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Abstract
Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) are ubiq-
uitous and toxic contaminants. Their atmospheric deposition fluxes on the regional scale were quantified based on simultaneous
sampling during 1 to 5 years at 1 to 6 background/rural sites in the Czech Republic and Austria. The samples were extracted and
analysed by means of gas chromatography coupled to mass spectrometry. For all seasons and sites, total deposition fluxes for
Σ15PAHs ranged 23–1100 ng m−2 d−1, while those for Σ6PCBs and Σ12OCPs ranged 64–4400 and 410–7800 pg m−2 d−1,
respectively. Fluoranthene and pyrene were the main contributors to the PAH deposition fluxes, accounting on average for 19%
each, while deposition fluxes of PCBs and OCPs were dominated by PCB153 (26%) and γ-hexachlorobenzene (30%), respec-
tively. The highest deposition flux of Σ15PAHs was generally found in spring, while no seasonality was found for PCB
deposition. For deposition fluxes forΣ12OCPs, no clear spatial trend was found, confirming the perception of long-lived regional
pollutants. Although most OCPs and PCBs hardly partition to the particulate phase in ambient air, on average, 42% of their
deposition fluxes were found on filters, confirming the perception that particle deposition is more efficient than dry gaseous
deposition. Due to methodological constraints, fluxes derived from bulk deposition samplers should be understood as lower
estimates, in particular with regard to those substances which in ambient aerosols mostly partition to the particulate phase.
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Introduction

Polycyclic aromatic hydrocarbons (PAHs) and many haloge-
nated substances, such as polychlorinated biphenyls (PCBs)
and organochlorine pesticides (OCPs), are ubiquitous

contaminants in the global environment (UNEP 2003).
PCBs and OCPs are bioaccumulative and persistent in envi-
ronmental compartments. Moreover, PCBs, many OCPs and
many PAHs are known for their toxic properties, as some
compounds in these groups are possibly carcinogenic, muta-
genic and teratogenic (Ali et al. 2014; Bansal and Kim 2015;
Ludewig and Robertson 2013; Ross 2004). For example,
benzo[a]pyrene (BAP) has been classified as carcinogen for
humans (group 1), while other PAHs were classified as prob-
able or possible carcinogens (group 2A or 2B) by the
International Agency for Research on Cancer (IARC 2010)
and are ecotoxic. Most of these substances are now regulated
under the auspices of international conventions for the protec-
tion of the environment and human health (UNEP 2008;
UNECE 1999).

PAHs are products of incomplete combustion and have
both anthropogenic (e.g. traffic, domestic heating) and natural
sources (e.g. crude oil and wild fires) (Dat and Chang 2017).
PCBs were widely used as dielectric fluids, plasticisers and
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adhesives from 1930s to 1970s (Backe et al. 2002). In
Czechoslovakia, the production ended in the year 1984
(Christan and Janse 2005). OCPs were used in agriculture
from the middle of the last century and dichlorodiphenyltri-
chloroethane (DDT) as vector control combatting malaria in
tropical countries (el Shahawi et al. 2010).

Persistent organic pollutants (POPs) and PAHs can be
found in every compartment of the environment and their
physical and chemical characteristics allow them to be
transported from one compartment to another (Cetin et al.
2017; Karacik et al. 2013). As semi-volatile organic com-
pounds (SOCs), they are partitioning in the atmosphere be-
tween the gaseous and particulate phases. This partitioning is
one of the most important factors influencing the fate in the
atmosphere of these SOCs (Bidleman 1988; Keyte et al.
2013), and therefore their long-range transport potential.

Exposure of ecosystems to pollutants is dominated by at-
mospheric depositions, dry and wet. Dry deposition is driven
by gravity force and diffusion (Bidleman 1988), while wet
deposition is controlled by precipitation rate and intensity
(Atlas and Giam 1988; Castro-Jiménez et al. 2015; Staelens
et al. 2005). It has been shown that snow is more efficiently
scavenging than rain (Lei andWania 2004;Wania et al. 1998).
The effect of forests on deposition into ecosystems was stud-
ied, indicating the strong influences of the surface roughness,
climate parameters (e.g. wind velocity) and physicochemical
properties of the substance (e.g. the octanol/air partition coef-
ficient, Koa) (McLachlan and Horstmann 1998; Nizzetto et al.
2006; Foan et al. 2012).

Efforts have been made over the last decades to quantify
deposition fluxes for various SOCs. Fluxes for large areas or
en t i r e r eg i on s h ave be en e s t ima t e d b a s ed on
multicompartmental modelling (Lammel and Stemmler
2012; Scheringer et al. 2004; Stemmler and Lammel 2012)
and based on freshwater sediment pollution (Meijer et al.
2006). It is important to verify the modelling results by direct
measurements of atmospheric deposition. There are some
studies carried out in quantifying bulk atmospheric deposition
of PAHs, PCBs and OCPs experimentally in Europe (e.g.
Arellano et al. 2015; Brorström-Lundén et al. 1994; Carrera
et al. 2002; Jakobi et al. 2015), while additional data are avail-
able for other regions, for example the USA (Schifman and
Boving 2015), China (Feng et al. 2017) and the global oceans
(González-Gaya et al. 2016). Moreover, additional data for
wet deposition and washout ratios are available for Europe
(Shahpoury et al. 2015; Škrdlíková et al. 2011).

In previous studies, the seasonal variations of bulk deposi-
tion fluxes of PAHs have been characterised, generally show-
ing higher deposition fluxes in winter (Binici et al. 2014;
Birgül et al. 2011; Blanchard et al. 2007; Gocht et al. 2007).
Seasonal variations of PCBs have also been studied but no
clear trend has been observed (Agrell et al. 2002; Blanchard
et al. 2007; Brorström-Lundén et al. 1994; Carrera et al. 2002;

Newton et al. 2014; Teil et al. 2004). Concerning OCPs, only
few studies exist, mainly on the isomers of hexachlorocyclo-
hexane (HCH) (Brorström-Lundén et al. 1994; Carrera et al.
2002; Jakobi et al. 2015; Teil et al. 2004), while the seasonal-
ity of OCP atmospheric deposition has not been addressed yet
in these studies.

The aim of this study is to provide novel data on atmo-
spheric deposition of PAHs, PCBs and OCPs in Central
Europe. In particular, the seasonal and spatial variations of
these deposition fluxes were investigated at different rural/
background sites along the Czech-Austrian border in 2011–
2015.

Material and methods

Sampling

Total (wet and dry i.e. bulk) deposition samples were simul-
taneously collected near the Czech–Austrian border at three
sites in the Czech Republic, Kuchařovice (KUC), Košetice
(KOS) and Churáňov (CHU), and at three sites in Austria,
Wolkersdorf (WOL), Unterbergern (UNT) and Grünbach
(GRU). All sites are considered as background with limited
anthropogenic sources with the exception of KUC. KUC is a
rural site, located in the vicinity of agricultural fields and af-
fected by emissions from residential area (e.g. domestic
heating) located near the sampling site (around 100 m). A
map of the sampling sites is provided in Figure S1 in the
Supplementary Material.

From September 2011 to August 2012, deposition sam-
plers were deployed at each site. Additional deposition sam-
ples were also collected at the same three Czech sites during
2012–2015. Exact sampling periods are provided in the
Table S1.

The deposition sampler used (Čupr and Pěnkava 2012)
consists of a collection vessel (250 mm diameter) made of
borosilicate glass, with a stainless steel particulate filter holder
located at the bottom of the collection vessel. A glass column
containingXAD-2 sorbent (Supelco, USA) is connected to the
base of the filter holder and stored in a housing with a mod-
erate heater (Figure S2). The sampler is based on the sampler
developed for and successfully applied in the MONARPOP
project (Offenthaler et al. 2009; Jakobi et al. 2015). Both sam-
plers are a modification of an earlier design (DIN 2002), im-
proving sampling efficiency and making sure that exclusively
inert materials are in contact with the sample. This new design
is patented (Čupr and Pěnkava 2012). The XAD resin was
pre-cleaned in Soxhlet extractor for 8 h in acetone and 8 h in
dichloromethane (DCM), dried overnight and stored at room
temperature. The moderate heater was used only when the
ambient temperature was lower than 4 °C to prevent the for-
mation of ice and to ensure that snowfall is melted
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immediately, such that SOC deposition with snowfall is col-
lected and not lost. Therefore, this sampler allows for the
simultaneous collection of dry deposited particulate matter
and gaseous compounds as well as the wet deposition.
Atmospheric particles were collected on a glass microfibre
filter (GFF, 70 mm, Whatman, USA) and the dissolved phase
was collected on XAD. The sampling duration was about 3
months at each site. From 2013 onwards, GFFs were changed
every month. One to three months is the common range of
total deposition sampling of POPs (Bergknut et al. 2011;
Gocht et al. 2007; Jakobi et al. 2015; Newton et al. 2014).
After sampling, all samples were wrapped in aluminium foil
and plastic zip lock bags and stored at − 18° C until analysis.

Given the low deposition rates and analytical challenges
of SOCs, a sampling period of 3 months is appropriate (e.g.
Jakobi et al. 2015). Possible sampling artefacts are
photodegradation (photolysis, ozonation), blowoff of depos-
ited particles from the surface (McLachlan 1998) and
volatilisation from sampler surfaces (funnel, GFF). The frac-
tion of pollutants dissolved by rainwater (or snow melt) is
not subject to volatilisation, but irreversibly trapped in XAD.
It had been evaluated using a similar sampler design (funnel,
resin cartridge downstream) that up to 10% of the organics
contained in the rainwater is not retained by the sampler, but
subject to breakthrough (McLachlan and Horstmann 1998)
and that up to 10% of polychlorinated dibenzo-p-dioxins
and -furans present on the surface of the sampler can be lost
if the surface is not rinsed after sampling (Horstmann and
McLachlan 1997). Similarly, a previous study (funnel, filter
and resin cartridge downstream; Franz et al. 1991) has
shown that 25–28% of PAHs and 26–62% of PCBs
remained on the different parts of the sampler after sampling
(i.e. surface, deposition walls) and could be obtained by
rinsing the surface. No rinsing was done in this study.
Furthermore, because of the significance of surface rough-
ness (McLachlan and Horstmann 1998; Pryor et al. 2007;
Glüge et al. 2015), dry particle deposition to artificial sur-
faces is less efficient than to natural surfaces. Consequently,
such type of samplers may underestimate the total flux of
the target compounds to terrestrial ecosystems. Nevertheless,
various advantages of such type of deposition sampling
should be emphasised: comparable sampling across sites
and seasons and, particularly, including SOC deposition re-
lated to snowfall, and rather low maintenance of device.

Sample preparation and analysis

GFFs and XAD samples were extracted with DCM using an
automatic extractor (Büchi Extraction System, B-811,
Switzerland). Surrogate recovery standards (i.e. D8-naphtha-
lene, D10-phenanthrene, D12-perylene, Supelco, Merck,
Germany; PCB30 and PCB185, Ultra Scientific, USA) were
spiked onto each GFF and XAD before extraction. The

extracts were then concentrated using a gentle nitrogen
stream. In 2011–2012, one sampler was dedicated to PAH
analysis while the second one was for PCBs and OCPs. For
the remaining years, PAHs, PCBs and OCPs were analysed
from a single deposition sampler and the extracts were divided
with 10% used for PAHs and the remaining for PCBs and
OCPs. PAHs extracts were transferred to a silica column
consisting of 1 g of anhydrous sodium sulphate and 5 g of
activated silica and were eluted with 10 mL of n-hexane and
20 mL of DCM. Both fractions were collected in the same
vial. PCBs and OCPs extracts were transferred to a glass col-
umn consisting of 1 g of anhydrous sodium sulphate, 0.5 g of
activated silica, 8 g of H2SO4-modified activated silica and 1 g
of activated silica and were eluted with 30 mL of DCM:n-
hexane (1:1).

The PAHs were analysed using gas chromatography 6890
GC (Agilent Technologies, USA) equipped with a 60 m ×
0.25 mm × 0.25 μm DB5-MS column (Agi len t
Technologies, USA) coupled to a mass spectrometer (MS
5975, Agilent, USA). The temperature programme was 80
°C (1 min), 15 °C min−1 to 180 °C, 5 °C min−1 to 310 °C
(20 min). The inlet temperature was 280 °C. The carrier gas
was He with a flow rate of 1.5 mL min−1. The temperature of
the transfer line was 310 °C and 320 °C for the ion source. The
used regime was selected ion monitoring. PCBs and OCPs
were analysed using a 7890 GC (Agilent Technologies,
USA) coupled to Waters Quattro Micro GC (Waters, USA)
equipped with SGE Analytical Science HT-8 (8% Ph) column
(60 m × 0.5 mm × 0.25 μm, SGE Analytical Science,
Australia) coupled with MS/MS (Agilent Technologies,
USA). The temperature programme was 80 °C, 40 °C min−1

to 200 °C, 5 °C min−1 to 305 °C. The inlet temperature was
280 °C. The carrier gas was helium with a flow rate of 1.5 mL
min−1. The temperature of the transfer line was 310 °C and of
the ion source was 250 °C. The used regime was multiple
reaction monitoring. The target compounds in this study were
15 PAHs, acenaphthylene (ACY), acenaphthene (ACE),
fluorene (FLN), phenanthrene (PHE), anthracene (ANT),
fluoranthene (FLT), pyrene (PYR), benzo(a)anthracene
(BAA), chrysene (CHR), benzo(b)fluoranthene (BBF),
benzo(k)fluoranthene (BKF), BAP, indeno(1,2,3-cd)pyrene
(IPY), dibenz(a,h)anthracene (DHA) and benzo(ghi)perylene
(BPE); 6 PCBs, PCB28, PCB52, PCB101, PCB153, PCB138
and PCB180; and 12 OCPs, namely 4 HCH isomers (α, β, γ,
δ ) , 6 DDX compounds i .e . o ,p' - and p,p ’ -DDT,
d i c h l o r o d i p h e n y l d i c h l o r o e t h e n e (DDE ) a n d
dichlorodiphenyldichloroethane (DDD) and penta- and hexa-
chlorobenzene (PeCB and HCB).

QA-QC

No field blanks were collected within this study, but two field
blanks, each consisting of XAD and GFF, from a following,

Environ Sci Pollut Res (2019) 26:23429–23441 23431



methodologically identical study, were used instead. These
blank levels of individual PAHs, PCBs and OCPs were below
the limit of detection or low otherwise, suggesting minor con-
tamination during sampling, transport and analysis. Mean
blank values with standard deviations are provided in
Table S2. There were also five solvent blanks analysed for
PAHs and three solvent blanks for PCBs and OCPs, which
showed levels below the detection limit except for PHE, FLT,
PYR, α-HCH and γ-HCH, which had levels lower than the
instrumental limit of quantification (iLOQ). iLOQs were de-
fined from the instruments as a signal to noise ratio of ten for
the lowest point of the calibration curve and are presented in
Table S3.

The recoveries of individual samples were ranging from
55.6 to 117.2% for PAHs and from 63.1 to 109.1% for
PCBs and OCPs. The reported fluxes have not been adjusted
for recoveries but were blank corrected, by subtracting the
mean concentrations of SOCs in the field blanks. To this
end, blank values < iLOQ were replaced by 0. For derivation
of temporal averages, values were replaced by iLOQ/2 when-
ever the determined concentrations in samples were lower
than iLOQ.

Results and discussion

Atmospheric bulk deposition flux of PAHs, PCBs
and OCPs and their composition profiles

The total deposition fluxes for 15 PAHs (Σ15PAHs) total de-
position fluxes ranged at 23 to 1100 ng m−2 d−1 with an aver-
age value of 190 pg m−2 d−1 for all seasons and sites investi-
gated (Table S4). The here found PAH deposition fluxes are
comparable with previous studies from remote or rural sites
(i.e. 38–2000 ng m−2 d−1, see Table 1), but generally lower
than those reported from urban sites (i.e. 36–20000 ng m−2

d−1, see Table 1). This is due to the stronger influence of PAH
primary sources (e.g. road traffic, fossil fuel burners for
heating) in urban areas compared to remote or rural areas.
PAHs have been effectively mitigated across Europe in recent
decades (EEA 2017). However, direct comparisons with other
studies should be done with caution, given the different PAHs
considered (in this study, N = 15 and in others N = 7–23).

In our study, FLT and PYR were generally the main con-
tributors to PAHs’ deposition fluxes, accounting on average
for 19% both (Fig. 1). There is one exception at KUCwhere in
some samples (from autumn 2012 to summer 2013) BBF is
also a significant contributor accounting on average for 17%
of the total flux of PAHs. The possible reason is because of the
different nature of this site, i.e. rural while all others are back-
ground, which may reflect differences in emissions. Many
other studies also reported FLT and PYR as the main contrib-
utors of ΣPAHs, with non-negligible contributions from PHE

and CHR (Birgül et al. 2011; Blanchard et al. 2007; Esen et al.
2008; Fernández et al. 2003; Gambaro et al. 2009; Gocht et al.
2007; Halsall et al. 1997; Ollivon et al. 2002; Rossini et al.
2007).

For all seasons and sites investigated, total deposition
fluxes for 6 PCBs (Σ6PCBs) and 12 OCPs (Σ12OCPs) mea-
sured were 64–4400 (average value of 400 pg m−2 d−1) and
410–7800 pgm−2 d−1 (average 1900 pgm−2 d−1), respectively
(Table S4). These results are within the ranges spanned by
other studies in Europe (Table 1). Bulk deposition of HCH
was reported up to one order of magnitude higher from
Switzerland in the 1990s (Table 1), in accordance with emis-
sion reductions achieved (EEA 2017). The results suggest that
atmospheric deposition in the 2010s is an important pathway
of pollution transfer to ecosystems in the Central European
background.

Wet deposition was expected to be most relevant for sub-
stances partitioning to the particulate phase or gaseous, but
with significant water solubility. At KOS, a significant corre-
lation (p < 0.05) between the total deposition mass flux and
precipitation amount is found only for the two HCH isomers.
This test was applied only for the KOS data subset, because of
its size (N = 17, whileN = 4 orN = 8 for the other sites;N is the
number of samples). The result supports the perception of
influence of water solubility/air-water equilibrium (see also
below, Henry coefficients of α- and γ-HCH are 0.7 and
0.3 Pa m3 mol−1, respectively).

The deposition mass fluxes of PCBs were dominated by
PCB153 (26%, Fig. 1). Next main contributors were PCB28,
PCB138 and PCB180, depending on locations. This is in
agreement with Agrell et al. (2002), but in contradiction with
other studies in Europe which reported that PCBs deposition
fluxes were dominated by lower molecular weight PCBs, spe-
cifically PCB28, PCB52 and PCB101 (Bergknut et al. 2011;
Carrera et al. 2002; Newton et al. 2014; Teil et al. 2004). Such
spatial variation of the substance pattern upon deposition is
expected as resulting from the spatial variability of precipita-
t ion and tempera ture , the la t te r in f luencing al l
intercompartmental processes (Stemmler and Lammel 2012;
Wania et al. 2003; Wania and Westgate 2008).

The deposition fluxes of OCPs were generally dominated
by γ-HCH, accounting on average for 30% of Σ12OCPs, at
CHU for even 52%. Second tomost contributedα-HCH to the
deposition flux of OCPs, accounting on average for 15%.
From winter 2011/12 until winter 2013/14, HCH concentra-
tion in air of KOS were 46% of the concentration of the DDT
compounds (Shahpoury et al. 2015), but the ratio of total
deposition fluxes of these pollutants during this period was
FHCH/FDDX = 2.4. One decade earlier, HCH abundance in
air at KOS was measured ≈ 50% higher than the one of
DDX, but more than one order of magnitude higher in rain-
water collected in KOS (Holoubek et al. 2007). This compar-
ison clearly points to a muchmore effective wet scavenging of
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HCH vs. DDT compounds, explained by the lower Henry
coefficient − 0.7 and 0.3 Pa m3 mol−1 for α- and γ-HCH,
respectively, vs. 33 and 1.1 Pa m3 mol−1 for p,p’-DDE and -
DDT, respectively (298 K; Jantunen and Bidleman 2006;
Shen and Wania 2005; Xiao et al. 2004). Together with the
correlation with precipitation amounts in KOS (above), it also
supports the perception that the total deposition flux of OCPs

is dominated by wet deposition. A prevalence of γ-HCH and
α-HCH among deposited OCPs had already been reported
and attributed to abundance in air, but also wet scavenging
(Carrera et al. 2002; Newton et al. 2014; Cindoruk and
Tasdemir 2014; Jakobi et al. 2015). These results were con-
sistent among the different sites, except for KUC where the
flux of OCPs was dominated by p,p'-DDE accounting on
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Fig. 1 a PAH, b PCB and c OCP
patterns across sites
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average for 31%. This may reflect the different land use of the
past, given that DDTwas used for agricultural purposes in this
region of the Czech Republic until the 1970s.

Seasonal and spatial variations

Significantly (p < 0.05) higher PAH deposition fluxes were
observed at KUC than at the other sites. The spatial variation
across the other sites, apart from KUC, was lower for PAHs
than for PCBs. The maximum at the rural site KUC was ex-
pected, because of local emissions, namely domestic heating
from a nearby village with road traffic and agricultural ma-
chinery, unlike at the other sites. The PAH deposition flux at
KUC site ranged from 49 to 1100 ng m−2 d−1 with an average
of 140 ngm−2 d−1, i.e. 2–6 times higher than for the other sites
(Fig. 2, Table S4). The highest flux of PAHs at KUC was
observed in spring-summer, while at KOS, it was highest in
autumn–winter and at WOL it was highest in summer. These
results are somewhat unexpected, because the concentration
of PAHs in the air are higher in winter everywhere (Dat and
Chang 2017), which results from the combination of several
factors i.e. increased sources (i.e. domestic heating), meteoro-
logical conditions (i.e. lower height of mixed layer; Finlayson-
Pitts and Pitts 2000; Dvorská et al. 2012) and longer photo-
chemical lifetime (Finlayson-Pitts and Pitts 2000; Dvorská
et al. 2012). Obviously, the seasonal variations of PAH bulk
deposition is not dominated by atmospheric concentration
throughout the region, but influenced by other, spatially vari-
able factors, such as meteorological. Also, earlier studies
(Dickhut and Gustafson 1995; Fernández et al. 2003) ex-
plained the seasonality of the bulk deposition flux by the sea-
sonality of precipitation. In the here studied region, highest
precipitation was generally observed in summer (Table S1).
Most of the studies (Halsall et al. 1997; Ollivon et al. 2002;
Blanchard et al. 2007; Gocht et al. 2007; Esen et al. 2008;
Birgül et al. 2011; Binici et al. 2014) reported highest levels
of PAHs flux in winter. Moreover, we note that the influence
of open fires on the PAH time series cannot be excluded.

The PAH bulk deposition time series in KOS, ≈4 years,
does not show a downward trend (Table S4, Fig. 2). A down-
ward trend could reflect and would eventually confirm ongo-
ing mitigation measures (EEA 2017). Because of interannual
variation of precipitation and other environmental parameters,
much longer time series would be needed to identify a signif-
icant long-term trend.

Significantly (p < 0.05) higher deposition flux of Σ6PCB
was found at KUC, where it ranged from 64 to 4400 pg m−2

d−1 with an average of 140 pg m−2 d−1, i.e. which is 1.4–4.5
times higher than for the other sites (Table S4). This was
expected because of the rather intense historical use of PCBs
in this region (electrical equipment and constructions;
Christan and Janse 2005). Regarding the seasonal variations,
a higher flux of Σ6PCBs was generally measured in summer

in KOS, KUC and WOL, while the lowest mass flux to all
sites was generally measured in autumn. At the other sites, no
obvious seasonal variation was found. There is a peak in sum-
mer 2012 in KOS. The possible reason is the construction of a
meteorological tower at the observatory, distanced of about
100 m from the sampling site that may have enhanced
revolatilisation from soils. PCB deposition fluxes were report-
ed with varying seasonality from sites across Europe
(Brorström-Lundén et al. 1994; Agrell et al. 2002; Carrera
et al. 2002; Teil et al. 2004; Nizzetto et al. 2006; Blanchard
et al. 2007; Bergknut et al. 2011; Newton et al. 2014).

The total deposition fluxes for Σ12OCPs observed for the
different sites (Fig. 2, Table S4) were not statistically different
from each other. This supports the perception of long-lived
(persistent), regionally distributed pollutants. However, there
was one exception, namely PeCB was much higher at the
Austrian sites (averages ranging 110–250 pg m−2 d−1) than
at the Czech sites (averages ranging 12–29 pg m−2 d−1, same
time period; Fig. 1c). The reason is unknown.

The highest flux of Σ12OCPs was generally measured in
summer, but without significant seasonal variation. Jakobi
et al. (2015) reported higher deposition fluxes in summer for
HCB and HCH in Central Europe, but obvious differences
across sites for DDX compounds, similar to this study. The
variability was attributed to different origin of air masses
advected to the sites. Arellano et al. (2015) also reported
higher flux of HCH in spring–summer in Slovakia. Newton
et al. (2014) did not find an obvious seasonal variation.

The ratio α-HCH/γ-HCH was not significantly different
across sites (p < 0.05) and smaller than 1 in all seasons at all
sites. This suggests using lindane rather than technical HCH.
The fraction of 5 ring PAHs among all measured PAHs was
not significantly different (p < 0.05) across sites with one
exception, comparing GRU and WOL. These two ratios sug-
gest that pollutants are distributed equally in Central Europe.
The ratio between sum of all DDT isomers over all isomers of
DDX compounds was significantly different (p < 0.05) be-
tween KOS and all other sites with one exception, GRU.
This ratio was highest at KOS, suggesting most recent usage
of DDT in that area. The ratio between o,p isomers and all
isomers of DDX compounds was significantly different (p <
0.05) between KOS and all sites, also, between KUC and
CHU, GRU and then between UNT and GRU. These results
must be viewed with caution for the Austrian sites, because of
the low number (N = 4) of samples.

Distribution between XAD and GFF

The sampler used was designed such that the freely dissolved
phase was collected on XAD while the particulate phase was
collected on GFF. Therefore, the fraction observed on GFF
will be described using the particulate fraction from deposi-
tion (θdep), which should not be confused with the particulate
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mass fraction in aerosols (θ). It is known that for apolar or
mid-polar compounds particle, scavenging is more efficient
than gas scavenging (Bidleman 1988); therefore, we can

expect that θdep will be higher than θ. However, we cannot
exclude sampling artefacts affecting the accuracy of θdep, as
discussed above (BMaterial and methods^).
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Only measurements for which SOCs were > iLOQ in both
GFF and XAD are considered. For PAHs and PCBs, θdep
generally increased with increasing molecular weight and/or
decreasing volatility (Fig. 3). However, this was not observed
for OCPs (Fig. 3). Moreover, θdep was generally higher in
summer than in winter for all groups of compounds
(Figure S3). This implies that the particulate mass fraction in
aerosols, θ, which shows the opposite seasonality (e.g. for
PAHs and OCPs in the study region: Shahpoury et al. 2015;
Degrendele et al. 2014), is not preserved in total deposition.
The same shift was already reported for wet deposition fluxes
from KOS (Škrdlíková et al. 2011). The seasonal variations of
cloud depth and cloud base height, and of the scavenging
efficiencies of rain and snow for gases and particles
(Bidleman 1988; Škrdlíková et al. 2011; Wania and
Westgate 2008), as well as of wind velocity, influencing dry
particle deposition (Pryor et al. 2007), may well explain the
finding.

Apart from environmental parameters, sampling artefacts
such as temperature-driven volatilisation from the surface of
the sampler, stronger in summer, could have shifted θdep as
observed. Also, less precipitation in winter (Table S1) may
have caused a negative sampling artefact (i.e. collected partic-
ulate material not efficiently washed from the surface of the
sampler to the sampling media), eventually contributed to
shifted θdep as observed.

Conclusions

We studied atmospheric bulk deposition of a number of or-
ganic pollutants at 6 sites in Central Europe during 2011–
2015. The time series (1–≈ 4 years) are too short, to address
long-term trends. The results suggest that atmospheric depo-
sition in 2010 is an important pathway of pollution transfer to
ecosystems in the Central European background. The sub-
stance patterns are quite similar across sites (except for one,
the rural site, which is explained by historical usage/pollution
of HCH and DDT; and except relatively higher PeCB deposi-
tion at the Austrian sites).

For substances which deposition is dominated by dry par-
ticle deposition, and because of the significance of surface
roughness for dry particle deposition (McLachlan and
Horstmann 1998; Pryor et al. 2007; Glüge et al. 2015), the
observed patterns may deviate significantly from the sub-
stance patterns the natural surfaces (grassland, cropland, for-
est) are subject to. This also implies a systematic underesti-
mate of the flux of those pollutants which mostly partition to
particulate matter in ambient aerosols. For this reason and
because of the negative sampling artefact arising from
volatilisation losses of dry deposited gaseous substances from
the sampler surface, fluxes derived from bulk deposition sam-
plers in use should be understood as lower estimates of the

flux into terrestrial ecosystems. This underestimate is signifi-
cant as dry deposition is more efficient than wet deposition for
PAHs (Škrdlíková et al. 2011) and, considering substance
properties (Koa, besides other; Wania and Westgate 2008),
even more so for PCBs and OCPs. While the volatilisation
losses might be unavoidable for long sampling periods, the
dry particle deposition efficiency could be mimicked more
realistic by a sampler design with higher surface roughness,
e.g. mimicking the surface roughness of particularly forest,
but also cropland or grassland. Similarly, deposition to stone
façades had been mimicked using a sampler surface with the
identical roughness as the façade under study (Lammel and
Metzig 1997).
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