
First evidence of anticoagulant rodenticides in fish and suspended
particulate matter: spatial and temporal distribution in German
freshwater aquatic systems

Matthias Kotthoff1 & Heinz Rüdel2 & Heinrich Jürling1
& Kevin Severin1

& Stephan Hennecke1 & Anton Friesen3
&

Jan Koschorreck3

Received: 27 September 2017 /Accepted: 24 January 2018 /Published online: 1 March 2018
# The Author(s) 2018. This article is an open access publication

Abstract
Anticoagulant rodenticides (ARs) have been used for decades for rodent control worldwide. Research on the exposure of the
environment and accumulation of these active substances in biota has been focused on terrestrial food webs, but few data are
available on the impact of ARs on aquatic systems and water organisms. To fill this gap, we analyzed liver samples of bream
(Abramis brama) and co-located suspended particulate matter (SPM) from the German Environmental Specimen Bank (ESB).
An appropriate method was developed for the determination of eight different ARs, including first- and second-generation ARs,
in fish liver and SPM. Applying this method to bream liver samples from 17 and 18 sampling locations of the years 2011 and
2015, respectively, five ARs were found at levels above limits of quantifications (LOQs, 0.2 to 2 μg kg−1). For 2015,
brodifacoum was detected in 88% of the samples with a maximum concentration of 12.5 μg kg−1. Moreover, difenacoum,
bromadiolone, difethialone, and flocoumafen were detected in some samples above LOQ. In contrast, no first generation ARwas
detected in the ESB samples. In SPM, only bromadiolone could be detected in 56% of the samples at levels up to 9.24 μg kg−1. A
temporal trend analysis of bream liver from two sampling locations over a period of up to 23 years revealed a significant trend for
brodifacoum at one of the sampling locations.

Keywords Anticoagulant rodenticides . Environmental monitoring . High-resolution mass spectrometry . Bream . Suspended
particulate matter . Environmental SpecimenBank . Biocides

Highlights
• For the first time, anticoagulant rodenticides were identified in
freshwater fish and SPM.

• A multi-method was developed to capture eight different anticoagulant
rodenticides.

• Second generation anticoagulant rodenticides were found at levels >
10 μg kg−1.

• A differing distribution of rodenticides between fish and SPM was
found.

•At one site, the temporal trend of brodifacoum increased significantly in
bream liver.
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Introduction

Since the introduction of warfarin as the first anticoagulant
rodenticide on the US market in the late 1940s, rodent control
worldwide has relied increasingly upon the use of these
chemicals. As of 2017, anticoagulant rodenticides constitute
more than 95% of the authorized rodenticides as biocides in
the European Union (ECHA 2017b). The discovery of antico-
agulant rodenticides (ARs) is today recognized as the most
important step towards safer and more effective rodent control
(Buckle and Eason 2015).

ARs comprise active substances belonging either to the
class of 4-hydroxycoumarines such as warfarin or to 1,3-
indandione derivatives such as chlorophacinone. Without re-
gard to their chemical structure, ARs are grouped by their
ability to prevent blood clotting (coagulation) by the inhibition
of vitamin K which is essential for the production of several
blood clotting factors such as prothrombin. Typical symptoms
of AR intoxication, i.e., internal and external hemorrhages due
to the increased permeability of blood vessels, occur several
days after consumption of the rodenticide bait. This delayed
mode of action is key to the effectiveness of ARs as it over-
comes the bait shyness of rats.

Anticoagulant rodenticides are usually divided into first- and
second-generation anticoagulant rodenticides (FGARs/SGARs)
depending on the date of their introduction on the market.
FGARs (i.e., warfarin, chlorophacinon, coumatetralyl) were
firstly used in the late 1940s, 1950s, and 1960s, while SGARs
(i.e., bromadiolone, difenacoum, brodifacoum, difethialone,
flocoumafen) were developed in the 1970s and 1980s following
an increasing concern about warfarin-resistant rodents. Ever
since, ARs have been extensively used as pesticides to reduce
human and animal infections by rodent-borne diseases, for crop
protection against voles, or for species conservation on oceanic
islands (Masuda et al. 2015). They are nowadays regulated in
the European Union (EU) under the Biocidal Products
Regulation (EU) No. 528/2012 (BPR) and the Plant
Protection Products Regulation (EC) No. 1107/2009 (PPPR),
depending on their intended use to either protect human health,
animal health and materials or plants and plant products. Both
regulations foresee that ARs need to be authorized prior to being
made available on the European market. Under the PPPR,
difenacoum (Reg. (EU) No. 540/2011) and bromadiolone
(Reg. (EU) No. 540/2011) are the only anticoagulant active
substances which are approved for the use in plant protection
products in the EU. Under the BPR, the approval of eight anti-
coagulants, i.e., warfarin, chlorophacinone, coumatetralyl,
bromadiolone, difenacoum, brodifacoum, difethialone, and
flocoumafen as active substances for the use in rodenticides,
have just recently been renewed. While the last authorization
of an anticoagulant rodenticide as a plant protection product in
Germany has expired in 2015, their authorizations as biocides in
Germany have recently been prolonged (BVL 2017). As of

September 2017, 704 rodenticide products were authorized in
Germany under the BPR, of which about 91% contained an
anticoagulant active substance, of these 12.2% FGAR and
79.0% SGAR (compare Table 1) (BAuA 2017).

The environmental risk assessment of ARs under the BPR
authorization in the EU revealed high risks of primary and
secondary poisoning for non-target organisms, which either
feed directly on the bait or consume poisoned rodents.
Moreover, all SGARs have been identified as being either
persistent, bioaccumulative, and toxic (PBT-substances) or
very persistent and very toxic (vPvB-substances). These in-
herent substance properties in combination with the given
exposure of non-target organisms via primary and secondary
poisoning and the extensive and widespread use of ARs are
significant drivers for the likewise widespread contamination
of various wildlife species worldwide. It is thus not surprising
that residues of anticoagulant rodenticides, especially of the
second-generation compounds, have been detected in a large
variety of species. Residues of rodenticides were detected for
example, in barn owls (Geduhn et al. 2016, Newton et al.
1990), tawny owls (Walker et al. 2008), common buzzards
(Berny et al. 1997), golden eagles (Langford et al. 2013),
polecats/mink (Elmeros et al. 2018, Fournier-Chambrillon
et al. 2004, Ruiz-Suarez et al. 2014, 2016, Shore et al.
2003), weasels (McDonald et al. 1998), stoats (Elmeros
et al. 2011), foxes (Berny et al. 1997, Geduhn et al. 2015,
McMillin et al. 2008, Tosh et al. 2011), hedgehogs
(Dowding et al. 2010), and snails (Alomar et al. 2018).

Most of these environmental monitoring studies focused on
the terrestrial compartment, e.g., predatory birds (Gomez-

Table 1 Current numbers of registered biocidal products in Germany

Active substance Number of registered products %

Aluminum phosphide 9 1.3

Brodifacoum 196 27.8

Bromadiolone 127 18.0

Chloralose 51 7.2

Chlorophacinone 14 2.0

Coumatetralyl 14 2.0

Difenacoum 199 28.3

Difenacoum; bromadiolone 4 0.6

Difethialone 26 3.7

Flocoumafen 4 0.6

Hydrogen cyanide 1 0.1

Carbon dioxide 1 0.1

Warfarin 58 8.2

Total 704 100

FGARs 86 12.2

SGARs 556 79.0

Non-ARs 62 8.8
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Ramirez et al. 2014, Ruiz-Suarez et al. 2014, Stansley et al.
2014, Thomas et al. 2011) and mammals (Quinn et al. 2012),
as well as various non-target rodents (Elliott et al. 2014,
Geduhn et al. 2014). However, little to nothing is known so
far, about the exposure of aquatic life to ARs and the accumu-
lation of ARs in aquatic food webs.

The environmental exposure assessment within the autho-
rization of anticoagulant rodenticides under the BPR is based
on the Emission Scenario Document (ESD) (Larsen 2003)
which considers four main scenarios for the application of
ARs, i.e., the application in and around buildings, in open
areas (in rate holes), at waste dumps, and in the sewer system.
Significant releases to surface water bodies are only assumed
to occur from the application of ARs in the latter area of use,
i.e., in sewer systems. It has been shown that AR can enter
sewage treatment plants (STPs) and thereafter contribute to
the loads of anticoagulants to receiving surface waters with
effluents (Gomez-Canela et al. 2014). A maximum release to
the sewerage system and consequently to surface water could
result directly from the application of rodent bait into man-
holes of the sewer system and indirectly from the target ani-
mals’ urine, feces, and dead bodies. The application of roden-
ticides in rainwater sewers which as a rule are not connected to
a sewage treatment plant and discharge directly into receiving
waters can be considered another release pathway.

Environmental monitoring of AR provides some specific
challenges to the investigator. AR can enter the environment
via different exposure routes where they have been shown to
exhibit acute toxic effects at concentrations in the ppm and
ppb range (e.g., bromadiolone (Eason et al. 2002, Thomas
et al. 2011): LC50 of 2.86 mg L−1 for fish, Lepomis
macrochirus; LD50 of 0.56 mg kg−1 in rat (oral) (ECHA
2010), or difethialone (ECHA 2007): EC50 of 4.4 μg L−1 for
Daphnia magna acute, or LC50 of 51 μg L−1 for
Oncorhynchus mykiss. SGARs in particular exhibit a high
lipophilicity and environmental persistence and may thus en-
rich in predator tissues with high fat contents, e.g., mammali-
an liver (Eason et al. 2002, Thomas et al. 2011), which are
complex matrices and thus require elaborate and challenging
sample preparation. Furthermore, there are numerous AR sub-
stances that may enter the environment and so a comprehen-
sive assessment of the presence of AR requires very sensitive
and accurate multi-methods, covering a wide range of differ-
ent ARs. Several analytical approaches for multi-methods for
the quantitative determination of AR in biological samples
have been developed, such as liquid chromatography (LC)
and also ion chromatography (IC) coupled to tandem mass
spectrometry (MS/MS) (Bidny et al. 2015, Chen et al. 2009,
Jin et al. 2009, Jin et al. 2008, Marek and Koskinen 2007),
two-dimensional LC coupled to MS/MS (Marsalek et al.
2015), IC coupled to fluorescence detection (Jin et al. 2007),
methods using high resolution MS (Schaff and Montgomery
2013), and some other strategies that are presented in a review

by Imran et al. (2015). Available analytical methods are so far
hampered by the number of captured AR, as well as high
limits of detection caused by complex biological and environ-
mental matrices that are in contrast to low relevant environ-
mental concentrations. However, the method we apply here is
in good agreement (Hernandez et al. 2013) or better
(Vandenbroucke et al. 2008a, Vandenbroucke et al. 2008b,
Zhu et al. 2013) in terms of number of analytes covered and
sensitivity with other LC-MS/MS-based methods for solid
biological tissues such as liver and hair.

Good insight is available on risks of AR towards non-target
mammals as well as exposure and associated risks of various
predators (Christensen et al. 2012, Geduhn et al. 2016,
Gomez-Ramirez et al. 2014, Hughes et al. 2013, Langford
et al. 2013, Nogeire et al. 2015, Proulx and MacKenzie
2012, Rattner et al. 2014, 2015, Ruiz-Suarez et al. 2014,
Thomas et al. 2011).

Even if concentrations are assumed to be low after system-
atic or accidental exposure of aquatic systems (Fisher et al.
2012, Primus et al. 2005), the environmental impact may yet
be relevant due to the high bioaccumulation potential, espe-
cially of SGARs (Masuda et al. 2015). So far, no studies are
available on AR residues and accumulation in fish or distribu-
tion of AR in natural aquatic systems. The aim of this study
was to assess the exposure of freshwater fish to anticoagulant
rodenticides by analyzing levels of anticoagulants in fish tis-
sues. For this purpose, a highly sensitive and specific multi-
method was developed to determine eight anticoagulants,
which have been approved under the BPR for the use in ro-
denticides within the EU (cf. Table 2). We the applied this
method in a spatial monitoring study for two time points for
fish liver and one for suspended particulate matter (SPM)
samples of the German Environmental Specimen Bank
(ESB). Finally, retrospective analysis was performed for
SPM and fish samples from selected sites to detect time trends.
In addition, selected liver samples from otters (Lutra lutra)
were analyzed to characterize the bioaccumulation potential
of ARs in fish-eating mammal species.

Materials and methods

Collection and storage of samples

All samples were retrieved from the archive of the German
Environmental Specimen Bank.

Bream (Abramis brama) samples were analyzed from 17
and 18 sampling locations for 2011 and 2015, respectively,
and from 10 sampling years for two specific sampling loca-
tions. Sampling locations included 16 riverine sites and one
(2011) and two (2015) lakes. Samples were processed and
stored according to a dedicated ESB standard operating pro-
cedures (SOP) by Klein et al. (2012). SPMwas analyzed from
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the 16 riverine sampling sites sampled in 2015. SPM was
collected and processed according to a specific SOP by
Ricking et al. (2012).

Otter samples originate from the Upper Lusatia area in the
east of Germany (partly Elbe catchment) and represent indi-
viduals that died as a result of traffic accidents or lethal dis-
eases. The liver samples of five otter individuals were pre-
pared and analyzed according to the protocol for bream liver
samples.

Method summary

In order to optimize and merge available methods, and to
secure the specificity of the method, the rodenticide analysis
was performed on a UHPLC-chromatographic unit coupled to
a high-resolution mass spectrometer operating at a resolution
of 35,000. The adopted methodmainly based on Thomas et al.
(2011) for fish liver could be used to determine a total of eight
different target molecules, as given in Table 2 and Table 3. The
specificity of the method is assured by measuring the accurate
mass of the analytes in tandemmass spectrometric mode (MS/
MS) (see Table 3).

Table 2 harbors information on the reference substances used
for quantification. Stable isotopically labeled (deuterated) inter-
nal standards (IS) were only available for bromadiolone (as D5;
Campro Scientific, Germany, 99% D, 95% chemical, Lot #

AB126P2), warfarin (as D5; Campro Scientific, Germany,
99% D, 99% chemical, Lot # E305P28), and chlorophacinone
(as D4; Chiron AS, Norway, 99.4% D, 99% chemical Lot #
14266). The IS were added to the samples, but not used for
evaluation in the final method.

A sample of about 0.5 g fish matrix (liver or muscle; fro-
zen, cryo-milled ESB material) is mixed with roughly 3.5 g
Na2SO4 (ratio 1:7), 100 μL IS solution (three IS, each
100 ng mL−1), and 5 mL acetone in a 15-mL polypropylene
test tube. This mixture is treated for 30 min in an ultra-sonic
bath and for the same time on a vortex shaker. Subsequently,
the test tube is centrifuged at 4000 rpm for 5 min. The clear
supernatant is forwarded to a fresh test tube, whereas the pellet
is extracted with an additional 4 mL volume of fresh acetone.
The combined extracts were mixed with 1 mL of diethyl ether
and evaporated in a N2-stream at 50 °C to dryness. The re-
maining extract was then dissolved in 1 mL methanol and
homogeneously mixed by treating for 5 min in an ultra-sonic
bath. The slightly turbid suspension was forwarded to a
1.5-mL tube and centrifuged at 15,000 rpm for 2 min. The
cleared supernatant was finally filtrated through a 25-mm di-
ameter, 0.45-μm regenerated cellulose (RC) type membrane
filter, before filling into a UHPLC (ultra-high performance
liquid chromatography) vial for analysis.

A minimum of two solvent-based blank samples (up to
four) were analyzed in every measurement series. Matrix-

Table 2 List of AR covered in
this study used for quantification
and information on used reference
standards

AR AR-generation Chemical class (derivative) Purchased from Purity (%)

Brodifacoum 2 Hydroxycoumarine Sigma-Aldrich 99.4

Bromadiolone 2 Hydroxycoumarine Sigma-Aldrich 93.6

Chlorophacinone 1 Indandione Sigma-Aldrich 98.9

Coumatetralyl 1 Hydroxycoumarine Sigma-Aldrich 99.9

Difenacoum 2 Hydroxycoumarine Sigma-Aldrich 98.9

Difethialone 2 Thiocoumarine Dr. Ehrenstorfer 99.0

Flocoumafen 2 Hydroxycoumarine Dr. Ehrenstorfer 98.0

Warfarin 1 Hydroxycoumarine Sigma-Aldrich ≥ 98

Table 3 Accurate masses of ion
transitions of rodenticides as used
for the multiple monitoring
method. The Q-Exactive
instrument was run at a resolution
of 35,000 ± 10 ppm

Substance Theoretical mass
of precursor [m/z]

Captured mass
of product 1 [m/z]

Captured mass
of product 2 [m/z]

Flocoumafen 541.16322 161.02353 289.08545

Bromadiolone 525.0707 250.06194 n.d.

Brodifacoum 521.07578 135.04408 187.03854

Difenacoum 443.16527 135.04442 293.13202

Warfarin 307.09758 161.02234 250.06195

Chlorophacinone 373.0637 145.02859 201.04637

Coumatetralyl 291.10267 141.07021 247.11263

Difethialone 537.05294 151.02104 n.d.
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based quality control samples containing the rodenticides in
defined concentrations (adapted to the expected concentration
range in the samples: here 1.4 and 14 μg kg−1 for otter and
SPM, and 1.0 and 10 μg kg−1 for bream liver) were measured
about every 15 samples. Suitable rodenticide free matrices
were identified in a preliminary screening. All samples were
measured at least in duplicate, as specified in the respective
table captions.

Instrumental parameters

A UHPLC Acquity (Waters), coupled to an Orbitrap Q-
Exactive Plus (Thermo Scientific) high-resolution mass spec-
trometer, run in the multiple reaction monitoring mode with
electrospray negative (ES-) ionization was used for all chem-
ical analyses. Accurate masses of parent and daughter ions, as
well as MS-parameters, were according to Table 3. The used
column was 100 × 2 mm BEH C18, 1.7 μm (Waters), the
column temperature was 55 °C, and 20 μL sample volume
was injected and run with a flow of 0.35 mL min−1. The
solvents used were A: methanol +2 mM ammonium acetate
in water (5 + 95, v/v) and B: methanol containing 2 mM am-
monium acetate. The used UHPLC gradient program was
0 min 100% A→ 10 min 100% B→ 13 min 100% B→
15 min 100% A. Under the given conditions, of
bromadiolone, two diastereomeric partners elute, which are
reported here as a sum.

Method development and method validation

Initially, a comparison of AR concentrations in bream liver
and fillet was performed by applying a crude preliminary
method that had not been optimized. For difethialone and
brodifacoum, we found 100- or 80-fold higher concentrations
in liver, respectively. So, it was decided to focus on bream
liver samples for further method development and subsequent
analysis of environmental samples.

Commercial stable isotope labeled standards were pur-
chased to improve the method. After repeated measure-
ment cycles and calibrations, however, it was found that
the analytical parameters are much better when using an
external matrix matched calibration. So, the final method
does not use the signals for the IS, but an external matrix
calibration.

Calibration and validation of the method were performed
by standard addition techniques using matrix calibrations in
the range from 0.02 to 20.0 μg kg−1 and were evaluated to the
lowest calibration level within the linear range of a calibration.
Each calibration solution contained 100 μL of IS solution
which were spiked with 25 μg L−1, resulting in 5 μg kg−1 of
each IS. The handling and measurement of the calibration and
validation samples were identical to the treatment of the test
samples. For validation of the method, six bream liver and

SPM samples of 0.5 g each were fortified with defined AR
at individual limit of quantification (LOQ) concentrations to
prove for accuracy, repeatability, and precision at the LOQ
level (standard addition technique), according to Table 4.
Each sample was fortified with 100 μL of a solution contain-
ing all rodenticides in the respective concentrations ranging
from 0.1 to 100 μg L−1 and with 100 μL of the IS solution.
Otter liver was used to generate a respective matrix calibra-
tion, but due to limited sample material, no separate otter liver
validation could be performed.

Due to varying sensitivities of individual AR, the dy-
namic ranges of the calibrations are different, but none of
them showed an exponential behavior. To keep the proce-
dure constant, even after the decision to omit using the IS,
their addition to the samples was continued. For the given
calibration ranges, all functions were linear and show co-
efficients of determination (r2) of at least 0.99. The vali-
dated limits of quantification (LOQ) and standard devia-
tions (SD) are given in Table 4. All data are reported on a
wet weight basis.

Both matrices, bream liver and SPM, could be successfully
validated at the indicated LOQ levels. These levels range in a
substance, but also in a matrix-dependent manner from 0.2 to
2.0 μg kg−1, and reflect the lowest achievable values accord-
ing to observations derived from the matrix calibration func-
tions shown in Fig. S1 of the Electronic supplementary
material (ESM). The recoveries are within 90–110% and the
relative standard deviation (RSD) is ≤ 10% (n = 6). The only
exception is chlorophacinone whose mean recovery is 116%
and RSD 26.3% in SPM. This seems acceptable since no
quantitative data are being reported for chlorophacinone in
this study. The achieved LOQs are similar or lower than re-
cently published LC-MS/MS-based multi-methods for AR in
tissues, ranging from 0.9 to 250 μg kg−1 (Fourel et al. 2017a,
Hernandez et al. 2013, Jin et al. 2009, Marek and Koskinen
2007, Marsalek et al. 2015, Smith et al. 2017, Vandenbroucke
et al. 2008b).

Analysis of temporal trends

Temporal trends for brodifacoum in fish tissue (wet
weight data) were analyzed by applying a software tool
from the German Environment Agency (LOESS-Trend,
Version 1.1, based on Microsoft Excel). The application
fits a locally weighted scatterplot smoother (LOESS) with
a fixed window width of 7 years through the annual ro-
denticide levels. Then, tests on the significance of linear
and non-linear trend components are conducted by means
of an analysis of variance (ANOVA) following the proce-
dure of Fryer and Nicholson (1999). For years with ana-
lytical results less than the LOQ, the data gaps were treat-
ed as ½ LOQ values.
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Results and discussion

Results of environmental analysis

Spatial comparison: measurement of samples from different
ESB sampling sites of the years 2011 and 2015

Results of the spatial monitoring exercise are presented in
Table S1 (2011) and Table S6 (2015) in the electronic supple-
mental material and are summarized in Fig. 1 (for 2015) along
with the spatial distribution of the sampling sites across
Germany. Within all bream liver samples, only SGARs were
found above the LOQ. For the year 2015, brodifacoum was
the major AR found. It was detected in 88% of the samples
with a maximum concentration of 12.5 μg kg−1 (average (Ø)
3.4 μg kg−1 and median 2.1 μg kg−1). Difenacoum was found
in 44% of the samples at comparably lower concentrations of
up to 0.7μg kg−1 (Ø 0.1μg kg−1). Bromadiolone was found in
17% of the samples at peaks of 7.1 μg kg−1 with Ø of
0.6 μg kg−1, difethialone in 6% with highest levels at
6.3 μg kg−1, and flocoumafen in 12% at highest levels of
0.3 μg kg−1. For 2011, quite different substance and concen-
tration patterns were found, as presented in Table S1, which
may be due to the seasonal character of substance usage and
varying intervals between application and sampling. To our
knowledge, this is the first evidence of AR in freshwater fish
tissue.

In addition, a set of co-located suspended particulate matter
(SPM) samples from the year 2015 were analyzed. The results
are presented in Table S3 and also included in Fig. 1. In con-
trast to results of the bream liver samples, in SPM, only
bromadiolone was found above LOQ in 56% of the 16 sam-
ples with highest values of 9.2 μg kg−1 (Ø 4.9 μg kg−1; me-
dian 4.3 μg kg−1).

No ARs were detected > the LOQ in the five otter livers
that were analyzed in addition to bream and SPM to exempla-
ry include a fish-eating mammal as a top predator in the food
web in this study. In contrast, in a study using French otter

samples from 2010, 10% of the tested otter samples were
contaminated with bromadiolone at levels of 400 and
850 μg kg−1 fresh weight (Lemarchand et al. 2010).

Temporal trend analysis: retrospective monitoring
for rodenticides in fish liver samples from Saar
River/Rehlingen and Elbe River/Prossen

Based on the results of the 2011 and 2015 spatial analysis, the
sampling sites in Rehlingen at the Saar River and Prossen at
the Elbe River were chosen for the temporal analysis.

The results of the temporal analysis are summarized in S4
(Saar/Rehlingen) and Table S5 (Elbe/Prossen).

From these temporal data, a significant time trend could be
drawn only for brodifacoum at Saar/Rehlingen (Fig. 2). This
trend indicated an average increase of brodifacoum at
0.3 μg kg−1 per year for the observed period and
1.3 μg kg−1 per year for the last 7 years.

Notably, brodifacoum was the most abundant AR mea-
sured in fish from both locations. Concentrations ranged be-
tween about 1 and 13 μg kg−1 in fish from Rehlingen and
between 4 and 12 μg kg−1 in fish from Prossen, where it
was found below LOQ only in the years 1992 and 2009. At
Rehlingen also, bromadiolone, difenacoum, flocoumafen, and
difethialone were found occasionally and at comparably low
levels. Interestingly, for both sampling sites, the diversity of
detected ARwas higher in 2015 than in the years before. SPM
was not subject to a retrospective analysis.

Assessment of relevance of rodenticide residues in fish
and SPM

The analysis of fish samples at the different ESB sampling
sites revealed the detectable occurrence in the order
brodifacoum, difenacoum, bromadiolone, difethialone, and
flocoumafen at levels above the LOQ. In contrast, in SPM,
only bromadiolone was detectable.

Table 4 Studied AR and
respective analytical parameters
of method validation by
fortification of respective matrix,
n = 6

Substance Bream liver SPM

LOQ level
[μg kg−1]

Recovery [%] RSD [%] LOQ level
[μg kg−1]

Recovery [%] RSD [%]

Flocoumafen 0.2 100 5.4 1.0 98 6.9

Bromadiolone 2.0 95 8.1 1.0 96 4.8

Brodifacoum 1.0 93 6.6 2.0 98 5.9

Difenacoum 0.2 96 9.7 1.0 98 10.3

Warfarin 0.2 103 6.9 0.2 102 7.5

Chlorophacinone 1.0 93 7.2 2.0 116 26.3

Coumatetralyl 0.2 110 4.1 0.2 106 5.4

Difethialone 1.0 95 3.3 1.4 103 4.6
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Only SGARs were found above LOQ of the ARs measured
in this study. This could be related to the higher persistency
and potential for bioaccumulation of SGAR in comparison to
FGAR. The partition coefficients n-octanol/water (log Kow),
as a measure for lipophilicity and bioaccumulation potential,
for FGARs are < 5 (at environmentally relevant pH) while the
respective values for SGARs are all > 5 (at environmentally
relevant pH). Also, available toxicity studies with rats show
much shorter half-lives of FGAR in livers when compared to
SGAR which may indicate faster elimination rates in target
and non-target organisms (Daniels 2013). Another plausible
reason for the lack of FGARs in the analyzed fish samples
might be that FGARs are generally used less frequently than
SGARs, especially for the control of rats in sewer systems,
which is assumed to be the source of emissions to surface
water bodies. A survey of 508 local municipal authorities in
Germany responsible for the rat control in sewers (Krüger and
Solas 2010) indicated that bromadiolone followed by
difenacoum and brodifacoum were used most often by local
authorities for the control of brown rats in sewer systems.

Comparison with bioconcentration factors, adsorption
coefficients, and use patterns

The bioconcentration factors (BCF, the ratio of a substance
concentration in water and in fish tissue and expressed as
L kg−1) of fish as stated in the respective public Assessment
Reports for their approval under BPR decrease in the follow-
ing order: difethialone (39,974; estimated), brodifacoum
(35,645; estimated), flocoumafen (24,300; measured),
bromadiolone (460; measured), chlorophacinone (22.75; esti-
mated), warfarin (≤ 21.6; measured), coumatetralyl (11.4;
measured) (ECHA 2017a). The BCF values may explain
why SGARs were detectable in the ESB fish samples, while
FGARs were not. The organic carbon adsorption coefficients
Koc [L kg−1], as given in the respective Assessment Reports
for each of the active substances, increase in the order of
warfarin (174), coumatetralyl (258), brodifacoum (9155),
bromadiolone (14,770), chlorophacinone (75,800),
flocoumafen (101,648), difenacoum (1.8* 106), difethialone
(about 108) (ECHA 2017a). According to this, other highly
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Fig. 1 Overview of 18 bream and 16 SPM sampling sites. Results of the spatial analysis for eight ARs in bream liver and SPM are displayed as black and
yellow bars, respectively. For detailed results, see Table S1 and S3



adsorptive anticoagulants such as difenacoum, which is ac-
cording to Krüger and Solas (2010) commonly used for sewer
baiting in Germany, should also be expected to absorb to SPM
(assumed that comparable amounts are emitted). There may
be several reasons why this is not the case: SPM samples in
the ESB archive were pooled samples of 12 monthly sub-
samples, whereas only one ESB fish sample was collected
per year after spawning at each of the riverine sampling sites.
Depending on a seasonal exposure, higher or lower findings,
compared to the concentrations actually found in this study,
may be expected in SPM (e.g., when exposed in spring after
treatment campaigns in municipal rodent control, AR can be
expected in SPM), but the occurrence in fish that are sampled
in a different season compared to the treatment might be

unlikely, especially for FGAR with a low bioaccumulation
potential. However, this cannot fully explain the exclusive
presence of bromadiolone and we are unclear why other
ARs were not detected in this matrix.

The varying treatment lengths, intervals, and substance pat-
terns of AR treatment campaigns in Germany may also help to
explain the occasional detections of other SGAR, as their pres-
ence may reflect the major AR applied in the catchment that
year. Data on the amounts of AR that were used are unfortu-
nately rarely available (Pohl et al. 2015). Rodenticides, which
have been used most often by municipal authorities for sewer
baiting (Krüger and Solas 2010), were those found most fre-
quently in fish (difenacoum, brodifacoum, and bromadiolone)
and bromadiolone in SPM.

Rough estimations suggest that the AR concentrations de-
tected in fish are plausible given the available data on concen-
trations in sewage treatment plant (STP) effluent (Gomez-
Canela et al. 2014) and the known BCF of the detected com-
pounds in fish (For details, see ESM).

An important aspect of rodenticides was recently identified
to be the metabolism by Fourel et al. (2017b). They found a
high abundance of trans-bromadiolone in red kite, indicating
individual metabolic rates for the two bromadiolone enantio-
mers. If fish could also metabolize bromadiolone isomers se-
lectively, this could explain why we found bromadiolone
more frequently in SPM compared to fish liver. This does, in
turn, not help to understand why other ARs were not found in
SPM.

Synopsis

In summary, our findings demonstrate that contamination of
wildlife with anticoagulant rodenticides, especially SGARs,
also involves aquatic species and is not confined to predatory
birds or mammals of the terrestrial food web. We detected
residues of SGARs in fish samples from almost every ESB
sampling site, including the rivers Rhine, Elbe, and Danube.
The ubiquitous exposure of fish is in contrast to the rather low
concentrations of SGARs in biocidal products which ranged
from 25 mg kg−1 (difethialone) to 75 mg kg−1 (difenacoum).
An amount of approximately 50 kg of anticoagulant rodenti-
cide active substance is used annually for rat control in sewers
and above ground by municipal authorities in Germany, with
approximately 75% were used exclusively for sewer baiting
(Krüger and Solas 2010). Given this relatively moderate
amount of use, the prevalence of detectable rodenticide resi-
dues in fish samples appears surprisingly high. Whether this is
entirely accounted for by the persistent and bioaccumulative
properties of the SGARs requires investigation. In general,
there remains a lack of understanding about both the impacts
of rodenticides on aquatic life and the pathways by which
these compounds enter the environment. There are few pub-
lished data on rodenticide levels in waste water (Gomez-
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Fig. 2 Time trend analysis of both sampling sites for brodifacoum using
the LOESS-Trend tool (compare BMaterials and methods^ section).
Circles reflect actual results (mean values of replicates of pooled fish
samples), while the blue solid or dashed line reflects the linear fit, the
green dashed line the dynamic fit, and the gray area the confidence
interval (α = 0.05). For mean value calculations, data below the LOQ
were substituted by a concentration of 50% of the LOQ (LOQ =
1.0 μg kg−1 for brodifacoum; compare Table S4 and S5 in the ESM).
B-^ indicates values results below LOQ



Canela et al. 2014) or surface water and no information on
what specific substances or amounts are used. Experimentally
derived BCF values for ARs are not always available and
modeled BCF value may not enable a sound assessment of
the potential for bioaccumulation in fish. Therefore, it is im-
portant to generate a better overview on the temporal spatial
occurrence of AR in freshwater environments and to identify
relevant sources and entry pathways. Further research is need-
ed to unravel the exposure of freshwater environments to ro-
denticides. This may involve environmental fate studies as
well as additional spatial and temporal monitoring activities.
Monitoring of AR can thereby provide additional key infor-
mation for their environmental risk assessment and the need to
set appropriate risk mitigation measures within their authori-
zation as biocides in the European Union.
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