-
one-fold-out cross-validation assessment showing the
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new brain cortex clock, named as BrainCortexClock,
did accurately predict the age of samples from both
cerebral and cerebellar cortices—the Pearson correla-
tion coefficient reaches 0.906 and MAD is 3.83 years
(Fig. 6b and c). We further tested its performance on
an independent dataset—GSE59685 which includes
DNAm samples from multiple tissues from 122 par-
ticipants. Set aside the blood samples, the evaluation
matrix generated from the brain cortex tissues further
confirmed BrainCortexClock’s accurate age prediction
performance (Fig. 6d). The boxplots in Fig. 6e demon-
strate the cerebellum samples were not systematically

underestimated and the cerebellum and cerebral cortex
have similar levels of DNAm ages as estimated by this
new clock; in contrast, the blood samples were appar-
ently underestimated due to a lack of representation
of this tissue in the training dataset. Furthermore, age
acceleration comparisons between any two tissues from
the same subjects showed the variations of age acceler-
ation between cerebellum and other three parts of cere-
bral cortex were moderately correlated, with Pearson’s
r ranging from 0.37 to 0.52 (Fig. 6f). Altogether, Brain-
CortexClock provides unbiased DNAm age prediction
for brain cortex tissues including cerebellum.

Wilcoxon, p = 0.83

−20

−10

0

10

20

Cerebellum Cerebral Cortex

Ag
e 

ac
ce

le
ra

tio
n

a b c

d e f

0

30

60

90

20 40 60 80 100

Chronological Age

C
ou

nt

Cerebellum (N=640)
Cerebral Cortex (N=720)

0 20 40 60 80 100

0
20

40
60

80
10

0

Chronological Age

D
N

Am
 A

ge

y = 0.87 * x + 11

Pearson's r = 0.906
RMSD = 4.92
MAD = 3.83

y x

CBL
FC
MTG
PFC
STG

1.00 0.37

1.00

0.38

0.52

1.00

0.47

0.38

0.40

1.00

−0.08

0.00

0.30

−0.08

1.00
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
C

BL

EC FC ST
G

W
B

CBL

EC

FC

STG

WB

0.011
0.00011

0.14
p < 2.22e−16

−20

0

20

40

CBL EC FC STG WB

Ag
e 

Ac
ce

le
ra

tio
n

0 20 40 60 80 100

0
20

40
60

80
10

0
12

0

Chronological Age

D
N

Am
 A

ge

y = 0.9 * x + 8.2

Pearson's r = 0.806
RMSD = 6.2
MAD = 4.66

y x

CBL
EC
FC
STG
WB

Fig. 6 The clock of BrainCortexClock unbiasedly estimates
DNAmageof cerebellumand cerebral cortex.aAgedistributions
of cerebellum samples and cerebral cortex samples in the training
dataset. b Leave-one-fold-out cross-validation reveals the high
performance of BrainCortexClock in training dataset. c Compar-
ing age accelerations of samples from cerebellum and cerebral
cortex in the training dataset demonstrates BrainCortexClock is
not biased in the two tissues. The p-value was obtained from
unpaired Wilcoxon Tests. d The performance of BrainCortex-
Clock is evaluated in an independent dataset—GSE59685 which
includes DNAm samples of five different tissues from 121 indi-
viduals. Note, the evaluation matrixes were drawn from samples

that excluded whole blood. e Boxplots showing cerebellum sam-
ples are not systematically underestimated than three other parts
of cerebral cortex; in contrast, whole blood is apparently under-
estimated. The p-values were obtained from pairwise Wilcoxon
Tests. f Correlationmatrix showing variations of age acceleration
between cerebellum and other three parts of cerebral cortex were
moderately correlated, and all four brain tissues were poorly cor-
related with whole blood. CBL cerebellum,MTGmiddle tempo-
ral gyrus, EC entorhinal cortex, FC frontal cortex, STG superior
temporal gyrus, MTG middle temporal gyrus, PFC prefrontal
cortex, WB whole blood
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4 Discussion

In order to examine the claim that the cerebellum ages
slower, we collected a large set of cerebellum sam-
ples (N=752) and assessed their DNAm ages from
six representative clocks, including Horvath’s multi-
tissue clock, i.e., Horvath2013. The results showed
that these six representative clocks severely underesti-
mated almost all cerebellum samples. This is consistent
with previous reports [22,32]. However, we should not
conclude that the cerebellum ages slower only based
on these results, as the underestimations may mainly
reflect the improper usage of DNAmclocks, i.e., apply-
ing DNAm clocks in tissues which do not have ade-
quate representations in the clocks’ training datasets.
We found the underestimations weremuchmore severe
with the four clocks that were trained with no brain-
related tissues—three clocks were trained mainly on
blood tissues, and Horvath2018 was trained on eight
other different tissues. In contrast, the underestimations
were much attenuated in Shireby2020 whose training
samples comprised non-cerebellar cortex tissues and
Horvath2013 which included 282 cerebellum samples
in its total 3931 training samples. Different tissues may
have distinct DNA methylation profiles (particularly
global methylation levels), and the dynamic changes
of their methylomes in response to ageing also vary
[14]. The Horvath’s multi-tissue clock produces rela-
tively accurate age predictions for many vast different
tissue/cell types [4]. Still, there is no evidence or guar-
antee to claim that it has captured the intrinsic mecha-
nism that drives the DNAm changes across the whole
body. We do not think it is justified to compare the age-
ing rates of different tissues by simply comparing their
DNAm ages derived from the multi-tissue clock.

There exists a strong and consistent ageing effect on
the DNA methylome of the cerebellum. By perform-
ing age EWASon the cerebellum,we found 613 signifi-
cantly age-associatedCpGs fromanelderly population;
they were scattered across all autosomes. By taking
advantage of penalized linear regression algorithm and
a large training dataset, we constructed a highly accu-
rate age clock for cerebellum (CerebellumClockspeci f ic,
r=0.941, MAE=3.18 years). As a comparison, we
identified many more age-associated CpG sites in a
representative cerebral cortex tissue—MTG, and we
found the CBL has smaller age effect sizes than the
MTG, although it is only significant in the positive
age-associated CpGs. We found 201 CpGs exhibit-

ing age associations in both CBL and MTG; based
on these 201 CpGs, we trained two clocks, i.e.,
CerebellumClockcommon andCerebralCortexClockcommon,
on all cerebellum samples and non-cerebellar cortex
samples separately, they both performed well in age
prediction for tissues that have included in their train-
ing dataset.When the two clocks are applied to samples
from the cerebellum and non-cerebellar cortex tissues
and the estimated DNAm ages are compared, they both
agree that the cerebellum has a younger epigenetic age
and a lower ageing rate. Furthermore, we have demon-
strated that this is caused by 94%of the 201 CpGs gain-
ing methylation with age, 85% are less methylated in
CBL, and more than 75% have a smaller ageing effect
size in CBL.

Even though our finding supports that the cerebel-
lar methylome is more resistant to change with age-
ing, we should be cautious about whether this can be
translated to the conclusion that the cerebellum is bio-
logically younger than other human tissues. It should
be noted that the above comparisons of ageing rates
between cerebellum and MTG are based on the clocks
trained on the same 201 age-associated CpGs. In fact,
there is more than twice the number of CpGs found
to be age-associated in the cerebellum and even more
inMTG.When we apply the cerebellum-specific clock
(CerebellumClockspeci f ic), whichwas trained by using
all age-associated CpGs in the cerebellum, in predict-
ing DNAm ages of other brain tissues, we could no
longer observe a systematic overestimation for sam-
ples across all age groups; instead, only the individuals
aged below 60 years old were overestimated; by con-
trast, the above 60 years old group was clearly under-
estimated (Fig. 3e, i and Supplementary Figure 1). We
conclude that this is due to the improper usage of the
clock, as the CerebellumClockspeci f ic consists ofmany
cerebellum-specific CpGs.

Why does the cerebellum have a much smaller
number of age-associated CpGs? The observed age-
associated methylation level change of CpGs sites in
tissues with mixed cell types could arise through epi-
genetic drifts with mitotic divisions, cell type compo-
sition changes, and intrinsic changes affected by cell
inner metabolism. Above 80% of cells in the cere-
bellar grey matter are non-replicating neuronal cells
[55]. As a result of this, retrospective birth dating of
cells through 14C bomb-pulse method indicates the
average cell turnover rate in cerebellum is extremely
low. In contrast, a much higher proportion of non-

123



GeroScience (2024) 46:39–56 53

neuronal cells (mainly glial cells) in cerebral cortex
makes it have a higher average cell turnover than the
cerebellum [56]. ELOVL2 hypermethylation has been
demonstrated as a marker of cell divisions that occur
throughout human ageing [57]; the hypermethylation
of a locus in ELOVL2, which targeted by the probe of
cg16867657, has been reported to showhighest age cor-
relation in whole blood [14,58,59]. Our results show
that hypermethylation of cg16867657 is still signifi-
cant (p=7.0e−08, effect size=0.0011) correlated with
age in cerebellum though is much less significant than
that in MTG (p=1.5e−12, effect size=0.0023), this is
consistent with very low average mitotic rates in cere-
bellum. FHL2 is another well-documented gene whose
hypermethylation is strongly correlated with age [59–
61]. Unlike ELOVL2, FHL2 hypermethylation is not
closely associated with cell replication [57]. Remark-
ably, the top three age-associated CpG sites in cerebel-
lum are all mapped to FHL2 gene, and they exhibited
similar age effect sizes inMTG (Supplementary Tables
1), confirming hypermethylation of FHL2 gene is not
mainly accompanied by cell divisions. Taken together,
we speculate that the smaller number of age-associated
CpG sites found in cerebellum is largely attributed to
its extremely low average cell replication rates.

It is easy to understand DNAm age comparisons
between samples from the same tissues, i.e., we are
confident that sample A is chronologically younger
than sample B when the DNAm age of sample A is
much smaller than sample B and they are from the
same tissue. However, we still lack sufficient evidence
to compare the biological ages of samples from dif-
ferent tissues confidently. For example, as recently
reported by Jonkman and colleagues, Horvath’s multi-
tissue clock predicts naive T cells to be up to 30 years
younger than activated T cells from the same donor
[62]. Can we conclude that naive T cells are biolog-
ically 30 years younger than activated T cells? Simi-
larly, when predicted by our CerebellumClockcommon ,
the non-cerebellar brain tissues are predicted to be at
least 11 years older than the cerebellum (Fig. 4a); how-
ever, we can not claim that those non-cerebellar brain
tissues are biologically 11 years older than the cerebel-
lum, as we could easily find one CpG or several CpGs
combined that distinguishes the cerebellum from other
brain tissue, then add it/them to the existing model and
assigns it with a coefficient to counteract the 11 years
gap. Then, the new adjusted clock should not produce
DNAm age predictions with systematic large differ-

ences between the cerebellum and other brain tissues.
As proposed by Liu et al., the many non-age-related
CpGs in Horvath’s multi-tissue clock [4] may actu-
ally be reflecting and adjusting for tissue differences
[54]. We have adequately demonstrated a single equa-
tion, BrainCortexClock, relying on only a subset of the
201 shared age-association CpGs provides unbiased
DNAm age prediction for both cerebellum and cere-
bral cortex since given they have equal representation
in the training dataset.

Another angle for ageing rate comparisons is to look
at the Telomere Length (TL) shortening rates. Telom-
eres are protective DNA-protein complexes at the ter-
mini of chromosomes [63], and telomere attrition is
considered an important hallmark of human ageing [1].
As comprehensively studied by Demanelis et al. [64],
the average relative TL (RTL) varies across different
tissue types; for instance, the average RTL is the low-
est inwhole blood and the longest in testis. Even though
they found TL can shorten at different rates with age-
ing between several tissue types, the majority of tissues
do not show a significant difference in age-dependent
shortening rates, and there is no evidence to claim that
different tissue types age at rates proportional to their
TL shortening rates.

We should acknowledge some limitations of this
study. First, due to the scarcity of cerebellum sam-
ples, the majority of our collected cerebellum sam-
ples are from elderly individuals aged above 60 years
old. It would be very valuable to test our hypothe-
sis that the Horvath’s multi-tissue clock would sys-
tematically overestimate the ages of cerebellum sam-
ples from young individuals aged below 30 years old.
Second, our age EWASs on the cerebellum and MTG
were also based on a very elderly population which
has a relatively narrow age range; as demonstrated by
Vershinina and colleagues [65], lots of age-associated
CpGs do exhibit nonlinear methylation changes with
age. Thus, our age EWASs may have missed many
CpGs that are strongly age-associated in the younger
age group but be a much-attenuated association in the
aged group. Future studies that include more young
individuals should reveal a more complete picture of
age-associated changes in the cerebellar methylome.

Sugden et al. reported that approximately 77% of
probes from the Illumina 450K array exhibit low test-
retest reliability in blood, i.e., intraclass correlation <

0.4 [66]. When examining the CpGs utilized in con-
structing cerebellum clocks in this study, 130 out of the
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201 overlapping age-associated CpGs fall into this cat-
egory of poor reliability, accounting for 65% of them.
Furthermore, within the CpGs employed by the Brain-
CortexClock and CerebellumClockcommon , 68% and
65%, respectively, are part of this group. Potential users
applying these new cerebellum clocks to other datasets
should be aware of this information.

5 Conclusion

The large underestimations of age estimations for the
cerebellum by widely used DNAm clocks are mainly
due to inadequate cerebellum samples in their train-
ing datasets. We suggest the smaller number of age-
associated CpG sites in cerebellum is largely attributed
to its extremely low average cell replication rates.
We have constructed a cerebellum-specific clock that
can accurately predict cerebellum age and demonstrate
conclusion from ageing rates comparison by DNA
methylation clocks can be arbitrary by manipulating
input CpG sites and the proportion of tissue types
included in the training dataset. We believe our find-
ings can have wider implications for the use of ageing
clocks.
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SpasA, Parys-ProszekA, et al. Examination ofDNAmethy-
lation status of theELOVL2markermaybeuseful for human
age prediction in forensic science. Forensic Science Inter-
national: Genetics. 2015;14:161–7.

60. Garagnani P, Bacalini MG, Pirazzini C, Gori D, Giuliani
C, Mari D, et al. Methylation of ELOVL 2 gene as a new
epigenetic marker of age. Aging cell. 2012;11(6):1132–4.

61. Florath I, Butterbach K, Müller H, Bewerunge-Hudler M,
Brenner H. Cross-sectional and longitudinal changes in
DNA methylation with age: an epigenome-wide analysis
revealing over 60 novel age-associated CpG sites. Human
molecular genetics. 2014;23(5):1186–201.

62. Jonkman TH, Dekkers KF, Slieker RC, Grant CD, Ikram
MA, van Greevenbroek MMJ, et al. Functional genomics
analysis identifies T andNK cell activation as a driver of epi-
genetic clock progression. Genome Biology 2022;23(1):24.
https://doi.org/10.1186/s13059-021-02585-8.

63. Blackburn EH, Epel ES, Lin J. Human telomere biology: a
contributory and interactive factor in aging, disease risks,
and protection. Science. 2015;350(6265):1193–8.

64. Demanelis K, Jasmine F, Chen LS, Chernoff M, Tong L,
Delgado D, et al. Determinants of telomere length across
human tissues. Science 2020;369(6509):eaaz6876.

65. Vershinina O, Bacalini M, Zaikin A, Franceschi C,
Ivanchenko M. Disentangling age-dependent DNA methy-
lation: deterministic, stochastic, and nonlinear. Scientific
reports. 2021;11(1):1–12.

66. Sugden K, Hannon EJ, Arseneault L, Belsky DW, Corcoran
DL, Fisher HL, et al. Patterns of reliability: assessing the
reproducibility and integrity of DNA methylation measure-
ment. Patterns 2020;1(2).

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123

https://github.com/yiluyucheng/dnaMethyAge
https://github.com/yiluyucheng/dnaMethyAge
https://www.R-project.org/
https://doi.org/10.1186/s13059-021-02585-8

	Insights into ageing rates comparison across tissues  from recalibrating cerebellum DNA methylation clock
	Abstract
	1 Introduction
	2 Methods
	2.1 DNAm datasets
	2.2 Data preprocessing
	2.3 DNA methylation age prediction
	2.4 Epigenome-wide association study
	2.5 The construction of DNAm clocks
	2.6 Software

	3 Results
	3.1 Characteristics of the DNAm cerebellum datasets
	3.2 Severe underestimation for cerebellum samples by various DNAm age clocks
	3.3 Smaller number of age-associated CpGs in the cerebellum methylome
	3.4 Constructing DNAm age clocks for the cerebellum
	3.4.1 Training the cerebellum specific DNAm clock
	3.4.2 Applying the cerebellum clocks in other tissues

	3.5 Slower ageing rate in cerebellum according to two oppositely designed models
	3.6 Why does the cerebellum appear to age slowly
	3.7 A single clock unbiasedly estimates DNAm age of cerebellum and cerebral cortex

	4 Discussion
	5 Conclusion
	Acknowledgements
	References


