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Abstract

This work presents a methodology for reconstructing full-field surface pressure information from deflectometry
measurements on a thin plate using the Virtual Fields Method (VFM). Low-amplitude mean pressure distributions of the
order of few O(100)Pa from an impinging air jet are investigated. These are commonly measured point-wise using arrays
of pressure transducers, which require drilling holes into the specimen. In contrast, the approach presented here allows
obtaining a large number of data points on the investigated specimen without impact on surface properties and flow.
Deflectometry provides full-field deformation data on the specimen surface with remarkably high sensitivity. The VFM
allows extracting information from the full-field data using the principle of virtual work. A finite element model is employed
in combination with artificial grid deformation to assess the uncertainty of the pressure reconstructions. Both experimental

and model data are presented and compared to show capabilities and restrictions of this method.

Keywords Deflectometry - Virtual Fields Method - Surface pressure reconstruction - Full-field measurement -

Fluid-structure interaction

Introduction

Full-field surface pressure measurements are highly relevant
for engineering applications like material testing, compo-
nent design in aerodynamics and the use of impinging jets
for cooling, de-icing and drying. Surface pressure informa-
tion can be used to determine aerodynamic loads [1] and
to evaluate the performance of impinging jets used for heat
and mass transfer [2]. They are however difficult to achieve,
as available methods are not universally applicable. Most
commonly, large numbers of pressure transducers are fitted
into the investigated surface. This is an invasive technique
as it requires one to drill holes into the sample. Further,
it yields limited spatial resolution [3, 4]. Pressure sensitive
paints allow obtaining full-field data, but are not suited for
low-range differential pressure measurements [5, chapter
4.4; 6]. They further require extensive calibration efforts, as
well as a controlled experimental environment. Calculating
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pressure from Particle Image Velocimetry (PIV) is a non-
invasive method that yields full-field data in the flow field
[7, 8]. This allows estimations of pressure along lines on
which the surface coincides with the field of view.

Another approach is the reconstruction of pressure infor-
mation from full-field surface deformation measurements
by solving the local equilibrium equations. Recently, wall
pressure was calculated from 3D-Digital Image Correla-
tion (DIC) measurements on a flexible Kevlar wind-tunnel
wall in an anechoic chamber [9]. This was achieved by
projecting the measured deflections onto polynomial basis
functions and inserting their derivatives into the correspond-
ing equilibrium equations. The obtained pressure coeffi-
cients compared well to transducer data for the relatively
large spatial scales that were investigated. Many problems
in the field of fluid-structure interactions can be simplified
to low amplitude loads acting on thin plates. This allows
employing the Love-Kirchhoff thin plate theory [10] to
write the local equilibrium of the plate. The required full-
field deformation information on the test surface can be
obtained using a number of measurement techniques, e.g.
DIC, Laser Doppler Vibrometers (LDV) or interferometry
techniques. However, the fourth order deflection derivatives
required to solve the Love-Kirchhoff equilibrium equation
make an application in the presence of experimental noise
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challenging, particularly for low signal-to-noise ratios. To a
degree, this issue can be addressed by applying regularisa-
tion techniques. In studies based on solving the equilibrium
equation locally by employing a finite difference scheme,
regularisation was achieved by applying wave number fil-
ters [11] or by adapting the number of data points used
for the finite differences [12]. This allowed an identifica-
tion and localisation of external vibration sources acting on
the investigated specimen. Similarly, the acoustic compo-
nent of a flow was identified using wave number filters in
an investigation of a turbulent boundary layer [13]. Gener-
ally, the accuracy of this approach in terms of localisation
and amplitude identification depends strongly on the chosen
regularisation.

An alternative for solving the thin plate problem using
full-field data is the Virtual Fields Method (VFM), which
is based on the principle of virtual work and only requires
second order deflection derivatives. The VFM is an inverse
method that uses full-field kinematic measurements to
identify mechanical material properties from known loading
or vice versa. A detailed overview of the method and
the range of applications is given in [14]. It notably does
not require detailed knowledge of the boundary conditions
and does not rely on computationally expensive iterative
procedures. A study comparing Finite Element Model
Updating, the Constitutive Equation Gap Method and the
VEM for constitutive mechanical models using full-field
measurements found that the VFM consistently performed
best in terms of computational cost with reasonable results
[15]. The VFM has been adapted for load reconstruction in a
number of studies, including dynamic load identification in
a Hopkinson bar [16, 17]. The data were found to compare
reasonably well to standard measurement techniques. The
VFM was also used to reconstruct spatially-averaged sound
pressure levels from an acoustic field using a scanning
Laser Doppler Vibrometer (LDV) [18]. Dynamic transverse
loads, as well as vibrations caused by acoustic pressure
were identified using the same technique in [19]. The
results were found to be accurate for distributed loads. The
latter used a VFM approach based on piecewise virtual
fields, which allows more accurate descriptions of boundary
conditions for complex shapes and heterogeneous materials
[20]. This approach was extended to random spatial wall
pressure excitations in [21], reconstructing power spectral
density functions from measured data and using the VFM
to describe the plate response. The authors found that this
method requires piecewise virtual fields to be defined over
small regions. Recently, the VFM approach was combined
with deflectometry for the identification of mechanical
point loads of several O(1)N [22]. Deflectometry is a highly
sensitive technique for slope measurement [23]. It was
successfully used in a range of applications like damage
detection of composites [24], the analysis of stiffness
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and damping parameters of vibrating plates [25] and for
imaging of ultrasonic lamb waves [26]. Since deflectometry
measurements yield surface slopes, the combination with
the VFM reduces the required order of derivatives of
experimental data for pressure reconstruction to one.
Known loads were reconstructed in [22] with good accuracy
for certain reconstruction window sizes which were found
empirically. Deflectometry and the VFM were also used to
identify pressure auto-spectra of spatially averaged random
excitations in [27]. The results agreed well with microphone
array measurements, except at the structural resonance
frequencies and for poor signal-to-noise-ratios. In the same
study, the VFEM approach was extended to membranes
and the applicability was investigated using a simulated
experiment. A shortcoming of these previous studies was
that the accuracy was not assessed for unknown input loads.
This is an important step because neither the resolution
in space nor the uncertainty in pressure amplitude can be
predicted directly as they depend on the signal amplitude
and distribution, the noise level and the reconstruction
parameters.

The main focus of the work presented here is the deter-
mination of static low-amplitude pressure distributions
with peak values of few (O(100)Pa from time-averaged
full-field slope measurements, as well as an assessment
of the uncertainties of the method. In the following
sections “Theory” and “Experimental Methods”, a brief
overview of the theoretical background and experimental
setup is given. In “Experimental Results”, experimental
results are presented for two different specimen and for
several reconstruction parameters. The pressure reconstruc-
tions are compared to pressure transducer measurements.
Section “Simulated Experiments” introduces a numerical
model for simulated experiments. This allows an assess-
ment of the uncertainty of the method in terms of both
systematic errors and the influence of random
noise. In “Simulated Experiments”, a finite element updating
procedure is proposed to compensate for systematic errors.

Theory
Impinging Jets

A fan-driven, round air jet was used to apply a load on the
specimen. The flow generated by this impinging jet can be
divided into the free jet, stagnation and wall region [28].
These regions, shown in Fig. 1, consist of subregions with
distinct flow features which are governed by the ratio
between downstream distance and nozzle diameter H/D
and Reynolds number Re. Directly downstream from the
nozzle exit, the free jet develops for sufficiently large
H/D = 2 [29]. The velocity profile spreads as it moves
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downstream due to entrainment and viscous diffusion caus-
ing a transfer of momentum to surrounding fluid particles.
Upon approaching the impingement plate a stagnation
region forms, characterized by an increase in static pres-
sure up to the stagnation point on the plate surface. The
rising static pressure results in pressure gradients diverting
the flow radially away from the jet centerline. The laterally
diverted flow forms the wall region. The pressure distribu-
tion on the impingement surface is approximately Gaussian
[30]. This study focuses on the measurement of the mean
load distribution on the impingement plate.

Deflectometry

Deflectometry is an optical full-field measurement tech-
nique for surface slopes [23]. Figure 2 shows a schematic of
the setup. A camera measures the reflected image of a peri-
odic spatial signal, here a cross-hatched grid, on the surface
of a specular reflective sample. The distance between the
grid and sample is denoted by kg and the grid pitch by pg.
The angle 0 has to be sufficiently small to minimize grid dis-
tortion in the recorded image. A pixel directed at point M on
the specimen surface will image the reflected grid at point P
in an unloaded configuration. If a load is applied to the sur-
face, it deforms locally and the same pixel will now image
the reflected grid at point P’. It is assumed here that rigid
body movements and out of plane deflections are negligible
(for details see “Error Sources” below).

-
-————-——___

The displacement u between P and P’ relates to the
phase difference d¢ in the grid signal in x- and y-direction
respectively as follows:

2 2
dpy = —uy,dpy = —uy (1
PG PG

A spatial shift by one grid pitch pg corresponds to a phase
shift of 2. However, a direct displacement estimation from
the phase difference between a reference and a deformed
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Fig.2 Deflectometry setup, top view



1206

Exp Mech (2019) 59:1203-1221

image does not take into account that the physical point on
the plate surface is subject to a displacement. An iterative
procedure to improve the displacement results given in
[31, section 4.2] is employed here:

—’z’—j(mef (X + (X)) — ref (X)) ®)

A relationship between slopes and displacement is derived e.g.
in [32]. It is based on geometric considerations and assumes
that 6 is sufficiently small, so the camera records images in
normal incidence and hg is large against the shift u:
o= - 3)

G 2hg
Otherwise, a more complex calibration is required [33, 34].
Equation (3) will be used here.

The spatial resolution of the method is driven by pg. The
phase resolution is noise dependent and can be defined as
the standard deviation of a phase map detected between two
stationary images. Consequently, slope resolution depends
on pg, hg and the phase resolution.

Upy1(x) =

do, = yday =

Phase detection

The literature describes a number of methods for retrieving
phase information from grid images, e.g., [31, 35, 36].
Here, a spatial phase-stepping algorithm is employed which
allows investigating dynamic events [37, 38]. One phase
map is calculated per image. The chosen algorithm needs
to be capable of coping with miscalibration, i.e. a slightly
non-integer number of pixels per grid period. This can
occur due to imperfections in the printed grid, misalignment
between camera, sample and grid, lens distortion, as well
as fill factor issues. In addition, the investigated signal
is not generally sinusoidal. This requires an algorithm
suppressing harmonics and sets a lower limit to the required
number of samples, i.e. pixels recorded per grid pitch [39].
A windowed discrete Fourier transform algorithm using
triangular weighting and a detection kernel size of two grid
periods as used in e.g., [36] and [40] will be used in this
study.

Pressure Reconstruction

The problem investigated here is a thin plate in pure bending,
which allows the Love-Kirchhoff theory to be employed
[41]. Assuming that the plate material is linear elastic,
isotropic and homogeneous, the principle of virtual work is
expressed by:

fpw*dS = Dy, / (KXXK:X —i—Kny;‘y + 2nylc;:y> ds
S

xy/ Kxxlcyy-I-K” o — 2Kxyk y) ds
s

+pts f aw* @)
S

S is the surface area, p the investigated pressure, Dy,
and D,y the plate bending stiffness matrix components, «
the curvatures, p the plate material density, ¢ the plate
thickness, a the acceleration, w* the virtual deflection and
k* the virtual curvatures. Here, the parameters Dyy, Dy,
p and tg are known from the plate manufacturer. ¥ and a
are obtained from deflectometry measurements, see ‘“Data
Acquisition and Processing” below. For the selection of the
virtual fields w* and «* one needs to take into account
theoretical as well as practical restrictions of the problem
like continuity, boundary conditions and sensitivity to noise.

The problem can be simplified by assuming the pressure
p to be constant over the investigated area and by approxi-
mating the integrals with discrete sums.

_ *1 *i *i
p = (Dxx E Ko K”Kyy + 2nyKXy

2K.i K*i

0 *i
+ny ZKxxKyv + Knyxx — “xyfxy

—1

N N
+ptg Z aiw*i> (Z w*i> . 5)
i=1 i=1

Here, N is the number of discretised surface elements dS'.
Virtual Fields

For the present problem of identifying an unknown load
distribution, it is beneficial to choose piecewise virtual
fields due to their flexibility [18-20, 22]. In this study, the
virtual fields are defined over a window of chosen size
which is then shifted over the surface S until the entire
area is covered. One pressure value is calculated for each
window. In the following, this window will be referred to
as pressure reconstruction window PRW. This procedure
also allows for oversampling in the spatial reconstruction by
shifting the window by less than a full window size.

Here, the only theoretical requirements for the virtual
fields are continuity and differentiability. Since curvatures
relate to deflections through their second spatial derivatives
for a thin plate in pure bending, the virtual deflections are
required to be C! continuous. It is further necessary to
eliminate the unknown contributions of virtual work along
the plate boundaries. This is achieved by choosing virtual
displacements and slopes that are zero around the window
borders. 4-node Hermite 16 element shape functions as used
in FEM [42] fulfill these requirements. The full equations
defining these functions can be found in [14, chapter 14].
Figure 3 shows example virtual fields. 9 nodes are defined
for a PRW. All degrees of freedom are set to zero except for
the virtual deflection of the center node, which is set to 1.
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Fig.3 Example Hermite 16 virtual fields with superimposed virtual elements and nodes (black). &1, & are parametric coordinates. The example
window size is 32 points in each direction. Full equations can be found in [14, chapter 14]

The size of the PRW is an important parameter for the
pressure reconstruction. Generally, the presence of random
noise requires a larger PRW in order to average out the
effect of noise on the pressure value within the window. A
smaller PRW however can perform better at capturing small
scale spatial structures, as large windows may average out
amplitude peaks. One challenge in varying the window size
is that the systematic error varies with it, as well as the effect
of random noise on pressure reconstruction. This problem is
investigated numerically in “Simulated Experiments”.

Experimental Methods
Setup

Figure 4 shows a schematic of the experimental setup.
A round, fan-driven impinging air jet was used to apply
pressure on the specimen. The jet was fully turbulent at a
downstream distance of 0.5 cm from the nozzle exit. The
specimen was glued on a square acrylic frame. The grid was
printed on transparency and fixed between two glass plates
in the setup. A white light source was placed behind it. The

Fig.4 Experimental setup

camera was placed next to the grid at the same distance from
the sample such that the reflected grid image is recorded at
normal incidence. The distance between the sample and grid
was chosen to be as large as possible in order to minimise
the angle 6 (see Fig. 2). Two different glass sample plates
were investigated, one with thickness of Imm and the other
3 mm. All relevant experimental parameters are listed in
Table 1.

Grid

A cross-hatched grid printed on a transparency was used
as the spatial carrier. Sine grids printed in x- and y-
direction would be preferable for phase detection as they
do not induce high frequency harmonics in the phase
detection. Printing these in sufficient quality is however
difficult to achieve with standard printers. Using a hatched
grid and slightly defocusing the image achieves a similar
result because the discrete black and white areas become
blurred, effectively yielding a grey scale transition between
minimum and maximum intensity. This does however result
in a slightly lower signal to noise ratio. It should be noted
that when printing the grid, an integer number of printed

Jet

Grid = Light
hn hg = source
o1 w| H
Sample .
Camera
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Table 1 Setup parameters

Optics
Camera Photron Fastcam
SAl.1
Technology CMOS
Camera pixel size 20 um
Surface fill factor 52%
Dynamic range 12 bit
Settings
Resolution 1024 x 1024 pixels
Frame rate f 50 fps
Exposure 1/100 s
Region of interest 64 x 64 mm?
Magnification M 0.32
f-number NLens 32
Focal length SLens 300 mm
Light source Halogen, 500 W
Sample
Type First-surface mirror
Material Glass
Young’s modulus E 74 GPa
Poisson’s ratio v 0.23
Density o 2.510° kgm™3
Thickness ts 1 mm, 3 mm
Side length Is ca. 90 mm, 190 mm
Grid
Printed grid pitch PG 1.02 mm
Grid-sample distance hG 1.03m
Pixels per pitch PPP 8
Jet
Nozzle shape Round
Nozzle diameter D 20 mm
Area contraction ratio 0.13
Nozzle exit dynamic pressure Dexit 630 Pa
Reynold’s number Re 4-10*
Sample-nozzle distance hN 40 mm

dots per half pitch is required to avoid aliasing (e.g., [43]).
For the current setup, grids with 1 mm pitch were printed on
transparencies using a Konica Minolta bizhub C652 printers
at 600 dpi.

Sample

The choice of the sample plate material and finish proved
crucial for the investigation of small pressure amplitudes
and spatial scales. The surface slopes under loading need to
be large enough for detection, while at the same time the
sample surface has to be plane enough for the grid image

SEM

to be sufficiently in focus over the entire field of view.
Perspex mirrors, polished aluminium and glass plates with
reflective foils proved either too diffusive due to the
Rayleigh criterion or insufficiently plane, resulting in a lack
of depth of field when trying to image the reflected grid.
Optical glass mirrors were chosen instead, as they provide
adequate stiffness parameters and remain sufficiently plane
when mounted. As it was possible to estimate the slope
resolution from the noise level observed when recording two
undeformed images on any sample thickness, deformation
estimations based on the expected experimental load were
used as input for finite element simulations to select suitable
plate parameters. It was found that plates with thickness of
3 mm or lower were required. Good results were achieved
using a 1 mm thick first-surface glass mirror as specimen.
Still, fitting the 1 mm glass mirror on the frame caused it
to bend slightly, resulting in small deviations from a perfect
plane and subsequent local lack of depth of field. This was
addressed by closing the aperture. A second, 3 mm thick
mirror was used for comparison as it did not bend notably
when mounted, though signal amplitudes for this case
proved to be very low. The sample plates were glued onto a
perspex frame along all edges.

Transducer Measurements

Pressure transducer measurements allowed a validation of
the pressure reconstructions from deflectometry and the
VEM. Endevco 8507C-2 type transducers were fitted in
an aluminium plate along a line from the stagnation point
outwards. The transducers have a diameter of 2.5 mm and
were fitted with a spacing of 5 mm. They were fitted to be
flush with the surface to within approximately 0.5 mm. Data
was acquired at 10 kHz over 20 s using a NI PXIe-4330
module.

Data Acquisition and Processing

One reference image was taken in an unloaded configuration
before activating the jet. The jet required approximately
20 s to settle, after which a series of images was recorded.
One data point was calculated per grid pitch during
phase detection. Slopes were calculated relative to the
reference image. Time averaged mean slope maps were
calculated over N = 5400 measurements at 50 Hz, limited
by camera storage. From the slope maps the curvatures
were obtained through spatial differentiation using centered
finite differences. This requires knowledge of the physical
distance between two data points on the specimen. It
corresponds to the portion of the mirror required to observe
the reflection of one grid pitch, which can be determined
geometrically assuming 6 is sufficiently small (see Fig. 2).
In the present setup, camera sensor and grid were at the
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same distance from the mirror kg, such that the distance
was half a printed grid pitch. Since differentiation tends
to amplify the effect of noise, it can be beneficial to filter
slope data before calculating curvatures. Here, the mean
slopes were filtered using a 2D Gaussian filter, performing
a convolution in the spatial domain. The filter kernel is
characterized by its side length which is determined by the
standard deviation, here denoted o, and truncated at 30, in
both directions. Because of its size, the filter kernel cannot
be applied to the data points at the border of the field of view
without padding. As padding should be avoided to prevent
bias, 60, — 1 data points were cropped along the edges of
the field of view. While acting as a low-pass filter which
reduces the effect of random noise, this technique also tends
to reduce signal amplitude.

For the investigated problem of a mean flow profile,
the accelerations average out to zero. This was confirmed
with vibrometer measurements on several points along the
test surface using a Polytec PDV 100 Portable Digital
Vibrometer. Data was acquired at 4 kHz over 20 s. The noise
level in LDV measurements was 0.3 m s~2. The observed
standard deviations varied with the position along the plate
surface and reached up to 1.4 m s~2. Therefore, the term
involving accelerations in Eq. 4 is zero as well and will
therefore be neglected in the following.

Pressure reconstructions were conducted for several
PRW sizes. The results were oversampled by shifting the
PRW over the investigated field of view by one data point
per iteration. Note that due to the finite size of these
windows, half a PRW of data points is lost around the edges
of the field of view.

Experimental Results

Slope maps obtained from deflectometry measurements
were processed and temporally averaged as described in
“Data Acquisition and Processing”. Results for both speci-
mens are presented in the following, one plate with 1 mm
thickness and 90 mm side length, and one with 3 mm thick-
ness and 190 mm side length. The region of interest is
64 mm in both directions for each test cases. Figure 5(a)—(d)
show the measured mean slope maps for both test plates.
Distances are given in terms of radial distance from the
impinging jet’s stagnation point r, normalized by the noz-
zle diameter D, in x- and y-direction respectively. Note that
the region of interest showing the jet center does not coin-
cide with the plate center, so the slope amplitudes are not
necessarily symmetric. The signal amplitudes for the 3 mm
test case are significantly lower than for the 1 mm case.
Slope shapes are different for both cases because the plates
have different side length while the field of view remains the

same size. Further, the stagnation point is off-center in the
3 mm test.

Figure 5(e)—(p) shows mean curvature maps with and
without Gaussian filter. Stripes are visible in all curvature
maps for the unfiltered 1mm test data. This indicates the
presence of a systematic error source in the experimen-
tal setup. Without slope filter, curvatures obtained from
the 3mm plate test are governed by noise. The curvature
map for xy, (Fig. 5(g)) additionally shows fringes. These
disappear after slope filtering, though filtered data still
appear asymmetric, again indicating a systematic error. To
assure that this issue occurring in for both plates does not
originate from a lack of convergence, mean and instanta-
neous curvature maps were calculated and compared. All
maps show the same bias, with small variations in amplitude.

This may be caused by misalignment between grid and
image sensor due to imperfections in the printed grid,
combined with the CMOS chip’s fill factor. This results
in a slightly varying number of pixels per grid pitch over
the field of view, which leads to errors in phase detection
and fringes. While this issue could be mitigated by careful
realignment of camera and grid as well as slightly defo-
cusing the image to address the low camera fill factor, it
could not be fully eliminated. Another possible error source
is the deviation of the plate surface from a perfect plane,
e.g. due to deformations of the sample during mounting.
Since differentiation amplifies the impact of noise, filtering
the slope maps yields much smoother curvature maps. The
downside is a possible loss of signal amplitude and of data
points along the edges (see “Data Acquisition and Processing”).

Figure 6(a)~(d) show pressure reconstructions using
different PRW sizes. Pressure is given in terms of
difference to atmospheric pressure, Ap. Here, one data
point corresponds to a physical distance of 0.5 mm, such
that a PRW of 28 points corresponds to a window side
length of 14 mm or 0.7-D~!. The large number of data
points is a result of oversampling by shifting the PRW
over the investigated area by one point per iteration. The
expected Gaussian shape of the distribution is found to be
well reconstructed for filtered data and sufficiently large
PRW, here above ca. 22 data points, for the Ilmm plate.
Reconstructions from 3mm plate tests are less symmetric.
The position of the stagnation point is visible for all shown
parameter combinations, but the shape of the distribution
shows a recurring pattern which stems from the systematic
error already observed in curvature maps. For both tests,
some reconstructions show areas of negative differential
pressure, which is unexpected for the mean distributions in
this flow. This is likely to be a consequence of random noise,
as similar patterns were observed in simulated experiments
for noisy model data (see “Grid Deformation Study”
below). For comparisons with the transducer measurements,

SEM
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Fig.5 Measured mean slope and curvature maps

pressure reconstructions were averaged circumferentially
for each corresponding radial distance from the stagnation
point. Figure 6(e) and (f) show the results. The vertical
error bars on transducer data represent both the systematic

errors of the equipment as well as the random error of the
mean pressure value. The horizontal error bars indicate the
uncertainty in placing the transducers relative to the jet.
Results from the Imm plate measurements appear to show

SEM



Exp Mech (2019) 59:1203-1221

1211

500 Ap 0 250 485 Ap

0 250

1
r,D

-05 0 0.5 -0.5 0 0.5
r,D7! r,D!

(b) Ap for 1 mm plate test,
o =0, PRW = 34.

(a) Ap for 1 mm plate test,
oo =3, PRW = 28.

800 1
700 A
600 { 8 a
g 500 1 @
5400 |
< VEM: N
300 1 0o = 0, PRW = 22
| m— 0, = 3, PRW = 28
200 0o = 0, PRW = 34
| m— g, = 0, PRW = 40
100 |-G-| Transducer data
0-— T T
0 0.25 0.5 0.75
r, D!

(e) Comparison between transducer measurements and
VFEFM pressure reconstructions for 1 mm plate test.
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(d) Ap for 3 mm plate test,
oa =0, PRW = 34.
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oa =6, PRW = 18.
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(f) Comparison between transducer measurements and
VEM pressure reconstructions for 3 mm plate test.

Fig.6 Comparison of VEM pressure reconstruction with pressure transducer data

a systematic underestimation of the pressure amplitude at
all points. Possible sources for this error are discussed in
detail in “Error Sources” below. However, the shape of the
distribution is captured reasonably well. The 13mm plate
results show a good reconstruction of the peak amplitude,
but the shape of the pressure distribution deviates due to the
influence of random noise patterns. The results clearly show
that the effects of the size of the PRW and the Gaussian
smoothing kernel o, on the reconstruction outcome are
significant. Therefore, the influence of the reconstruction
parameters is investigated numerically in the following
section.

Simulated Experiments

Comparisons of the VFM pressure reconstruction with the
pressure transducer data shows that there are discrepancies
between the results. Furthermore, it is unclear what parts
of the reconstructed pressure amplitude stems from signal,
random noise or systematic error. Processing experimental
data with noise can produce pressure distributions that
are indistinguishable from the signal of interest. It is also
important to note that the complex measurement chain from
images to pressure does not allow for analytical expressions

to be obtained and only numerical simulations can shed light
on the problem.

Numerical studies allow addressing this problem and
estimating the effects of random and systematic error [31].
As a first step, a finite element model of the investigated
thin plate problem is created. By applying a model load, the
local displacements and slopes that result from the bend-
ing experiment can be simulated. For the next step, the grid
image recorded with the camera is modelled numerically.
The simulated displacements are used to calculate the defor-
mations of the model grid image. Experimentally observed
grey level noise is added to these grids. The simulated
grids serve as input for a study of the influence of process-
ing parameters on the pressure reconstruction. Comparisons
with the model load allow an assessment of the uncertain-
ties of the processing technique in the presence of random
noise. In the last subsection, a finite element correction pro-
cedure is introduced to compensate for the reconstruction
eITOr.

Finite Element Model
Numerical data of slope maps from a thin plate bending

under a given load distribution was calculated using a finite
element simulation. This was conducted using the software
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r, D! r,D!

(b) Modelled deflections.

(a) Input load distribution.

Fig.7 ANSYS model in- and output for Imm plate model

ANSYS APDLv181. SHELL181 elements were chosen as
they are well suited for modelling the investigated thin plate
problem [44]. Both experimental test plates were simulated
as homogeneous with the parameters detailed in Table 1.
All degrees of freedom were fixed along the edges. For both
plates a square mesh was used with 1440 elements for the
1 mm thick plate and 2280 elements for the 3 mm thick
plate. This allowed obtaining 1024 points in a window cor-
responding to 64 mm, which corresponds to the experimen-
tal number of camera pixels and field of view. Figure 7(a)
shows the Gaussian pressure distribution used as input,
with an amplitude of 630 Pa and 01y, = 9 mm. Figure 7(b)
shows the resulting deflections, Fig. 7(c) and (d) the model
slopes for the Imm plate case.

Systematic Error

The simulated slopes can be used as input for the VFM
pressure reconstruction the same way as those obtained
experimentally. This allows an assessment of the system-
atic error of the processing technique independent from

Fig.8 Systematic error estimate
for VFM
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(d) Modelled slopes oay.

(c) Modelled slopes ag.

experimental errors. A metric for estimating the error of a
reconstruction was defined taking into account the differ-
ence between reconstructed and input pressure amplitude in
terms of the local input amplitude at each point:

N
1
€=~ 21: (Prec.i = Pin,i)*/Pin.i
im

Drec,i 18 the reconstructed and pip ; the input pressure at
each point i with a total number of points N. Pressure
values below 1Pa were omitted for this metric. Figure 8(a)
shows the results for the accuracy estimate for pressure
reconstructions from noise free slope data for different
PRW. The results are oversampled as in the experimental
case by shifting the PRW by one point per iteration. A
minimum exists at PRW = 22 with ¢ = 0.12, which
indicates an average accuracy of ca. 88% of the local
amplitude. The corresponding pressure reconstruction map
is shown in Fig. 8(b). It should be noted that the local
pressure amplitudes are underestimated for all investigated
cases. For increasing PRW sizes, the peak amplitude is

(6)
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(a) Uncertainty estimate for
varying PRW size.
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(b) Example pressure re-
construction from simulated
slopes using PRW = 22.
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underestimated because the virtual fields act as a weighted
average over the entire window. Small PRWs were expected
to yield best results in a noise free environment since they
average over fewer data points. This is not confirmed here.
Different finite element mesh sizes were tested to rule out
model convergence issues. The low accuracy obtained for
small windows is probably due to a lack of heterogeneity
of (real) curvature in small windows. If curvatures are
constant, they can be taken out of the integral in equation
(4). Because the virtual curvatures average out to zero
over one window, the integral then yields zero. For small
windows, this situation is approached, likely leading to
wrong pressure values. Choosing heterogeneous virtual
curvature fields could be used to address this issue in future
studies. One approach could be to defined more nodes on
each virtual field and a non-zero virtual deflections on a
node other than the center one to increase heterogeneity.
Another way could be to employ higher order approaches
for pressure calculation within one window, which is
expected to yield higher accuracy for large PRW.

Grid Deformation Study

Artificial grid deformation allows for a more comprehensive
assessment of error propagation by including the effects
of camera resolution and noise. Following the approach
described in [45], a periodic function with a wavelength
corresponding to the experimental grid pitch was used in x-
and y-direction to generate the artificial grid.

Imin — 1 I
106 y) = Inin + min . max n:‘-ax

( < 2w x ) < 2y )

cfcos|{ — ) +cos| —
PG PG
2w x 2y

cos| — ) —cos | — 7)
PG PG

Here, Inin and I, are the minimum and maximum
intensity values of the experimental grid images. The signal
amplitude values were discretised to match the camera’s
dynamic range. All simulated image parameters were set to
replicate the experimental conditions as described in
Table 1. This spatial grid signal was oversampled by a
factor of 10 and spatially integrated to simulate the signal
recording process of the camera, as detailed in [45]. To
further assess the actual experiment, random noise was
added to the artificial grid images based on the grey
level noise measured during experiments, here 0.95% and
0.61% of the used dynamic range in case of the 1 mm
and 3 mm plate tests respectively. It varies because the
illumination varied between both experiments, such that the
used dynamic range was different. The amount of random

noise is reduced with the number of measurements over
which the mean value is calculated. However, the reduction
of noise is not described by 1/+/N as would be expected.
The same observation was made in [43]. It was investigated
by taking a series of images without applying a load to
the specimen. It was found that the amount of noise in
phase maps increases with the time that has passed between
two images being taken. It is likely that this is a result of
small movements or deformations of the sample, printed
grid and camera due to vibrations and temperature changes
during the measurement. This does not fully account for the
observed effect however. As a consequence, the amount of
random noise for averages over multiple measurements has
to be determined experimentally. For 5400 measurements
on the undeformed sample, it was found that the random
noise in phase was reduced by a factor of ca. 2.5 compared
to two measurements. The values are statistically well
converged after 30 realisations of simulated noise.

The simulation neglects the effects of grid defects, lens
imperfections, inhomogeneous illumination and imperfec-
tions of the specimen. However, it does account for any
systematic errors associated with the number of pixels on
the camera sensor and the random errors coming from grey
level noise in the images. Figure 9 shows a close-up view of
simulated and experimental grid images. Simulated slopes
yield corresponding deformations of the artificial grid at
every point using equations (1) and (3). The obtained artifi-
cial grids for deformed and undeformed configurations can
now be used as input for the phase detection algorithm.
Areas with negative pressure amplitude were observed in
reconstructions from noisy model data, very similar to
those observed experimentally. A lower limit for pressure
resolution was determined by adding noise to two unde-
formed artificial grids and processing them. The standard
deviation of pressure values obtained from this reconstruc-
tion can be interpreted as a metric for the lower detection
limit of the pressure reconstruction for the corresponding
parameter combination. Values below the obtained thresh-
old are neglected in all reconstructions in the following.

Phases obtained from artificial, deformed grids were
processed and the reconstructed and input pressure were
compared using the metric introduced in equation (6). This
allows quantifying the systematic error of phase detection
and VFM for all combinations of the relevant processing
parameters. Oversampling in the phase detection algorithm,
i.e. calculating more than one phase value per grid pitch,
was found to improve the results, though at high compu-
tational cost. Particularly in combination with larger PRW
and slope filter kernels, phase oversampled slope maps
yield diminishing improvements in accuracy in terms of the
overall cost. In the VEM pressure reconstruction, oversam-
pling provided a significant improvement at acceptable cost.
The slope filter kernel size o, also increases computational
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Fig.9 Example grid sections

(a) Artificial grid after inte- (b) Experimental grid.
gration and with added noise.

cost, but mitigates the effects of random noise efficiently.
The influence of both the size of o, and PRW are inves-
tigated in the following as they yield the most significant
improvements.

Figure 10(a) and (b) show the findings for varying param-
eters o, and PRW for each plate. These allow selecting
parameter combinations with highest precision in terms of
amplitude over the entire field of view (Fig. 11). Figures 12
and 13 show example comparisons of pressure reconstruc-
tions for different €. Figure 12 shows experimental data
with two different parameter combinations for both plates
and Fig. 13 below shows the corresponding results obtained
using model data. For reference, Fig. 11 shows on top the
model input distribution sections in the respective field of

Oq

4 10 16 22 28 34 40
PRW

(a) Error estimates for varying slope filter kernel and
PRW size for 1 mm plate test and with grey level noise
0.95 % of the dynamic range.

Fig. 10 Pressure reconstruction accuracy analysis

SEM

view. As expected, reconstructions using larger smoothing
kernels tend to yield lower peak amplitudes. However, the
amplitudes in other areas are be captured better, as noise
induced peaks are filtered more efficiently. The fact that
some numerical reconstructions do not represent Gaussian
distributions well shows that noise effects are not averaged
out entirely. For the low signal to noise ratio encountered in
the 3 mm plate case, some reconstructions overestimate the
peak pressure amplitude. This is a consequence of the dif-
ferentiation of slope noise, which leads to large curvature
and thus pressure values. Since this also leads to areas in
which the pressure amplitude is underestimated, the effect
averages out for sufficiently large slope smoothing kernel
and PRW.

4 10 16 22 28 34 40
PRW

(b) Error estimates for varying slope filter kernel
and PRW size for 3 mm plate test and with grey
level noise 0.6 % of the dynamic range.
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(¢) Section corresponding to
oo = 6, PRW = 34 recon-
struction.

Fig. 11 Model input pressure distribution sections for comparison with reconstruction results
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(a) Pressure reconstruction for
1 mm plate good accuracy es-
timate (0o = 6, PRW = 28,
e = 0.08).

Fig. 12 Comparison of pressure reconstructions from experimental data for different parameter combinations
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(a) Pressure reconstruction for
1 mm plate for good accuracy
estimate (0o = 6, PRW = 28,
€ = 0.08).
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(b) Pressure reconstruction
for 1 mm plate for oo = 0,
PRW =22, ¢ = 0.4.
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(b) Pressure reconstruction
for 1 mm plate for poor ac-
curacy estimate (oo = O,
PRW =22, ¢ = 0.4 ).
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(¢) Pressure reconstruction
for 3 mm plate for good ac-
curacy estimate (oo = 6,
PRW = 34, ¢ = 0.2).
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(c) Pressure reconstruction
for 3 mm plate for good ac-
curacy estimate (oo = 6,
PRW = 34, ¢ = 0.2).

Fig. 13 Comparison of pressure reconstructions from noisy model data for different parameter combinations
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(d) Pressure reconstruction
for 3 mm plate for poor ac-
curacy estimate (oo = 2,
PRW = 28, ¢ > 0.5).
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(d) Pressure reconstruction
for 3 mm plate for poor ac-
curacy estimate (oo = 2,
PRW = 28, ¢ > 0.5).
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Fig. 14 FE corrected results for noise free model data

Finite Element Correction

The systematic error caused by the reconstruction technique
which was identified above shows an underestimation of the
input pressure for noise free data. In the presence of noise,
a similar observation is made for large enough signal to
noise ratio as in the 1 mm plate case. This error source can
be mitigated with a finite element correction procedure. For
this approach, an initial reconstructed pressure distribution
is used as input for the numerical model described above.
In practice, this is the experimentally identified distribu-
tion from the VFM. Processing the resulting slope maps
obtained using the finite element model (see “Finite Element
Model”) yields the first iterated pressure distribution. The
difference between this iteration and the original pressure
reconstruction corresponds to the systematic error at every

Fig. 15 Error estimates for 0
circumferentially averaged
pressure reconstructions for
varying slope filter kernel and
PRW size for Imm plate test and
with grey level noise 0.95% of
the dynamic range

Oq

point of the pressure map. This difference is generally lower
in amplitude than that between the original reconstruction
and the real pressure distribution caused by systematic
error, but it serves as a first estimation of that difference.
Adding this difference to the original reconstruction yields
an updated approximation of the real pressure distribution:

dpupdate,n = Drec + (Prec — Pit,n) ®)

This procedure can be repeated until (prec — pitn) falls
below a chosen threshold. Figure 14 shows how the input
load is well recovered after only few iterations for modelled,
noise free data. For the shown case, the second iteration
result is already well converged and much closer to the input
distribution, with an improvement from ca. 15% average
error to below 6%. Similar results were found for the other
investigated PRW sizes.

An application to experimental data is more challenging.
Each iteration tends to amplify noise patterns in pressure
maps from both random and systematic error sources.
Reconstructions from smoothed slope maps mitigate this
issue, but suffer from a reduced number of available data
points. Note that for each iteration, the size of one smooth-
ing window, i.e. 60, plus half a PRW of data points is lost
around the edges (see also “Data Acquisition and Processing”).
Here, this can be mitigated by using reconstructions with
small slope smoothing kernels and by calculating circum-
ferential averages from the stagnation point outwards, thus
averaging out some of the random noise. These are then
extrapolated to 2D distributions to obtain a suitable input for
the finite element updating procedure. The entire process is
applied to both numerical and experimental data, allowing

0.1 0.2

PRW
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for a comparison of the results and thus further assessment
of the influence of systematic experimental errors.

To select the correct reconstruction parameters for this
approach, the accuracy assessment was repeated using cir-
cumferential averages instead of the entire field of view. The
results vary, because low amplitude pressures are now aver-
aged over a larger number of data points. Further, part of the
field of view with low pressure amplitude is not taken into
account as it is rectangular. The result is shown in Fig. 15.
Figure 16 shows the results for iterations of experimental
data and noisy model data. A 10% error bar corresponding
to the estimated uncertainty resulting from the material’s
Young’s modulus is shown for the iterations on experi-
mental data at the positions of transducers for comparison.
Figure 16(a) shows that for o, = 3 and PRW = 28 the peak
amplitude from transducer measurements is approximated

to about 10% after 2 iterations of the experimental data.
Since slope smoothing leads to a significant loss in data
points, no further iterations are possible for this case. The
corresponding numerical case, see Fig. 16(b), shows a close
approximation of the input load.

For experimental data and o, = 0 and PRW = 34, see
Fig. 16(c), the influence of noise patterns becomes visible.
These patterns are amplified by the correction procedure.
Numerical data show a very good approximation of the
input load, whereas experimental VFM data deviate from
transducer data by ca. 10% after correction.

For 0, = 0 and PRW = 22, see Fig. 16(e), noise effects
in experimental data are significant. Therefore, regularisa-
tion is necessary before iterating the results. Here, a fourth
order polynomial was fitted to the averaged results. The iter-
ated corrections once again approximate the transducer data

Fig. 16 Finite element updating
results. Error bars on VFM 600 4 a L 600 L
represent the estimated Tm———

. . 500 | L 5004 L
uncertainty resulting from the 500 e & 500
material’s Young’s modulus. = 400 ~~ L 400 L
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errors of the equipment as well 200 4 HP-4  Transducer data L 200 4 Model pressure input L
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(a) Iteration of experimental data, oo = 3 and PRW = 28.

(b) Iteration of model data with noise, 0o = 3 and PRW = 28.
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(c) Iteration of experimental data, oo = 0 and PRW = 34. (d) Iteration of model data with noise, 6o = 0 and PRW = 34.
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(e) Iteration of experimental data, oo = 0 and PRW = 22.

D!
(f) Iteration of model data with noise, 0o = 0 and PRW = 22.
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to within ca. 10% of the peak amplitude. Figure 16(f) shows
that for noisy model data an acceptable original estimation
of the input amplitude is obtained. The corresponding cor-
rected pressure distribution overestimates the peak and low
range pressure amplitudes of the input distribution by ca.
5% of the peak amplitude. The in comparison to numer-
ical data more pronounced noise patterns in experimental
data (see also Figs. 11(b) and 12) were found to stem not
only from random but also from systematic error sources
(see “Experimental Results”). They may also be the reason
for the large difference between experimental and numer-
ical data in the initial reconstruction amplitude, here for
PRW = 22 ca. 15%.

All iterations appear reasonably well converged after the
second iteration. Notably, the difference in peak amplitude
is reduced to around 10% or better for all investigated cases.
The outcome depends on the prevalence of noise patterns,
which is more pronounced for small PRWs and small or no
slope filters. However, larger reconstruction windows and
filter kernels do not allow for many iterations since the loss
of data points around the edges increases with PRW size.

Error Sources

The presented comparisons between real and simulated
experiments have shown the influence of random noise
and processing parameters on the pressure reconstruc-
tion. Experimental random noise patterns were qualitatively
reproduced with the modelled data for all investigated cases.
The presence of random noise was found to have a significant
impact on the reconstruction results. A systematic error in
the processing method was found to result in an underes-
timation of pressure amplitudes for noise-free model data.
This error varies with the processing parameters. Further,
a systematic experimental error appears between recon-
structed and transducer-measured pressures. It was found
that reconstructions from model data were consistently
closer to the input data than the experimental reconstruc-
tions were to pressure transducer data, which are an estab-
lished measurement technique. Based on the comparisons of
numerical and experimental data shown in “Finite Element
Correction”, this error resulted in an additional underesti-
mation of approximately 10% of the peak amplitude.

There are several possible sources for this experimen-
tal error. Miscalibration, i.e. non-integer numbers of pixels
per pitch in the recorded grid, can lead to errors in the
detected phases. It can be caused by misalignments between
camera sensor and printed grid. Even with careful arrange-
ment, small deformations of the specimen surface can cause
misalignment issues. Note that these can also occur due
to the deformations of the specimen under the investigated
(dynamic) load. Misalignment can particularly result in

SEM

fringes which can lead to the unexpected patterns observed
in curvature maps in “Experimental Results”. Irregularities
and damages in the printed grid can also result in errors dur-
ing phase detection. The influence of these error sources
on pressure amplitude is however difficult to quantify.
Another possible error source is wrong material param-
eter values, particularly the Young’s modulus. The data
information provided by the manufacturer gives a value of
E = 74 GPa, but values between 47 and 83 GPa are found
for glass in the literature (e.g. [46, table 15.3]). 3- and
4-point bending tests on the specimen yielded values
between 69 and 83 GPa before the sample broke. Note that
the relationship between Young’s modulus and plate stiff-
ness matrix components, and thus pressure amplitudes (see
equation (4)), is linear, i.e. a 10% higher value of E would
increase all pressure amplitudes by 10%, compensating for
the discrepancy observed here. Deviations of the Poisson’s
ratio from the manufacturer information would have a sim-
ilar impact. Since the plate stiffness matrix components are
proportional to the third power of the plate thickness, errors
in its determination have a higher impact than is the case
for the other material parameters. Several measurements
did however confirm the thickness values provided by the
manufacturer. Assuming an error of 0.1% in the plate thick-
ness as worst case estimate, one obtains a 3% error in the
pressure amplitude.

Also, the assumptions of negligibility of rigid body
movement and out of plane displacement need to be consid-
ered. LDV measurements on the frame holding the speci-
men showed no results above noise level, which corresponds
to 0.1 um here. Rigid body movement can therefore be
ruled out as a relevant error source. The effect of out of
plane displacements can be estimated based on the expected
deflections, w, and the distance between grid and speci-
men. A detailed derivation of this relationship is given in
[43, chapter 2.1.2]. The resulting error on curvature maps is
Koop = hl The finite element simulations from “Simulated
Experiments” showed that the deflections for the Imm plate
test can be expected to be smaller than 2um, which would
correspond to an error in curvature of kp = 21073 km~!.
This worst-case estimate corresponds to an error of only
0.05% of the peak curvature signal amplitude. Finally, the
thin plate assumptions were tested using the finite ele-
ment simulation introduced in “Finite Element Model”.
The chosen SHELL181 elements are suited for linear as
well as for large rotation and large strain nonlinear applica-
tions. This means that simulated slopes and curvatures could
deviate from those calculated from the deflections using
thin plate assumptions (see e.g., [10]), if the latter were in
fact not applicable. The simulated and the calculated slopes
and curvatures were compared to verify the validity of the
assumptions. For the Imm thick plate it was found that the
difference was five orders of magnitude below the signal
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amplitude in case of slopes and thee orders of magnitude in
case of curvatures.

Limitations and Future Work

This study shows that it is possible to obtain full-field
pressure measurements of the order of few O(100)Pa ampli-
tude with the described setup and processing technique. A
number of experimental limitations were encountered from
applying this method to low amplitude loads. Small grid
pitches are required to provide the required slope resolution.
These require a very smooth and plane specular reflective
specimen surface. Further decreasing the grid pitch would
require more camera pixels to investigate the same region
of interest, as the phase detection algorithm requires a mini-
mum amount of pixels per pitch. Alternatively, the distance
between grid and sample could be increased, which would
require a different lens to achieve the same magnification.
Furthermore, the specimen has to be stiff enough to pro-
vide a plane surface when mounted to avoid bias errors, but
is required to deform sufficiently to provide enough signal
for the measurement technique. The issue of misalignment
could be addressed by using high precision components like
micro stages with stepper motors to arrange camera, sample
and grid.

Another approach is the use of infrared instead of vis-
ible light for deflectometry, with heated grids as spatial
carrier [47]. Since infrared light has a longer wavelength
than visible light, it allows achieving specular reflection
on specimens that do not have mirror-like but reasonably
smooth surfaces with up to about 1.5 um of RMS rough-
ness, like perspex and metal plates. However, available
cameras are limited in terms of spatial and temporal reso-
lutions. Further issues are the lack of an aperture ring and
that the lenses required to achieve comparable magnifica-
tion are more expensive. An extension of the application of
deflectometry to moderately curved surfaces was presented
recently [34]. This approach requires a calibration for defor-
mation measurement. Furthermore, the required depth of
field is a restricting factor for the use of small grid pitches.
A successful combination of deflectometry measurements
on curved surfaces with VEM pressure reconstruction would
be of great value, as it would allow direct measurements
on practically relevant surfaces like e.g. aerofoils, fuselages
and ship hulls.

In future studies, the turbulent fluctuations that occur in
many practical flows like the impinging jet used here will
be investigated. Typically they have pressure amplitudes
of the order of few O(10)Pa and below. These could not
be resolved in this study. Preliminary analyses of time
resolved data taken at 4 kHz show that this is in parts due
to a systematic experimental error, which results in spatial

distributions fluctuating at low frequency and relatively
high amplitude. The application of Fourier analyses and
Dynamic Mode Decomposition (DMD) are currently being
investigated with promising first results. Dynamic full-
field pressure reconstruction of turbulent fluctuations are a
continuous challenge for current experimental measurement
techniques due to their low amplitudes and small spatial
scales, rendering the further development of the technique
presented here highly relevant.

Another currently investigated improvement involves
employing the aforementioned higher resolution cameras
and smaller grid pitches to increase slope sensitivity and
spatial resolution. This approach does not allow for time
resolved measurements due to frame rate limitations of high
resolution cameras, but first tests using phase averaging
for periodic flows generated by synthetic jets are very
promising.

Finally, the selection of virtual fields is an important fac-
tor in improving the quality of reconstructions. Particularly
higher order approaches in pressure identification are likely
to reduce the systematic error.

Conclusion

This work presents a method for surface pressure recon-
structions from slope measurements using a deflectometry
setup combined with the VFM. Experimental and numerical
methods have been introduced to assess the pressure recon-
structions.

— Low amplitude pressure distributions were recon-
structed from full-field slope measurements using the
material constitutive mechanical parameters.

— Experimental results are presented and compared for
several reconstruction parameters and for two different
specimen.

— VFM pressure reconstructions were compared to
pressure transducer measurements.

— Simulated experiments employing a finite element
model and artificial grid deformation were used to
assess the uncertainty of the method.

— The numerical results were used to select optimal
reconstruction parameters, taking into account experi-
mentally observed noise.

— A finite element correction procedure was proposed
to mitigate the systematic error of VFM pressure
reconstructions.

—  Error sources were discussed based on the findings of
both the experimental and the simulated results.

A systematic processing error leading to an underestimation
of the pressure amplitude was identified. Since the shape
of the distribution is still reconstructed well, it is possible

SEM
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to compensate for this error using the proposed numerical
approaches as long as noise patterns are not too pronounced.
A systematic experimental error was found to result in an
additional underestimation of the pressure amplitude by ca.
10% more than simulated reconstructions. Yet, the results
stand out in terms of the low pressure amplitudes and the
large number of data points obtained.

Data Provision

All relevant data produced in this study is available under
the DOI https://doi.org/10.5258/SOTON/D0973.
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