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Abstract
The organic UV filters, commonly used in personal protection products, are of concern because of their potential risk to aquatic
ecosystems and living organisms. One of UV filters is ethylhexyl-4-methoxycinnamate (EHMC) acid. Studies have shown that,
in the presence of oxidizing and chlorinating factors, EHMC forms a series of products with different properties than the
substrate. In this study, the toxicities of EHMC and its transformation/degradation products formed under the influence of
NaOCl/UVand H2O2/UV systems in the water medium were tested using Microtox® bioassay and by observation of mortality
of juvenile crustaceans Daphnia magna and Artemia Salina. We have observed that oxidation and chlorination products of
EHMC show significantly higher toxicity than EHMC alone. The toxicity of chemicals is related to their physicochemical
characteristic such as lipophilicity and substituent groups. With the increase in lipophilicity of products, expressed as log
KOW, the toxicity (EC50) increases. On the basis of physicochemical properties such as vapour pressure (VP), solubility (S),
octanol-water partition coefficient (KOW), bioconcentration factor (BCF) and half-lives, the overall persistence (POV) and long-
range transport potential (LRTP) of all the products and EHMC were calculated. It was shown that the most persistent and
traveling on the long distances in environment are methoxyphenol chloroderivatives, then methoxybenzene chloroderivatives,
EHMC chloroderivatives, methoxybenzaldehyde chloroderivatives and methoxycinnamate acid chloroderivatives. These com-
pounds are also characterised by high toxicity.
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Introduction

Chemical UV filters are used in personal protection products
to protect our skin from harmful UVradiation. They are one of
the components of sunscreens, lotions, shampoos, body
washes, hair sprays and protective lipsticks (Ji et al. 2013;
MacManus-Spencer et al. 2011). They are also added to paints
and varnishes because they can prevent polymer degradation
or pigmentation (Christiansson et al. 2009; Ferrari et al. 2013).
One of the commonly used UV filter is 2-ethylhexyl-4-
methoxycinnamate ester (EHMC) (Kikuchi et al. 2011).
EHMC shows a high absorbing capacity in the UVB range.
The maximum permissible concentration of EHMC in cos-
metic products in the European Union cannot exceed 10%
(Gilbert et al. 2013). Slightly smaller concentration, i.e.
7.5%, is valid in the USA (Janjua et al. 2008).

The dynamic development of cosmetic industry has resulted
in a higher consumption of chemical UV filters. Unfortunately,
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it has been observed that the chemical UV filters contribute to
pollution of environment. EHMC has been detected in surface
waters (Straub 2002; Poiger et al. 2004; Tarazona et al. 2010),
swimming pool waters (Cuderman and Heath 2007; Santos
et al. 2012), drinking water (Loraine and Pettigrove 2006;
Diaz-Cruz et al. 2012), wastewater (Damiani et al. 2006; Li
et al. 2007; Rodil et al. 2012), sewage sludge (De la Cruz
et al. 2012; Zuloaga et al. 2012; Barón et al. 2013) and even
in human breast milk and human urine (León et al. 2010). In
treated wastewater, EHMC was identified at a level of 120–
849 ng/L (Ekpeghere et al. 2016). Continuous and uncontrolled
emission of the chemical UV filters into environment, even at
low concentrations, is unfavourable as they accumulate in living
organisms. EHMC accumulates in aquatic biota of different
trophic levels with concentrations of up to 340 ng/g lipids in
cormorants (Fent et al. 2010). EHMC is known as endocrine
disrupting compound that cause adverse effects on human and
wildlife. On this basis, the Commission of the European Union
(EU 2015/495) placed EHMC on the list of 17 substances sub-
jected to monitoring (Directive 2008/105/EC of the European
Parliament and of the Council). EHMC has estrogenic proper-
ties both in vitro and in vivo (Schlumpf et al. 2001).

Recent studies have shown that EHMC under sun and UV
irradiation forms transformation products (TPs) (MacManus-
Spencer et al. 2011; Rodil et al. 2009; Santiago-Morales et al.
2013; Vione et al. 2015). Under the influence of UV radiation
and hydrogen peroxide, EHMC is degraded to compounds
which, in the presence of reactive forms of oxygen or chlorine,
can produce new products, sometimes even more toxic than
the substrates themselves (Sakkas et al. 2003; Gackowska
et al. 2014; Gackowska et al. 2016). In turn, in the presence
of sodium hypochlorite used to disinfect pool waters,
chloroorganic derivatives of EHMC are formed (Nakajima
et al. 2009; Santos et al. 2012; Gackowska et al. 2016).
Understanding the mechanism of EHMC transformations in
the environment and the environmental fate of products of
these transformations requires knowledge of their physico-
chemical properties such as water solubility (S), octanol-
water partition coefficient (KOW), vapour pressure (VP) and
bioconcentration factors as well as half-life in air, water and
soil. Determination of the properties of all products is time-
consuming and sometimes difficult to perform. A useful tool
for the determination of physicochemical parameters is EPI
Suite. It allows estimating the physicochemical properties of
all EHMC transformation products identified so far. Based on
the calculated parameters and half-lives, the overall persis-
tence (POV) and long-range transport potential (LRTP) of all
EHMC transformation products were calculated with the
Organization for Economic Cooperation and Development
(OECD) POV and LRTP Screening Tool (http://www.oecd.
org/document/24/0,3746,en_2649_34379_45373336_1_1_
1_1,00.htm;Wegmann et al. 2009). The data obtained provide
information on potential persistence of the transformation

products and possible risks associated with their long-range
transport in the environment.

From the toxicological point of view, the toxicity of EHMC
degradation products is mostly unknown. There is no data on
the environmental risk assessment of EHMC transformation
products. In some cases, the toxicity of photolytic mixtures
was tested e.g. Vibrio fischeri microtox assay for 4-
methoxybenzaldehyde that showed higher toxicity than
EHMC (Vione et al. 2015). It should be noted that EHMC
transformation products are formed at low concentrations in
complex matrices. Their separation and isolation is laborious
and difficult to perform. Hence, the toxicity assessment of a
single product is difficult. The solution is to carry out a biotest
for a mixture of compounds. Commonly applied test is
Microtox® biotest, which uses natural luminescence of
Vibrio fisheri exhibiting sensitivity to a wide spectrum of toxic
organic and inorganic substances. (Hsieh et al. 2004;
Bohdziewicz et al. 2016; Kudlek et al. 2016).

Other tests were carried out using the freshwater crustacean
Daphnia magna (Rozas et al. 2016) and the saltwater crusta-
cean Artemia salina (Vasquez and Fatta-Kassinos 2013).

The aims of the studies were to estimate physicochemical
parameters and to model POV and LRTP for EHMC and its
transformation products formed in oxidation, chlorination and
photodegradation processes, simultaneously, to perform vari-
ous ecotoxicological bioassays so as to be able to correlate if
possible the findings between the physicochemical and bio-
logical assessments.

Experimental

Materials and methods

Materials

Analytical standard of 2-ethylhexyl 4-methoxycinnamate (E-
EHMC) (98%) was obtained from ACROS Organics (USA)
and was kept in lightproof container at 4 °C. Sodium hypo-
chlorite NaOCl with a nominal free chlorine content of
100 g L−1 and H2O2 (30%) was obtained from POCh
(Poland). The toxicity tests: Microtox®, Daphtoxkit F® and
Artoxkit M® were purchased from MicroBioTest Inc.
(Belgium).

Oxidation processes

The experimental oxidation processes were performed in a
laboratory glass batch reactor with a capacity of 0.7 L of
Heraeus (Hanau, Germany). The reactor was equipped with
an immersion medium pressure UV lamp of 150 W located in
a cooling jacket made of Duran 50 glass. The cooling process
was performed with water from the mains. The cooling
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process enabled a constant temperature of 20 ± 1 °C to be
maintained. The lamp emitted radiation of λexc equal to 313,
365, 405, 436, 546 and 578 nm. Additionally, the reactor was
situated on a magnetic stirrer to guarantee the even mixing of
contents during the execution process. The reaction conditions
are presented in Table 1.

The research subjects were model solutions containing
deionised water and E-EHMC model. In order to test toxicity
of the E-EHMC oxidation and chlorination products, E-
EHMC solution at concentration of 3.4·10−4 M was prepared
and subjected to the action of UVonly, H2O2/UVand NaOCl/
UV. The concentration of sodium hypochlorite and hydrogen
peroxide were respectively 1.7·10–5 M and 0.05 M. After 30,
60, 90 and 180 min, mixtures of the products obtained were
sampled from reaction systems and subjected to toxicity tests.
The effectiveness of E-EHMC elimination was assessed by
monitoring for changes in concentrations of compound in wa-
ter before and after the oxidation process, respectively.

Method for the determination of EHMC transformation
products

AGC-MS 5890HEWLETT PACKARD instrument equipped
with column ZB-5MS (0.25 mm× 30 m × 0.25 μm) was used
for the identification of the transformation products applying
the following chromatographic conditions: injector tempera-
ture 250 °C, oven temperature program from 80 to 260 °C at
10 °C/min, from 260 to 300 °C (held for 2 min) at a rate of
5 °Cmin. Heliumwas used as a carrier gas. The volume of the
sample was 1 μL. Reaction products were identified by com-
paring recorded MS spectra with standard spectra from
NIST/EPA/NIH Mass Spectral Library. The detailed descrip-
tion of the methodology for identification of EHMC transfor-
mation products was presented in previous papers
(Gackowska et al. 2014; Gackowska et al. 2016).

Toxicity tests

All samples from the reactor were diluted 1:100 before
performing toxicity tests. Additionally, control tests were car-
ried out. In order to eliminate the effects of the reagents, tests
for E-EHMC-free systems were performed. Moreover, the
toxicity tests were performed without EHMC. Changes in
the toxicity of samples were assessed on the basis of the results
from three biotests: Microtox®, Daphtoxkit F® and Artoxkit
M®. On the basis of the difference in results obtained for
EHMC systems with and without EHMC, the toxicity of the
mixture of transformation products was determined. All sam-
ples for toxicity tests were performer in four replicates.

Microtox® In Microtox® test, bioluminescent bacteria
Aliivibrio fischeri, which are highly sensitive to a wide spec-
trum of toxic substances, were used. During exposure of

bacteria to toxic substances, the metabolic changes occur or
population of bacteria is reduced, what in turn results in
change in the intensity of light emitted by microorganisms.
The test was conducted according to MicrotoxOmni
Screening Test procedure in theMicrotoxModel 500 analyser
from Tigret Sp. z o.o. (Poland), which operated both as an
incubator and as a photometer. Percentage of bioluminescence
inhibition relative to control sample (bacteria not exposed to
toxicant) was measured after 5 and 15 min of exposure time
(volume of samples 1 mL). The EC50 value was determined
on the basis of the Basic Dilution Test.

Daphtoxkit F® The test procedure is based on observation of
the mortality of juvenile Daphnia magna crustaceans subject-
ed to the action of toxicant. The results were checked after 24
and 28 h of exposure of animals to the tested solutions. All
organisms that did not demonstrate a motion reaction to swirl
induced by stirring the solution were considered dead.
Experiment was carried out in accordance with the OECD
Guideline 202 and ISO 6341 standards.

Artoxkit M® Toxicity of solutions was also tested on Artemia
Salina crustaceans. Survival of indicatory organisms was
assessed after 24 h of exposure to water solutions. The indi-
viduals showing no signs of life were recognised as dead. Test
was conducted according to the ASTM E1440-91 standard.

The effect of the toxicity (%) was determined according to
the equation:

E ¼ 100∙ EK−ETð Þ
EK

; %½ � ð1Þ

where

EK the effect observed in a blank sample and
ET the effect observed in a test sample.

Depending on the given test, the effect was measured by
the decrease in bioluminescence (i.e. the enzymatic
Microtox® test) or organism viability (i.e. theDaphnia magna
test and Artemia Salina test).

Table 1 The reaction conditions and substrate proportions used in this
study

Reagents EHMC [M] H2O2 [M] NaOCl [M] UV [W]

EHMC 3.4·10−4 0 0 –

EHMC/UV 3.4·10−4 0 0 150

EHMC/NaOCl/UV 3.4·10−4 0 1.7·10−5 150

EHMC/H2O2/UV 3.4·10−4 0.05 0 150

NaOCl/UV 0 0 1.7·10−5 150

H2O2/UV 0 0.05 0 150

Environ Sci Pollut Res (2018) 25:16037–16049 16039



The evaluation of results

The results are the arithmetic average of the four replicates of
each experiment. For all the cases, assigned error (estimated
based on the standard deviation) did not exceed 5%, so the
results are presented in the form of error bars.

Results and discussion

Based on the analysis of previous studies, the identified prod-
ucts of EHMC transformation have been gathered. These
products have been presented in Supplementary (S Figs. 1–
8) and the list of products studied was presented in Table 2.

In order to make a preliminary assessment of EHMC trans-
formation products for potential threats to the environment,
their characteristic physicochemical parameters were deter-
mined using EPI Suite program. The EPI (Estimation
Programs Interface) Suite™ is a suite of physical/chemical
properties, aquatic toxicity and environmental fate estimation

programs jointly developed by the US EPA and Syracuse
Research Corp. (SRC). The US EPA develops and uses
models based on (quantitative) structure-activity relationships
([Q]SARs) to estimate critical parameters. Structure-activity
relationship (SAR) and quantitative structure-activity relation-
ship (QSAR)models are theoretical models that can be used to
quantitatively or qualitatively predict the physicochemical,
biological (e.g. an (eco) toxicological endpoint) and environ-
mental fate properties of a chemical substance from the
knowledge of its chemical structure.

The results were presented in Table 3. Analysis of param-
eters has shown that EHMC transformation products are
characterised by different properties than the substrate.

Boiling point and vapour pressure

Boiling point (BP) and vapour pressure (VP) are the parameters
that provide information on whether the compounds, after en-
tering the environment, will evaporate into the atmosphere rel-
atively quickly. Studies have shown that EHMC transformation

Table 2 List of chemicals

No.
Abbreviation Chemical name

1 E-EHMC trans 2-Ethylhexyl-4-methoxycinnamate
2 EHA 2-Ethylhexyl alcohol
3 4MCA 4-Methoxycinnamic acid
4 4MBA 4-Methoxybenzaldehyde
5 4MP 4-Methoxyphenol
6 1Cl4MB 1-Chloro-4-methoxybenzene
7 1.3DCl2MB 1.3-Dichloro-2-methoxybenzene
8 2-EHCA 2-Ethylhexyl chloroacetate
9 3Cl4MBA 3-Chloro-4-methoxybenzaldehyde
10 Z-EHMC cis 2-Ethylhexyl-4-methoxycinnamate
11 EHMCCl Chloro-2-Ethylhexyl-4-methoxycinnamate
12 EHMCCl2 Dichloro-2-Ethylhexyl-4-methoxycinnamate
13 2.4DClP 2.4-Dichlorophenol
14 2.6DCl1.4BQ 2.6-Dichloro-1.4-benzoquinone
15 1.2.4TCl3MB 1.2.4-Trichloro-3-methoxybenzene
16 2.4.6TClP 2.4.6-Trichlorophenol
17 3.5DCl2HAcP 3.5-Dichloro-2-hydroxyacetophenone
18 3Cl4MCA 3-Chloro-4-methoxycinnamic acid
19 3.5DCl4MCA 3.5-Dichloro-4-methoxycinnamic acid
20 3.5DCl4MBA 3.5-Dichloro-4-methoxybenzaldehyde
21 3Cl4MP 3-Chloro-4-methoxyphenol
22 2.5DCl4MP 2.5-Dichloro-4-methoxyphenol
23 TP199 Transformation product
24 TP307e Transformation product
25 TP307f Transformation product
26 TP305a Transformation product
27 TP305b Transformation product
28 TP305c Transformation product
29 TP305d Transformation product
30 TP305e Transformation product
31 TP305f Transformation product
32 TP469a Transformation product
33 TP469b Transformation product
34 DIAMC 2.4-bis-((2Z.4E)-4-Methoxyhepta-2.4.6-trienyl)-

cyclobutane-1.3-dicarboxylic acid bis-
(3-methyl-butyl) ester

35 TP581b Transformation product
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Ta
bl
e
3

Ph
ys
ic
al
–c
he
m
ic
al
pr
op
er
tie
s
of

E
H
M
C
an
d
its

tr
an
sf
or
m
at
io
n
pr
od
uc
ts

N
o.

C
om

po
un
d

R
ef
er
en
ce
s

M
ol
ec
ul
ar

fo
rm

ul
a

M
ol

w
t

[g
m
ol

−1
]

M
P

[°
C
]

B
P

[°
C
]

S [m
g
L
−1
]

V
P

[m
m
H
g]

B
C
F

L
og

K
O
W
=

lo
g
P

L
og

K
O
A

L
og

K
O
C

L
og

K
A
W

H
en
ry
’s
L
C

[m
ol

dm
−3

at
m

−1
]

H
al
f-
lif
e

ai
r
[h
]

H
al
f-
lif
e

w
at
er

[h
]

H
al
f-
lif
e

so
il
[h
]

P
O
V

[d
ay
s]

L
R
T
P

[k
m
]

1
E
-E
H
M
C

–
C
18
H
2
6O

3
29
0.
41

99
.8
7

36
0.
54

0.
15
48

1.
38
·1
0−

5
66
7.
6

5.
80

9.
93
8

4.
08
9

−
4.
13
8

29
.4

4.
17

36
0

72
0

43
.2
6

90
.8
0

2
E
H
A

1,
2

C
8H

18
O
1

13
0.
23

−
70

18
4.
6

88
0

0.
18
5

25
.3
3

2.
73

5.
69

1.
41
5

−
2.
96
5

44
.9

19
.4

20
8

41
6

23
.0
2

38
5.
20

3
4M

C
A

1,
3

C
10
H
1
0O

3
17
8.
19

96
31
7

71
2

1.
6·
10

−4
3.
16
2

2.
68

10
.1
9

1.
53
6

−
7.
50
5

19
,3
00

5.
02

36
0

72
0

41
.4
1

37
.3
7

4
4M

B
A

1,
2

C
8H

8O
2

13
6.
15

0
24
8

42
90

0.
03
03

4.
52
1

1.
76

6.
25

1.
36
7

−
4.
48
9

54
,6
00

10
.4

36
0

72
0

33
.4
9

20
4.
03

5
4M

P
1

C
7H

8O
2

12
4.
14

57
24
3

40
,0
00

0.
00
83

3.
28
5

1.
58

7.
44
7

2.
28

−
5.
86
7

12
,2
00

8.
62

36
0

72
0

34
.3
6

15
0.
24

6
1C

l4
M
B

4
C
7H

7C
IO

14
2.
59

≤
18

19
7.
5

23
7

0.
40
9

27
.5
8

2.
78

4.
79
6

2.
28
0

−
2.
01
6

4.
46

36
.1

90
0

1.
8e

+
00
3

40
.7
3

74
0.
0

7
1.
3D

C
l2
M
B

4
C
7H

6C
l 2
O

17
7.
03

<
25

21
5.
67

14
0

0.
16
4

52
.2
2

3.
14

5.
82
5

2.
50
8

−
2.
14
5

3.
1

96
.4

90
0

1.
8e

+
00
3

67
.6
7

19
12
.8
3

8
2-
E
H
C
A

4
C
10
H
1
9C

lO
2

19
2.
69

−
8.
26

20
7

48
.8
6

0.
16
8

23
6.
2

3.
50

3.
65
5

2.
63
2

−
1.
73
6

2.
03

24
.9

36
0

72
0

33
.8
6

51
4.
10

9
3C

l4
M
B
A

1
C
8H

7C
lO

2
17
0.
60

42
.6
1

25
0.
91

50
8.
2

0.
01
76

14
.9
8

2.
44

7.
05
8

1.
51
8

−
4.
61
8

13
0.
0

13
90
0

1.
8e

+
00
3

87
.9
1

25
0.
74

10
Z
-E
H
M
C

1,
5

C
18
H
2
6O

3
29
0.
41

99
.8
7

36
0.
54

0.
15
48

1.
38
·1
0−

5
66
7.
6

5.
80

9.
93
8

4.
08
9

−
4.
13
8

29
.4

4.
17

36
0

72
0

43
.2
6

90
.8
0

11
E
H
M
C
C
l

6,
7

C
18
H
2
5C

lO
3

32
4.
85

12
8.
01

38
6.
23

0.
01
94
3

1.
68
·1
0−

6
66
1.
4

6.
45

10
.7
77

4.
34
4

−
4.
26
8

33
.0

4.
63

90
0

1.
8e

+
00
3

10
8.
13

13
3.
19

12
E
H
M
C
C
l 2

4,
6,
7

C
18
H
2
4C

l 2
O
3

35
9.
30

14
9.
44

40
4.
93

0.
00
43
7

3.
42
·1
0−

7
12
15

7.
16

11
.5
59

4.
56
2

−
4.
39
9

25
.6

5.
65

90
0

1.
8e

+
00
3

10
8.
15

41
0.
66

13
2.
4
D
C
lP

4
C
6H

4C
l 2
O

16
3.
0

45
.0

21
0.
0

45
00

0.
09

18
.0
4

3.
06

7.
10
8

2.
85
6

−
3.
75
6

43
.7

24
2

90
0

1.
8e

+
00
3

99
.6
2

24
73
.1
9

14
2.
6D

C
l1
.4
B
Q

4
C
6H

2C
l 2
O
2

17
6.
99

12
3

26
8.
4

50
56

0.
00
18
9

1.
77
1

1.
23

8.
81
8

1.
0

−
7.
58
8

11
,5
00

52
90
0

1.
8e

+
00
3

70
.5
6

93
.3
5

15
1.
2.
4T

C
l3
M
B

4
C
7H

5C
l 3
O

21
1.
45

45
22
7

29
.7
3

0.
05
6

12
6.
7

3.
64

5.
56
9

2.
72
6

−
1.
92
9

1.
89

12
1

1.
44
e
+
00
3

2.
88
e
+
00
3

11
3.
33

24
33
.2
6

16
2.
4.
6T

C
lP

4
C
6H

3C
l 3
O

19
7.
45

69
24
6

80
0

0.
00
8

55
.1
2

3.
69

7.
66
3

3.
07
4

−
3.
97
3

38
5

42
3

1.
44
e
+
00
3

2.
88
e
+
00
3

16
6.
36

29
77
.4

17
3.
5D

C
l2
H
A
cP

4
C
8H

6C
l 2
O
2

20
5.
04

90
.6
6

29
9.
08

25
8

1.
6·
10

−4
3.
71
3

3.
26

7.
8

2.
31

−
4.
54
0

59
40

49
2

90
0

1.
8e

+
00
3

10
3.
71

26
63
.0
3

18
3C

l4
M
C
A

1
C
10
H
9
C
lO

3
21
2.
63

10
9.
81

33
7.
48

38
2.
6

3.
75
·1
0−

5
3.
16
2

2.
80

10
.4
35

1.
75

−
7.
63
5

36
,5
00

6.
98

36
0

72
0

41
.8
1

37
.3
7

19
3.
5D

C
l4
M
C
A

1
C
10
H
8
C
l 2
O
3

24
7.
08

12
8.
70

35
6.
76

70
.2
8

8.
38
·1
0−

6
3.
16
2

3.
44

11
.2
05

1.
97
3

−
7.
76
5

25
,8
00

8.
1

90
0

1.
8e

+
00
3

10
5.
91

93
.3
4

20
3.
5D

C
l4
M
B
A

1
C
8H

6C
l 2
O
2

20
5.
04

63
.9
8

27
7.
85

96
.5
5

0.
00
27
1

46
.9
5

3.
08

7.
82
9

1.
80
3

−
4.
74
9

13
2

14
.2

90
0

1.
8e

+
00
3

10
1.
28

27
0.
76

21
3C

l4
M
P

1
C
7H

7C
lO

2
15
8.
59

51
.0
0

24
1.
49

32
38

0.
01
03

10
.5
5

2.
24

8.
23
8

2.
49
9

−
5.
99
8

15
1

12
.1

90
0

1.
8e

+
00
3

87
.8
1

18
7.
43

22
2.
5D

C
l4
M
P

1
C
7H

6C
l 2
O
2

19
3.
03

67
.8
3

26
9.
20

62
3.
1

0.
00
37
9

13
.1
7

2.
88

9.
00
8

2.
71
7

−
6.
12
8

16
40

37
.2

90
0

1.
8e

+
00
3

10
0.
89

33
0.
32

23
T
P 1

9
9

3
C
9H

10
O
5

19
8.
18

15
2.
73

37
1.
83

92
87

1.
35
·1
0−

7
3.
16
2

0.
80

18
.9
01

3.
45
8

−
18
.1
05

2.
64
·1
08

1.
04

36
0

72
0

31
.7
2

37
.3
7

24
T
P 3

0
7e

3
C
18
H
2
6O

4
30
6.
41

14
1.
55

39
5.
38

1.
22
1

1.
54
·1
0−

7
25
00

5.
32

13
.4
41

4.
30
8

−
8.
12
1

19
,7
00

1.
06

36
0

72
0

43
.2
7

84
6.
70

25
T
P 3

0
7f

3
C
18
H
2
6O

4
30
6.
41

14
1.
55

39
5.
38

0.
53
14

1.
54
·1
0−

7
15
88

5.
07

13
.1
91

4.
30
8

−
8.
12
1

85
60

3.
75

36
0

72
0

43
.2
6

63
4.
76

26
T
P 3

0
5a

3
C
18
H
2
6O

4
30
4.
39

12
4.
33

38
3.
31

7.
22
6

2.
17
·1
0−

6
15
4.
6

3.
75

11
.3
06

3.
03
1

−
7.
55
6

83
10

4.
09

90
0

1.
8e

+
00
3

10
7.
01

93
.3
3

27
T
P 3

0
5b

3
C
18
H
2
6O

4
30
4.
39

12
9.
46

38
9.
96

2.
40
2

1.
31
·1
0−

6
41
7.
5

4.
31

11
.6
09

3.
15
5

−
7.
29
9

45
80

2.
86

90
0

1.
8e

+
00
3

10
0.
75

93
.3
5

28
T
P 3

0
5c

3
C
18
H
2
6O

4
30
4.
39

90
.8
5

34
8.
94

2.
18
6

3.
24
·1
0−

5
45
4.
6

4.
36

9.
31
2

3.
21
7

−
4.
95
2

16
8

4.
51

90
0

1.
8e

+
00
3

10
7.
71

92
.9
1

29
T
P 3

0
5d

3
C
18
H
2
6O

4
30
4.
39

12
9.
46

38
9.
96

2.
40
2

1.
31
·1
0−

6
41
7.
5

4.
31

11
.6
09

3.
15
5

−
7.
29
9

45
80

3.
02

90
0

1.
8e

+
00
3

10
7.
82

10
1.
10

30
T
P 3

0
5e

3
C
18
H
2
6O

4
30
4.
39

12
4.
33

38
3.
11

7.
22
6

2.
17
·1
0−

6
15
4.
6

3.
75

11
.3
06

3.
05

−
7.
55
6

83
10

3.
82

90
0

1.
8e

+
00
3

10
7.
01

93
.3
4

31
T
P 3

0
5f

3
C
18
H
2
6O

4
30
4.
39

12
4.
33

38
3.
31

7.
22
6

2.
17
·1
0−

6
15
4.
6

3.
75

11
.3
06

3.
06

−
8.
12
1

83
10

3.
75

36
0

72
0

43
.0
9

44
.3
2

32
T
P 4

6
9a

3
C
28
H
3
6O

6
46
8.
60

24
6.
19

57
1.
92

0.
01
2

1.
58
·1
0−

1
2

56
.2
3

6.
27

19
.0
64

3.
81
7

−
12
.7
94

4.
23
·1
01

0
2.
93

90
0

1.
8e

+
00
3

10
8.
14

23
73
.5
3

33
T
P 4

6
9b

3
C
28
H
3
6O

6
46
8.
60

24
6.
19

57
1.
92

0.
01
2

1.
58
·1
0−

1
2

56
.2
3

6.
27

19
.0
64

3.
81
7

−
12
.7
94

4.
23
·1
01

0
2.
93

90
0

1.
8e

+
00
3

10
8.
14

23
73
.5
3

34
D
IA

M
C

8
C
30
H
4
0O

6
49
6.
65

24
3.
43

56
6.
01

0.
00
9

2.
42
·1
0−

1
2

54
10

5.
76

17
.6
79

3.
64
4

−
11
.9
19

5.
76
·1
05

2.
68

90
0

1.
8e

+
00
3

10
8.
12
3

17
18
.7
9

35
T
P 5

8
1b

2,
3,
8

C
36
H
5
2O

6
58
0.
81

26
9.
42

62
1.
64

1.
05
7·
10

−5
4.
12
·1
0−

1
4

15
.0
3

8.
56

19
.7
42

5.
16
7

−
11
.1
82

3.
36
·1
05

2.
18

1.
44
e
+
00
3

2.
88
e
+
00
3

17
3.
03

28
57
.9
2

1
G
ac
ko
w
sk
a
et
al
.(
20
14
),
2
M
ac
M
an
us
-S
pe
nc
er
et
al
.(
20
11
),
3
Je
nt
zs
ch

et
al
.(
20
16
),
4
G
ac
ko
w
sk
a
et
al
.(
20
16
),
5
S
er
po
ne

et
al
.(
20
02
),
6
N
ak
aj
im

a
et
al
.(
20
09
),
7
S
an
to
s
et
al
.(
20
13
),
8
R
od
il
et
al
.

(2
00
9)

Environ Sci Pollut Res (2018) 25:16037–16049 16041



products can be classified as medium- or low-volatility com-
pounds (BP > 184 °C). Medium-volatility compounds are:
EHA; 1Cl4MB; 1,3DC2MB and 2EHCA (BP 184–216 °C).
The above-mentioned products are also characterised by the
highest vapour pressure value, which ranges from 0.164 to
0.409 mmHg. Other products TP469a, TP469b, DIAMC and
TP581b belong to the group of low-volatility compounds. On
the basis of the BP and VP, these transformation products have
no predisposition to evaporate and be in gas phase (Table 3).

Water solubility

High solubility in water suggests that pollutants can migrate
with water over long distances. Hydrophilic compounds also
have the ability to be readily absorbed by plants. These pol-
lutants can be phytotoxic by damaging shoots and roots, re-
ducing plant growth and disturbing transpiration (Yu-Hong
and Yong-Guan, 2006). In turn, pollutants with low solubility
can accumulate in sediments.

Analysis of the results indicates that the products (besides
Z-EHMC, EHMCCl, TP469a, TP469b, DIAMC and TP581b) are
characterised by significantly better water solubility than the
substrate (Fig. 1). Water solubility of EHMC at temperature of
25 °C is lower than 0.1548 mg L−1. Considerably higher sol-
ubility (1.0 × 103 ≥ S ≤ 1.0 × 102) has the following oxidation
products: EHA and 4MCA, and chlorination products:
1C l 4MB ; 1 , 3DC l 2MB ; 3C l 4MBA ; 2 , 4 , 6TCP ;
3,5DCl2HAcP; 3Cl4MCA and 2,5DCl4MP. Metabolites very
well soluble in water (S ≤ 1.0 × 104 mg L−1) are 4MBA; 4MP;
2,4DClP; 2,6DC1,4BQ; 3Cl4MP and TP199. It should be not-
ed that compounds with an OH and Cl group have high S
values. This pattern indicates that the partitioning potential
from water to air of such chemicals is quite low. Among
EHMC transformation products, 2,4-dichlorophenol
(2,4DClP), 2,4,6-trichlorophenol (2,4,6TClP) and benzene
chloroderivatives deserve special attention. Due to their high

toxicity to aquatic organisms (USEPA 1991; EC 2001; Xing
et al. 2012;) and potentially carcinogenic properties, the inter-
national environmental organisations (WHO, UNEP, USEPA,
EC) included chlorophenols into a group of pollutants with a
special risk to the environment (WHO 1989; WHO 2003;
UNEP 2001; USEPA 1991, USEPA 2014; EC 2001). These
compounds were identified in surface water and groundwater
(He et al. 2000; Czaplicka 2004; Gao et al. 2008; Sim et al.
2009). An example of drinking water pollution with
chlorophenol (including 2,4,6TClP) in Finland shows how
many effects can be caused by EHMC transformation products,
where an increased incidence of gastrointestinal infections,
asthma and depression morbidity was observed (Lampi 1992).

Octanol/water partition coefficient

Logarithmic value of octanol/water partition coefficient (log
KOW) allows determining quantitatively lipophilic character of
the compound. Octanol is considered as a representative of
organic matter. Analysis of the results obtained showed that
log KOW EHMC was higher than 5 (Fig. 2). The value obtain-
ed is consistent with the data presented byRamos et al. (2015).
EHMC has lipophilic properties and can accumulate in
sediments. Kupper et al. (2006) and Liu et al. (2012) showed
that EHMC concentration in raw sludge is within the range
from 13 to 14.45 ng/g dw; however, Langford et al. (2015)
reported that it was up to 4689 ng/g dw in treated sludge. The
differences in concentration among authors is due to the var-
iable composition of the sludge used, and more likely results
from the variable organic matter content they had.

A similar lipophilic character has most of the analysed
products for which the calculated coefficient log KOW > 3.
EHMCCl, EHMCCl2, TP469a, TP469b and TP581b for which
log KOW > 6 deserve a special attention. A different character
have the products of EHMC oxidation: EHA; 4 MCA; 4MP;
3Cl4MBA; 2,6DCl1,4BQ; 1Cl4MB; 3Cl4MCA; 3Cl4MP;

Fig. 1 Water solubility of EHMC transformation products
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2,5DCl4MP and TP199 (Fig. 2). Soluble compounds (log
KOW < 3) will not accumulate in organisms, soil or sediments
but instead will be contaminating all water sources and thus
spreading around larger areas. Cinnamic acid derivatives with
high log KOW values show high phytotoxic potential
(Jitareanu et al. 2011). According to Legierse et al. (1998),
the rate of absorption of chloroderivatives by snails is directly
proportional to log KOW.

Bioconcentration factor

The ability of pollutants to bioconcentrate in living organisms
is one of parameters taken into account in assessing a threat
posed by the new environmental pollutants. For many com-
pounds, there is a linear relationship between log KOW and
bioconcentration factor (BCF), but this is not a rule, and each
example should be considered separately (Axelman et al.
1995). Analysis of products showed that EHMC
chloroderivatives (EHMCCl and EHMCCl2) were
characterised by high bioconcentration factor (BCF > 600)
(Fig. 3). These are compounds with hydrophobic properties
(log KOW > 5). It is accepted that adipose tissue of living or-
ganisms is the place where the hydrophobic organic com-
pounds are accumulated. Hydrophobicity is the principal de-
termining factor of bioconcentration and plays a very impor-
tant role in the bioconcentration of hydrophobic organic com-
pounds (Wang et al. 2014). Hydrophilic compounds appear
instead in soluble phases inside the organisms, such as blood
serum and mother’s milk (Armitage et al. 2013). They appear
also in eggs (Lopez-Antia et al. 2017). They affect not only
animals but also plants, where they appear in all plant tissues,
including sap and nectar, and thus constitute a major problem
in environmental contamination nowadays (Bonmatin et al.

2015). BCF of analysed products with hydrophylic character
is in the range of 1.7 < BCF < 56. These include
chloroderivatives of phenols, methoxybenzene or
methoxycinnamic acid. For this group of compounds, no dis-
tinct relationship between log KOW and BCF was observed.

The bioconcentration ability of EHMC was confirmed by
Fent et al. (2010). EHMC was identified in fish, cormorants
and shellfish on a level of nanograms per gram and
chlorophenols were present in urine, umbilical cord blood
and mother’s milk (Sandau et al. 2002; Bradman et al. 2003;
Hong et al. 2005; Philippat et al. 2013; Kim et al. 2014; Forde
et al. 2015). These compounds can cause unfavourable histo-
pathological, genotoxic, mutagenic and carcinogenic effects
in humans and animals (Igbinosa et al. 2013). Other metabo-
lites that accumulate in the food chains and are ultimately
identified in human adipose tissue, breast milk and blood are
chlorobenzenes (Ivanciuc et al. 2005; Tor 2006; Kozani et al.
2007). Because EHMC transformations result in formation of
many chloroorganic compounds at low concentrations, it
should be checked how BCF of the mixture of products will
change. According to Kondo et al. (2005), BCF of the mixture
of chloroorganic compounds can be significantly higher than
that of a single substance.

Overall persistence and long-range transport
potential

As the environmental overall persistence (POV) and long-
range transport potential (LRTP) of all transformation prod-
ucts cannot be determined in laboratory experiment, they have
to be calculated utilising physical–chemical parameters such
as n-octanol/water (log KOW), n-octanol/air (log KOA) and air/
water (log KAW) partition coefficients, as well as half-lives in

Fig. 2 Octanol/water coefficient (log KOW) of EHMC transformation products
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air, water, and soil and molar masses of compounds calculated
by EPI Suite (Mackay andWebster 2006; Mostrąg et al. 2010;
Kuramochi et al. 2014). POVand LRTP of all the products and
EHMC were calculated by POV and LRTP Screening Tool
created by OECD. The tool requires estimated degradation
half-lives in soil, water and air, and partition coefficients be-
tween air and water and between octanol and water as chem-
ical specific input parameters. From these inputs, the tool cal-
culates metrics of POVand LRTP from a multimedia chemical
fate model and provides a graphical presentation of the results.

Studies on the environmental mobility of products showed
that the highest long-range transport potential expressed by
characteristic travel distance (CTD) was observed for
methoxyphenol chloroderivatives, then methoxybenzene
chloroderivatives, EHMC chloroderivatives, methoxybenzal
dehyde chloroderivatives and methoxycinnamate acid
chloroderivatives (S Fig. 9). It was observed that CTD increases

with the increase of chlorine atoms in molecule. The impact of
the compound structure, molar mass and type of atom in the
individual molecules was described byMostrąg et al. (2010). In
their opinion, there is a relationship between the long-range
transport potential of pollutants and presence of halogens (Cl,
F, Br) in the molecule. However, each group of compounds
should be analysed individually. Other products that can be
transported over considerable distances in the environment are
photodegradation products formed by the path of dimerization
(TP469a, TP469b, TP581b, dIAMC) (Vione et al. 2015). These
compounds can travel up to 3000 km in the environment
(Table 3). EHMC oxidation products (4MBA, 4MP, TP305a–f)
can be transported over much shorter distances. Similar rela-
tionships are observed in the case of the overall persistence. The
most durable are chloroorganic products. POV of these com-
pounds is in the range of 100–170 days. Similarly, EHMC
oxidation products (TP305a–f) are also stable (S Fig. 10). On

Fig. 3 Bioconcentration factor
(BCF) of EHMC transformation
products with the highest BCF
value

Fig. 4 POV and LRTP of the
selected EHMC transformation
products calculated by the OECD
POV and LRTP Screening Tool
using property date from EPI
Suite
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the basis of LRTP and POV values obtained, it can be deter-
mined to which class of persistent organic pollutants (POPs) the
tested products are classified. Klasmeier et al. (2006) deter-
mined the critical values of LRTP and POVand divided pollut-
ants into four classes: I class—persistent organic pollutants
(POP-like) (pollutants of the Bhighest priority^), both parame-
ters are higher than the critical value; II and III classes—mole-
cules which have POP-like characteristic for one of the refer-
ence parameters, (pollutants of Bintermediate priority^) and IV
class—pollutants with LRTP and POV lower than critical value
(compounds of the Blowest priority^). LRTP and POV values of
the products studied are lower than the critical value (POV—
195 days, LRTP—5096.73 km); therefore, they can be classi-
fied into IV class (Fig. 4).

Toxicity testing

Toxicity of products was estimated by monitoring changes in
the natural emission of the luminescent bacteria Aliivibrio
fisheri and by observation of mortality of juvenile crustaceans
Daphnia magna and Artemia Salina treated with solutions
containing EHMC transformation products. The reaction mix-
tures EHMC/UV, EHMC/H2O2/UV and EHMC/NaOCl/UV
were tested after different times of reaction (S Figs. 11–17).
In order to eliminate the effects of reagents, tests for reaction
systems with/without EHMC were performed. Based on the
difference in results obtained, the toxicity of the mixture of
transformation products was determined.

Analysis of solutions from systems containing only oxidiz-
ing agents (NaOCl/UV, H2O2/UV) showed a slight toxic effect
(S Figs. 11 and 12). After an hour of reaction, the toxic effect is
close to zero. Figure 5 presents percentage of toxic effect of the
systems studied (EHMC, EHMC/UV, EHMC/H2O2/UV,
EHMC/NaOCl/UV), determined by Microtox® test after

90 min of reaction. The toxicity classification of the mixture
of products was performed based on the magnitude of effects
observed in the indicator organisms. The toxicity classification
system is presented in Table 4. Such a system is used by many
researchers (Põllumaa et al. 2004; Ricco et al. 2004; Werle and
Dudziak 2013). EHMC is characterised by low toxicity; toxic
effect is lower than 30% (S Figs. 13 and 14). The acute toxicity
shows the products formed as a result of EHMC reaction with
NaOCl and UV. After 1.5-h-lasting reaction, toxic effect is
higher than 90%. In the system with hydrogen peroxide and
UV, the toxic products are formed. The effect is on the level
of 75%. Low toxicity was observed in the system in which
EHMC was exposed to UV. Toxic effect was about 30%.
Similar results were obtained using tests with Daphnia manga
and Artemia Salina (S Figs. 15–17). Studies have shown that
the presence of oxidizing and chlorinating agents affects the
increase of toxicity of EHMC photodegradation products. A
similar effect of additional factors was observed by Vione
et al. (2015). They have found that in the presence of TiO2

and UV, toxicity of photoproducts increased by 40–50% with
respect to EHMC.

A distinct increase in toxicological response of products, in
the case of hydrogen peroxide and sodium hypochlorite, can
be explained by formation of cinnamic acid derivatives,
among others (esters, aldehydes and alcohols). These

Fig. 5 Toxic effect of the systems
studied, determined by
Microtox® test after 90 min of
reaction

Table 4 Sample toxicity
classification system
(Ricco et al. 2004;
Põllumaa et al. 2014)

Toxicity [%] Classification

< 25 Not toxic

25–50 Low toxicity

50.1–75 Toxicity

75.1–100 High toxicity
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compounds have strong toxic action for some bacterial and
fungal species (Narasimhan et al. 2004; Guzman 2014). The
highest toxicity in the EHMC/NaOCl/UV system can be at-
tributed to formation of chloroorganic products. On the exam-
ple of chlorophenols and chlorobenzene, it was found that the
toxicity increases with the increase in the number of chlorine
atoms in molecule (Pepelko et al. 2005; Zhang et al. 2016).
The difference in results between the Microtox® (bacteria)
and the other two kits is due to the higher sensitivity of water
crustaceans (both Daphnia and Artemia) (S Figs. 13–17).

Moreover, toxicological potential of the tested systems
expressed by EC50, calculated in milligrams per liter, was eval-
uated (Fig. 6). EC50 value was 0.15 mg L−1 for EHMC/H2O2/
UV and 0.094 mg L−1 for EHMC/NaOCl/UV, respectively.
These values are significantly lower than EC50 obtained for
EHMC (0.4 mg L−1) using bacteria Aliivibrio fisheri.

Conclusions

As a result of the EHMC transformations, a number of products
with different properties other than the substrate are produced.
Two main classes of EHMC degradation products have been
identified. The first includes oxidation products, which due to
their hydrophilic character disperse in water, and some of them
can evaporate into the air. Whereas, the second class includes
chloroorganic products that probably disperse in air and water
and can accumulate in an adipose tissue of living organisms.
Both of them can reach anywhere on the planet, so both are a
cause of concern. However, it is only their persistence and
toxicity that can make them problematic. Oxidation products
are characterised by a relatively low durability and small range
of dispersal in the environment. Much more harmful to the
environment are EHMC chlorination products. Based on the
guidelines established in Convention Stockholm (2001), the
identified chloroorganic products show the properties of persis-
tent organic pollutants. Degradation half-lives of more than

60 days in water or 180 days in soil, respectively, are used to
identify chemicals with high potential to be persistent in the
environment, and a half-life of longer than 2 days in air is the
screening criterion for atmospheric LRTP (Klasmeier et al.
2006). Products such as chlorobenzene and chlorophenol de-
rivatives have tair1/2 values longer than 2 days and tsoil1/2
values longer than 6 months. In addition, they are the com-
pounds with proven mutagenic and carcinogenic effect in
humans and animals (Igbinosa et al. 2013). Comprehensive risk
assessment also included studies on toxicity of the products
formed. We observed that oxidation and chlorination products
of EHMC show significantly higher toxicity than EHMC alone.
It was found that chloroorganic products are a greater environ-
mental hazard. They are characterised by higher toxicity in the
environment than oxidation products.

The results obtained can be a valuable information in the
context of assessing the quality of water resources, especial-
ly in countries where water shortages are replenished by
treated sewage. Incomplete removal of EHMC in conven-
tional wastewater treatment plants (Ekpeghere et al. 2016)
indicates that this compound is recalcitrant and contami-
nates the environment. Analysis of the risk of environmen-
tal pollution by new pollutants and their transformation
products can be useful in assessing water quality in order
to ensure maximum safety for water resources.
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