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Abstract
In drought frequency analysis, as the number of drought variables increases, the joint behavior
between these variables needs to be studied. Therefore, this study aims to develop a flexible
four-variate joint distribution function of the regional stochastic nature of drought. Using run
theory, drought duration, severity, peak, and inter-arrival time were abstracted from the
Standardized Precipitation Evapotranspiration Index (SPEI) aggregated at six months, ob-
served in mainland China between 1961 and 2013. As these drought variables showed
significant dependence properties and followed different marginal distributions, we employed
and compared six four-variate symmetric and asymmetric Archimedean copulas (i.e., Frank,
Clayton, Gumbel–Hougaard). The best-fitting model for each region was carefully selected
using RMSE, AIC, and BIAS goodness-of-fit tests. Results revealed that the empirical and
theoretical probabilities of the symmetric Clayton in regions NE (Northeast), CS (Central and
Southern China), EMC (Entire China), and symmetric Frank in regions NC (North China), SC
(South China), IM (Inner Mongolia), NW (Northwest), TP (Tibet Plateau) agreed well.
Symmetric Frank copula was considered the best-fit for station-based drought analysis in
EMC. Based on these copulas, the drought probabilities and return periods for the occurrence
of drought events over the next 5, 10, 20, 50, and 100 years in each region were hereby
comprehensively explained, and the results shown here could be helpful in the appraisal of the
adequacies of water supply systems under drought conditions in all regions. This study showed
that a four-variate copula approach is a vital tool for probabilistic interpretation of hydrological
and meteorological data in the different climatic region of mainland China.
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1 Introduction

Drought-affected areas have remarkably increased over the past 50 years in China as a result of
variation in precipitation (P) and temperature (Yang et al. 2013; Leng et al. 2015; Chang et al.
2016). In fact, a noticeable extreme winter-spring droughts events occurred in southwest China
from August 2009 to May 2010 (Lu et al. 2011; Lu et al. 2012; Zhang et al. 2012; Yang et al.
2013), while in 2011 the middle and lower reaches of the Yellow River were impacted by the
spring-summer drought (Lu et al. 2013; Zhao et al. 2013; Chang et al. 2016). Droughts have
caused greatest damages in China during 1949–1995, and many damages have resulted to
economic losses more than the US $12 billion (Xu et al., 2015a; Qin et al. 2015; Chang et al.
2016). Consequently, droughts are of prominent concern in the outlining and control of water
resources. Studying meteorological droughts is necessary by itself, and also because they act as
antecedents to the longer-lasting and more significant agricultural and hydrological droughts
(Haslinger et al., 2014, Wilhite et al., 2014).

The popular method of assessing drought risk requires the calculation of the probability that
a specific value of drought variable will be exceeded, which is equal to the evaluation of the
recurrence interval (Prohaska et al. 2008; Chen et al. 2012). This procedure is normally
focused on the univariate frequency analysis. In this analysis, the authors have concentrated
on some characteristic of drought and assume that the other variables are constant. A direct
attempt to simplify the multi-dimensional character of droughts has been investigated by
several authors (Shiau, 2006; Ganguli and Reddy, 2014; Huang et al., 2014a). Although the
simplistic analysis produces practical results, it does not strictly represent the actual mathe-
matical interactions between the various dimensions of the phenomenon and obviously cannot
give accurate results. Since drought variables are usually reliant on one other, a proper
frequency analysis of droughts should consider such dependencies within a suitable
multivariate framework.

It should be mentioned that the attention of researchers in multivariate modeling has
increased considerably in the last decades, due to the application of copulas. The comprehen-
sive theoretical structure proposed by Sklar (1959) can be gathered from Nelsen (2006), Joe
(1997) and Salvadori et al. (2007). There have been diverse cases of copula applications in the
setting of drought management (Serinaldi et al., 2009; Shiau and Modarres, 2009; Kao and
Govindaraju, 2010; Wong et al., 2010; Song and Singh, 2010; Mishra and Singh, 2010;
Mirabbasi et al., 2012). This includes return-period estimation (Salvadori and De Michele,
2010), multivariate simulation (AghaKouchak et al. 2010), propose a new drought indicator
(Kao and Govindaraju, 2010), and many other theoretical studies of multivariate severe issues
(Salvadori and De Michele, 2015; Zhang et al. 2015a; She et al. 2016). There are several types
of copula functions, which have been described (e.g. Nelsen, 1999). The regularly applied
copula for hydrological analysis belongs to four classes which includes: Archimedean class
(AMH, Frank, Clayton, Gumbel, and Joe), elliptical class (student t and normal), extreme
value class (Gumbel, Galambos, Tawn, Husler-Reiss, and t-EV), and miscellaneous class
(Farlie–Gumbel–Morgenstern and Plackett) (Shiau and Modarres, 2009; Mirabbasi et al.
2012; Lee et al. 2013; Xu et al., 2015b). The Archimedean class of copulas are characterized
by their simple structure and strong representativeness (Huang et al., 2014a; Tsakiris et al.,
2016).

There are many applications of two-variate copula-based drought studies in many countries.
For instance in China, Shiau (2006) built a joint distribution between drought severity and
duration in Southern Taiwan while Shiau and Modarres (2009) employed Clayton copula to
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model drought severity and duration frequency curves for two climatic regions in Iran. Tsakiris
et al. (2016) analyzed drought severity and areal extent utilizing Gumbel-Hougaard copula in
Greece. The Frank and Gumbel–Hougaard have been considered the best copulas for illus-
trating drought occurrence frequency in Canada and Iran, respectively (Lee et al. 2013). Meta-
Gaussian copula was applied for the joint modeling of drought variables within Texas (Song
and Singh, 2010) while drought duration and severity of Sharafkhaneh in the northwest of Iran
was modeled using Galambos copula (Mirakbari et al., 2010). In each of the cases, some
bivariate probabilistic properties of droughts were investigated.

Three-variate Archimedean copulas have been employed for the joint distribution of
rainfall, drought and flood events (Grimaldi and Serinaldi, 2006; Zhang and Singh 2007).
Using asymmetric Archimedean copulas, Serinaldi and Grimaldi (2007) described an inference
procedure to carry out a three-variate frequency analysis. Ma et al. (2013) created a joint
distribution of drought duration, severity, and peak using elliptical, asymmetric and symmetric
Archimedean copulas. Because of the flexibility of meta-elliptical copula (Fan et al. 2016),
many meta-elliptical, Clayton, Frank, Gumbel-Hougaard, and Ali-MikhailHaq copulas have
been employed to create a joint distribution of drought severity, duration, and interval time,
and the best copula was chosen (Song and Singh, 2010).Three-variate Plackett copulas have
been adopted for the investigations of extreme rainfall cases (Kao and Govindaraju, 2008) and
for modeling a joint distribution of drought duration, severity and inter-arrival time (Song and
Singh, 2010). Student’s t copula has been utilized to identify three-variate drought events
under the control of La-Nina, EL-Nino, and natural climate state in New South Wales,
Australia (Wong et al. 2010). Other studies on drought frequency analysis using copula
includes Huang et al. (2014a, b), Zhao et al. (2015), Zhang et al. (2015b), Zhang et al.
(2017) among others.

Crucial hurdles remain not only in drought characterization but also in the interpretation of
drought variables to information relevant for regional monitoring, early warning, and water
resources planning. Assuming that the territorial unit affected by drought is the entire region,
there are two variables which together characterize each drought event; the severity
and the duration. If the peak and interarrival time of drought are considered as an
additional variable, a four-dimensional copulas approach may be used in which
duration, severity, peak and interarrival time of droughts can be jointly analyzed.
Recently, the applications of four-variate copula have been reported. De Michele et al. (2007)
proposed a procedure towards building four-variate distributions, stating two copulas for a
separate two-variate candidate case and utilizing the approach to give a four-variate nature of
sea state.

Employing a four-variate student copula, Serinaldi et al. (2009) built the corresponding
joint distributions of drought length, mean, minimum SPI values, and drought mean areal
extent to investigate their joint probabilistic characteristics. So far, most of the research focused
on parametric two-variate and symmetric three-variate copulas (Ganguli and Reddy, 2014), but
four-variate copulas are somewhat limited because their constructions are very complicated.
Although there have been some attempts to construct multivariate extensions of two-variate
Archimedean copula (Embrechts et al., 2003; Whelan, 2004; Savu and Trede, 2010), however
such studies seldom compares the performances of four-variate symmetric and asymmetric
copulas in different climatic regions of China, considering probability and return periods of
drought events. Further, knowing that droughts are multiplex phenomena, two- and three-
variate analysis cannot give an exhaustive appraisal of droughts because the investigation
could lead to a deficient drought probabilistic estimation (De Michele et al. 2005; Grimaldi and
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Serinaldi, 2006; Chebana and Ouarada, 2011; Ganguli and Reddy, 2014; Xu et al., 2015a;
Tsakiris et al. 2016).

Given the challenges as mentioned above in drought characterization, a focused research is
required to comprehensively analyze and delineate drought trends and spatiotemporal patterns
more flexibly and intuitively. It is, therefore, the objective of this paper to produce a
methodology using the four-variate copulas approach for analyzing the multivariate drought
frequency of droughts. In particular, we built a joint distribution utilizing drought duration
(Dd), severity (Ds), peak (Dp) and inter-arrival time (Di), based on four-variate symmetric
(Clayton, Frank, and Gumbel) and asymmetric (Clayton, Frank, and Gumbel) Archimedean
Copulas. We showed how it could be used (i) to observe the temporal evolution of a drought
event, and (ii) to perform a real-time appraisal of drought in seven climatic regions of mainland
China over 1961–2013. The risks of drought events have been described based on joint
probability and return periods, which has become a conventional method for a risk-based plan
of water resources structures.

The paper is prepared as follows. Section 2 describes details about the study area and data,
Standardized Precipitation Evapotranspiration Index (SPEI) calculation and estimation of Dd,
Ds, Dp, and Di. Section 3 introduces the four-variate symmetric and asymmetric Archimedean
copula. Section 4 compares the performance of the copulas. Section 5 selects the best-fitted
copula to build a joint distribution of Dd, Ds, Dp, and Di in seven climatic regions of China.
Section 6 contains some concluding remarks.

2 Study Region and Data

Geographically, China lies between 150N - 600N and 75°E - 135°E. By its geographical extent,
China is endowed with diverse landforms that include hills, mountains, high plateaus and
deserts in the western reaches, while in the central and east areas, the land slopes into broad
plains and deltas. From the higher elevations in the west, thousands of rivers drain the country
eastwards; the most significant are the Yangtze (i.e., the longest river in China and third longest
in the world), Heilong (Amur), Mekong, Pearl, and Yellow river. The climate of China
fluctuates significantly from one region to another because of its tremendous space, complex
topography as well as variation in monthly P and temperature (Zhai et al. 2010; Wu et al.
2011). The northern China and western are influenced by dry climate while humid and semi-
humid predominates over eastern China (Wu et al. 2011).

Based on topography and climate, China is divided into seven climatic regions (Zhao,
1983; Ayantobo et al. 2017). Northeast humid/semi-humid warm region (NE, 72 stations),
North China humid/semi-humid temperate zone (NC, 104 stations), Central and Southern
China humid subtropical zone (CS, 165 stations), South China humid tropical zone (SC, 57
stations), Inner Mongolia steppe zone (IM, 44 stations), Northwest desert areas (NW, 61
stations), and Qinghai-Tibet Plateau (TP, 49 stations) (Fig. 1). Regions NE, NC, CS, SC are
associated with Eastern Monsoon. NW is an arid region, and the replenishment of water in this
region is mostly from melting glacial and perennial frozen soil, not from P.

The dataset employed in this research to appraise drought events are daily and monthly
weather data from 552 national basic meteorological stations in mainland China from 1961 to
2013. These 53-year records were obtained from the China Meteorological Data Sharing
Network. From Fig. 1, the meteorological stations are not uniformly spread as more are
situated within the east than western regions particularly the Qinghai-Tibet Plateau. The
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non-parametric tests were used to cross-check the reliability and quality of the climatic data.
According to Helsel and Hirsch (1992), Kendall autocorrelation test, Mann-Kendall
trend test, and Mann-Whitney homogeneity tests for mean and variance were
employed to test randomness, homogeneity, and absence of trends. The results showed
that randomness and stationarity of the weather data were fixed between the critical
points (5% statistical significance level).

3 Methods

3.1 Drought Indices and Drought Identification

Several indices have been suggested to identify and observe droughts, and there is a detailed
article on modeling drought events utilizing these indices (Mishra and Singh, 2010; Zargar
et al. 2011). Indices based exclusively on precipitation, do not consider the complexity of land
surface processes and cannot directly account for the impacts of evapotranspiration on soil
moisture. This may be a particularly serious disadvantage under warming conditions or other
changes in regional hydrology. Based on these considerations, since SPEI have been widely
applied in various copula-based drought-related studies in China (Liu et al. 2015; Xu et al.,

Fig. 1 Hydrometerological map of China showing the climatic regions, major rivers and national weather
stations
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2015b; Wang et al. 2015; Zhang et al. 2015b; Hao et al. 2017), it is therefore employed for this
study. The SPEI is a multi-scalar drought index, recommended as an enhancement of the SPI
(Vicente-Serrano et al. 2010). Firstly, in SPEI estimation, the simple water balance is calcu-
lated, which is described as a deviation in P and potential evapotranspiration (PET) for ith

month as follows:

Di ¼ Pi−PETi ð1Þ
PET is estimated according to the FAO-56 Penman-Monteith equation (Allen et al. 1998). The
World Meteorological Organization commonly approves this approach, and the calculation is
based on the minimum and maximum air temperature, wind speed, and sunshine duration. The
Di values are synthesized in each time scale as:

Dk
n ¼ ∑k−1

i¼0 Pn−1−PETn−1ð Þ ð2Þ
where k is the time scales of synthesis, and n is the month used for calculation.

Next, Di is fitted with the three-parameter log-logistic distribution. Finally, the SPEI is
obtained as standardized values, and details of the estimation can be found in Vicente-Serrano
et al. (2010). The mean value of the SPEI is 0, and the standard deviation is 1. In this study,
SPEI at the 6-month timescale, denoted by SPEI-6 is estimated for each station and seven
regions. SPEI-6 is most useful for describing the shallow soil moisture available to crops
(Reddy and Singh, 2014; Abdi et al. 2016).

Using the theory of runs (Fig. 2), drought identification is achieved by considering
drought years as a continuous period where SPEI-6 is below 0 (Shiau, 2006). Next,
significant drought variables which include Dd, Ds, Dp, and Di, are extracted. The
definitions of Dd, Ds, and Dp, can be found in Shiau (2006), Mishra and Singh
(2010) and Ayantobo et al. (2017) while Di is described as the interval between the
commencement of a drought to the start of the subsequent drought (Song and Singh, 2010).
Water manager needs to be aware of the risk of having drought scenarios of different Dd, Ds,
Dp, and Di during drought scenarios. Therefore, a four-variate distribution must be constructed
using copula functions.

Fig. 2 Definition sketch of drought characteristics showing three drought events (labeled as 1, 2 and 3), on the
basis of Run Theory. Note: Xo; Truncation level, Dd; Drought duration, Ds; Drought severity, Dp; Drought
peak, Ld; Inter arrival time, Dn; Non-drought duration, ti; initiation time, te; termination time
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3.2 Marginal Distribution of Drought Variable

The univariate distribution forms the framework of four-variate analysis using copulas. The
marginal distributions for Dd, Ds, and Dp for different climatic regions across mainland China
have been documented (Ayantobo et al. 2017). In the case of Di, ten marginal distributions
which include exponential, two-parameter exponential, Weibull, three-parameter Weibull,
generalized extreme value, inversion Gaussian, three-parameter inversion Gaussian, general-
ized Pareto, gamma, and three-parameter gamma are compared to choose the best distribution
to fit Di.

The Kolmogorov–Smirnov (KS) and Anderson-darling (AD) tests are employed as a
goodness-of-fit test, and the principle that the threshold value should be as small as possible
to preserve the largest sample is employed (Shiau and Modarres, 2009; Song and Singh, 2010;
Abdi et al. 2016). The fitted distributions of Di are compared against the empirical non-
exceedance probabilities estimated utilizing Gringorten’s plotting position function as follows
(Gringorten, 1963; Cunnane, 1978; Song and Singh, 2010):

F̂ xið Þ ¼ 1

nþ 1
∑i

m¼1Nm ð3Þ

Here, n is sample size, Nm is the amount of xi regarded as xj≤xi, i = 1,…, n, 1≤j≤i. Utilizing the
observed data (x), the marginal parameters are calculated employing the maximum likelihood
estimation.

3.3 Empirical Four-Variate Distribution of Drought Variables

The empirical four-variate joint probability distribution of Dd, Ds, Dp, andDi can be modified
from Song and Singh (2010):

F̂ xi; yi; zi; kið Þ ¼ 1

nþ 1
∑i

m¼1∑
i
n¼1∑

i
l¼1∑

i
p¼1Nmnlp ð4Þ

Here, n is size of the sample. Nmnlp is amount of (xi, yi, zi, ki) regarded as xj ≤ xi, yj ≤ yi, zj ≤ zi,
and kj ≤ ki, i = 1, …, n, 1≤j≤i.

3.4 Joint Cumulative Probability Distribution of Drought Variables

Assuming four correlated random variables of Dd, Ds, Dp, and Di are represented using X1,
X2, X3, and X4; and u1 ¼ Fx1 x1ð Þ, u2 ¼ Fx2 x2ð Þ, u3 ¼ Fx3 x3ð Þ, and u4 ¼ Fx4 x4ð Þ denote
their cumulative distribution function (CDF), respectively. Therefore, their joint CDF could be
represented as (Song and Singh, 2010):

F x1; x2; x3; x4ð Þ ¼ P X 1≤x1;X 2≤x2;X 3≤x3;X 4≤x4ð Þ ¼ ∫x4−∞∫
x3
−∞∫

x2
−∞∫

x1
−∞ f x; y; zð Þdxdydzdk ð5Þ

3.5 Modeling Four-Variate Drought Variables Using Copulas

For an explicit hydrological application of copulas, readers are referred to Joe (1997), Nelsen
(2006), Genest and Favre (2007) and Salvadori et al. (2007). By way of definition, copulas are
functions that combines marginal CDF’s to form multivariate CDF. This function allows one to
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characterize dependence properties more flexibly by separating effects of dependence from
effects of margins. Assuming F1, 2, …. , n(x1, x2,…., xn) is many variables CDF of n associated
arbitrary variables of X1, X2, . . . ., Xn with the corresponding candidate CDFF1(x1),F2(x2),…. ,
Fn(xn), next the n-dimensional CDF including univariate distributions of F1(x1), F2(x2), …. ,
Fn(xn) could be written as shown below (Sklar 1959; Nelsen, 2006; Ganguli and Reddy 2014):

H x1; x2;…xnð Þ ¼ C F1 x1ð Þ; F2 x2ð Þ;…:; Fn xnð Þf g ¼ C u1;……unð Þ ð6Þ
Here, C is a d-dimensional copula in the form: [0, 1] d→ [0, 1], with association parameter θ;
Fk(xk) = uk for k = 1, . . ., n; Uk~U(0, 1).

Archimedean copulas have been utilized because the functions can be conveniently built,
and can capture a wide range of dependence structures with many satisfactory properties.
According to Joe (1997), Nelsen (1999), Embrechts et al. (2003), Whelan (2004), and
Grimaldi and Serinaldi (2006) the generalization of n-dimensional Archimedean copula could
be represented as (Chen et al. 2012):

C u1; u2;…:; unð Þ ¼ C1 un;C2 un−1;…:;Cn−1 u2; u1ð Þ…:ð Þð Þ

¼ φ −1½ �
1 φ1 unð Þ þ φ1 φ −1½ �

2 φ2 un−1ð Þ þ⋯þ φ −1½ �
n−1 φn−1 u2ð Þ þ φn−1 u1ð Þð Þ…

� �� �� �
ð7Þ

Here,φ is the copula generator. As observed, φ1;…;φn−1 ¼ φ; Eq. (7) becomes Archimedean
n-copula and can be rewritten as (Chen et al. 2012):

C uð Þ ¼ φ−1∑n
k¼1φ ukð Þ� � ð8Þ

Many different parametric families of copulas are commonly used in dependence analysis. The
two most frequently used are elliptical copulas and the Archimedean copulas. In this study, we
consider three families of four-variate symmetric and asymmetric Archimedean copulas, paying
particular attention to Clayton, Frank, and Gumbel (Table 1), because they are simple and easy to
generate (Nelsen, 2006; Chen et al. 2012). These copulas are compared to ascertain the excellent
copula for modeling drought variables across various climatic regions of mainland China.

3.6 Copula Parameters Estimation

The parameters of Clayton, Frank and Gumbel copulas are calculated by employing the curve
fitting method (CFM). The CFM is the minimum standards of squared residuals and deter-
mined as follows (Ganguli and Reddy, 2014):

CFM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑n

i¼1 Xc ið Þ−X0 ið Þð Þ2
r

ð9Þ

Where n, xc(i), x0(i)are sample size, ith calculated value, ith observed value respectively.

3.7 Selection of Appropriate Copula Function

The goodness-of-fit assessment indices (i.e., Root mean square error (RMSE), Akaike infor-
mation criterion (AIC) and BIAS) are employed to select the best-fitted copula function
(Akaike, 1974; Zhang and Singh, 2006, 2007; Genest and Favre, 2007).
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E xc−x0ð Þ2
h ir

¼ 1

n−k
∑n

i¼1 xc ið Þ−x0 ið Þ½ �2
� �0:5

ð10Þ

BIAS ¼ ∑n
i¼1

X c ið Þ−X 0 ið Þ
X c

ð11Þ

AIC ¼ nlog MSEð Þ þ 2k ð12Þ
Where E [∘] =Mean square error (MSE) is the expectation operator; n, xc(i),x0(i)are sample
size, ith calculated value, ith observed value respectively and k is the number of parameters
utilized in getting the computed value. The copula with least values of AIC and RMSE is
selected as the best-fitted fuction.

Also, using the observed data (u), the empirical copula,Cn(u), and fitted parametric
copula, Cp(u), are compared to select the best-fitted function. ConstructingCn(u)
requires: (1) ranking Dd, Ds, Dp and Di variables considering their pseudo-
observations (Ui,1, Ui,2, Ui,3, Ui,4), (2) the empirical CDFs are constructed based on
the ranks and (3) the empirical four-variate copula are calculated using the empirical
CDFs (Nelsen, 2006; Genest and Favre, 2007):

Cn uð Þ ¼ 1

n
∑n

i¼1I Û i;1≤u1; Û i;2≤u2; Û i;3≤u3; Û i;4≤u4
n o

¼ 1

n
∑n

i¼1I
Ri;1

nþ 1
≤u1;

Ri;2

nþ 1
≤u2;

Ri;3

nþ 1
≤u3;

Ri;4

nþ 1
≤u4

� �
u ¼ u1; u2; u3; u4f g∈ 0; 1½ �4

ð13Þ

Where I (A) is the pointer variable of function Awhich gives a number of 1 if A is valid and 0
if A is invalid. Ranks of ith Dd, Ds, Dp and Di value are given as Ri, 1, Ri, 2, Ri, 3 and Ri, 4

respectively (Mirabbasi et al., 2012). The Quantile-Quantile (Q-Q) plot is then used to
compare the closeness between Cn(u) and Cp(u). graphically.

Table 1 Description of the four-variate symmetric and asymmetric Archimedean copula

Copula Family C(u1, u2, u3, u4)

CLAYTON
(Symmetric)

u−θ1 þ u−θ2 þ u−θ3 þ u−θ4 −3
	 
−1

θ

CLAYTON
(Asymmetric) u−θ14 þ u−θ31 þ u−θ32 −1

	 
θ2
θ3 þ u−θ23 −1

� �θ2
θ3

−1

 !θ2
θ3

FRANK
(Symmetric)

−1
θ1
ln 1þ −1

θ1

� �
FRANK
(Asymmetric)

−1
θ1
ln 1þ −1

θ1
e−θ1u4−1
	 
�

∙ 1− −1
θ1
∙ 1− 1− −1

θ1
∙ 1−e−θ3u1
	 
����

1−e−θ3u2
	 
Þ−1θ1 Þ ∙ 1−e−θ2u3	 
Þ−1θ1−1ÞÞ

GUMBEL
(Symmetric)

exp − −ln u1ð Þ½ð θ þ −ln u2ð Þ θ þ −ln u3ð Þ θ þ −ln u4ð Þ θ�1θÞ
GUMBEL
(Asymmetric)

exp − −ln u4ð Þθ1 þ −lnu1ð Þθ3 þ −lnu2ð Þθ3
� �θ2

θ3 þ −lnu3ð Þθ2
 !θ2

θ3

2
4

3
5

θ2
θ3

8>><
>>:

9>>=
>>;

u1, u2, u3, u4 are marginal distributions of Dd, Ds, Dp and Di, respectively; θ is symmetric copula parameter such
that θ ≥ 1; θ1, θ2, θ3 are asymmetric copula parameters such that 1 ≤ θ1 ≤ θ2 ≤ θ3
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3.8 Four-Variate Joint Drought Frequency Analysis

According to Salvadori and De Michele (2004), in a multivariate situation such that
X1, X2,. . .,Xd exceeds their corresponding thresholds (X1 > x1, . . ., Xd > xd), the joint
probability and return period of all drought events can be computed. In this study, the four-
variate joint probabilities, PDSPI, of (Dd ≥ d,Ds ≥ s,Dp ≥ p,Di ≥ i) can be calculated utilizing
the copula-based procedure modified from Shiau (2006), Ganguli and Reddy (2014):

PDSPI ¼ 1−FDSPI d; s; p; ið Þ ¼ 1−CDSPI d; s; p; ; ið Þ ð14Þ
Analogous to return periods, the four-variate joint return periods, TDSPI, of (Dd ≥ d,Ds ≥ s,
Dp ≥ p,Di ≥ i) can be estimated as follows:

TDSPI ¼ ζ
1−FDSPI d; s; p; ið Þ ¼

ζ
1−CDSPI d; s; p; ið Þ ð15Þ

In the equations above, ζ =N/q, N = period of SPEI time-series (years), q = amount of drought
events in N years. CDSPI(d, s, p, i)= four-variate joint distributions, PDSPI and TDSPI, expresses
the joint probability and return periods of occurrence of Dd or Ds or Dp or Di exceeding a
particular value of d, s, p and i, respectively.

4 Results and Discussions

4.1 Drought Properties and Joint Dependence

The statistical description of Di extracted from SPEI-6 time series are shown in Table 2. The
average regional values of Di across NE, NC, CS, SC, IM, NW, TP, and EMC during 1961–
2013 were 8.9, 11.7, 12.4, 10.1, 10.1, 14.7, 9.9, and 12.1 months, respectively. Further, the
qualitative joint dependence of Di against Di, Ds, and Dp was examined by employing a
graphical tool in the form of a scatter plot matrix (Salvadori et al. 2007; Genest and
Favre, 2007). According to Serinaldi et al. (2009), the scatter plot helps to synthesize
information on dependence structure and marginals. The joint dependence between Di,
Ds and Dp have been studied (Ayantobo et al. 2017) and would not repeat again here.
The joint dependence of Di against Di, Ds, and Dp in regions NE, NC, CS, SC, IM,
NW, TP, and EMC are shown in Fig. 3. Figure 3 gave a visual judgment on the pair-
wise dependence between drought variables (Genest and Favre, 2007). Although some
regions showed the collection of points in the lower left corner, an uphill pattern relationship
was observed from left to right. For each pair of variables, a growing positive linear
relationship existed.

The Kendall’s k, Spearman’s p, and Pearson’s classical correlation coefficients r are applied
to test the strength of the relationship of drought variables, and their respective values in
regions NE, NC, CS, SC, IM, NW, TP and EMC are shown (Table 3). Positive and significant
associations between drought variables were observed. The correlations between Dd andDs as
well as Ds and Dp were high while the correlations between Dd and Dp were small. The
dependence analysis demonstrated it in Fig. 3 and Table 3 that the mutual dependence of
drought variables are tremendous and hence suitable for building a regional joint distribution
using copula functions.
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4.2 Marginal Distribution for Inter-Arrival Time

Different marginal distributions have been recommended as a uniform procedure to fit Dd, Ds,
andDp (Shiau and Modarres, 2009; Song and Singh, 2010; Wong et al. 2010; Lee et al. 2013).
The marginal distributions and associated parameters for Dd, Ds, and Dp in different regions
of mainland China have been documented (Ayantobo et al. 2017). These distributions showed
that the empirical and theoretical distributions had an excellent agreement. In the case of Di,
many marginal distributions were also compared and the goodness of fit evaluated. According
to Table 4, the KS and AD values were compared for each distribution, and their respective
ranks in each region are shown. It was demonstrated that the KS was better than the AD test.
Therefore, based on the KS test, the generalized Pareto was the best for regions NE, NC, CS,
SC, NW, TP and EMC while gamma was the best for region IM because they had the smallest
values. As given in Table 5, the parameters of the distributions were calculated using the MLE
and after that used to fit the drought data.

4.3 Copula-Based Four-Variate Joint Distributions

Table 6 presents the copula parameters, AIC, RMSE and BIAS values in regions NE, NC, CS,
SC, IM, NW, TP and EMC used to compare the performances of the symmetric and
asymmetric copulas. It could be observed that the copula parameters are positive; connoting
that four-variate dependence existed between variables of Dd, Ds, Dp, and Di. Generally, it
was shown that symmetric copulas fit better than the asymmetric copulas because they had the
lowest RMSE and AIC values in most regions. In the symmetric class, the RMSE and AIC
values of Clayton and Frank were more or less the same but gave different fittings in the
different region. Clayton copula was best for regions NE, CS and EMC while Frank copula
was the best for NC, SC, IM, NW, and TP because they had the smallest values of RMSE and
AIC.

The observed and theoretical probabilities of the symmetric and asymmetric copula func-
tions are compared in Fig. 4. The figure showed that the theoretical probabilities for the
Clayton in regions NE, CS, EMC, and Frank copula in NC, SC, IM, NW, TP fit the observed
values very well.

Further, the theoretical joint probabilities of the occurrence orders of the observed values
were evaluated. As shown in Fig. 5, the theoretical joint probabilities were sketched against

Table 2 Statistical description of drought inter-arrival time across different regions during 1961–2013

Statistic Climatic region EMC

NE NC CS SC IM NW TP

Event 68 52 51 63 63 43 64 53
Range 22 34 32 30 38 60 35 25
Mean 8.97 11.71 12.42 10.07 10.05 14.74 9.92 12.10
Variance 27.24 67.21 65.06 51.21 56.51 164.54 61.66 57.70
Std. Deviation 5.22 8.19 8.07 7.16 7.52 12.83 7.85 7.60
Coef. Variation 0.58 0.70 0.65 0.71 0.75 0.87 0.79 0.63
Std. Error 0.64 1.15 1.14 0.92 0.95 1.98 0.99 1.05
Skewness 0.82 1.09 0.58 1.10 1.51 1.64 1.28 0.52
Kurtosis 0.98 1.17 −0.23 0.78 3.23 3.25 1.29 −0.82
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empirical probabilities, which showed that there were significant differences between empir-
ical and theoretical joint probabilities. The plots of all the copulas deviate from the
450 diagonal line uniquely. The maximum deviations from the diagonal line were
observed for Gumbel plots, showing that the functions might not be suitable for
building joint dependence. The symmetric Clayton in regions NE, CS and EMC,
and symmetric Frank in regions NC, SC, IM, NW, and TP exhibited good agreement
between the theoretical and empirical probabilities, and seemed very satisfying in modeling
drought variables. Therefore, these copulas were thereafter selected for regional drought
frequency analysis.

In the same way, the selected copulas were compared in each station, and the
RMSE and AIC goodness of fit test results are presented in Fig. 6. It could be
observed that the average AIC (Fig. 6a) and RMSE values (Fig. 6b) of all the 552
stations for symmetric Frank copula were smaller than that of Clayton and Gumbel
copulas. Therefore, the four-variate symmetric Frank copula was selected for the station-based
drought frequency analysis across EMC.

Fig. 3 Scatter-plots of the pair-wise drought variables for different regions across mainland China
during 1961–2013

Table 3 Values of classical, Kendall and Spearman’s correlation coefficients for drought variables in different
regions between 1961 and 2013

Region Variable Correlation Coefficient

Classical Kendall Spearman

r t (obs) t (crit) t t (obs) t (crit) p t (obs) t (crit)

NE Dd vs. Di 0.67 7.27 1.997 0.69 7.70 1.997 0.67 7.35 1.997
Ds vs. Di 0.63 6.59 0.50 4.69 0.59 5.92
Dp vs. Di 0.51 4.82 0.45 4.13 0.53 5.01

NC Dd vs. Di 0.78 8.93 2.009 0.70 6.87 2.009 0.78 8.73 2.009
Ds vs. Di 0.75 7.99 0.61 5.43 0.77 8.40
Dp vs. Di 0.62 5.62 0.53 4.43 0.68 6.59

CS Dd vs. Di 0.72 7.33 2.010 0.62 5.49 2.010 0.65 5.96 2.010
Ds vs. Di 0.65 5.92 0.53 4.32 0.64 5.80
Dp vs. Di 0.51 4.17 0.42 3.25 0.51 4.12

SC Dd vs. Di 0.76 9.05 2.000 0.72 8.15 2.000 0.73 8.32 2.000
Ds vs. Di 0.72 8.10 0.57 5.43 0.68 7.24
Dp vs. Di 0.61 6.01 0.51 4.57 0.62 6.19

IM Dd vs. Di 0.83 11.76 2.000 0.72 8.13 2.000 0.74 8.67 2.000
Ds vs. Di 0.80 10.52 0.58 5.59 0.71 7.83
Dp vs. Di 0.66 6.84 0.50 4.46 0.63 6.35

NW Dd vs. Di 0.53 3.97 2.020 0.58 4.57 2.020 0.65 5.40 2.020
Ds vs. Di 0.49 3.61 0.54 4.13 0.67 5.72
Dp vs. Di 0.45 3.23 0.46 3.29 0.60 4.75

TP Dd vs. Di 0.67 7.15 1.999 0.69 7.49 1.999 0.70 7.72 1.999
Ds vs. Di 0.62 6.24 0.53 4.97 0.63 6.32
Dp vs. Di 0.54 5.08 0.46 4.11 0.55 5.13

EMC Dd vs. Di 0.73 7.52 2.008 0.68 6.64 2.008 0.73 7.61 2.008
Ds vs. Di 0.74 7.81 0.64 5.89 0.77 8.54
Dp vs. Di 0.66 6.21 0.56 4.79 0.69 6.75

t (obs) is greater than t (crit) in the entire region

R
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4.4 Four-Variate Joint Drought Frequency Analysis

4.4.1 Regional Four-Variate Probabilities of Drought Events

The average historical drought events for regions NE, NC, CS, SC, IM, NW, TP, and EMCas
well as their corresponding 5-, 10-, 20-, 50- and 100-years univariate return periods defined by
separate d, s, p and i were estimated and presented in Fig. 7. Next, the PDSPIin each of these
regions were obtained using Eq. (14). Fig. 7 shows the PDSPI, representing the historical, 5-,
10-, 20-, 50- and 100-year return periods to provide adequate information about the potential
drought risk associated with Dd, Ds, Dp and Di across different regions. Overall, as the return
period increased, the trend of the joint probability decreased. Hence, the simultaneous
existence of higher degree drought events in different regions was less frequent as the year
increases. For example, in sub-region I, considering 20- years univariate return period, the
values of d, s, p, and i, were 13.56 months, 17.46, 2.44 and 20.73 months, respectively. The
PDSPI(Dd ≥ 13.56,Ds ≥ 17.46,Dp ≥ 2.44,Di ≥ 20.73)was 0.124.

These results could provide useful hints in appraising the drought risk in different regions.
For instance, regions CS and NE had the highest probability of about 0.57, indicating that
drought management and planning are needed within these regions. It was shown that regions
SC and IM had a low probability of 0.48, which meant a low combination risk. The
joint probability not only confirmed the occurrence of regional drought events but also gave a
quantitative approach to analyze the probability of drought under varying d, s, p and i
situations.

4.4.2 Regional Four-Variate Return Period of Drought Events

The ζ values were 0.78, 1.02, 1.04, 0.84, 0.84, 1.23, 0.83 and 1.00 months for regions NE, NC,
CS, SC, IM, NW, TP and EMC, respectively. Using the average historical and univariate return

Table 5 The best-fitted marginal distributions with estimated parameters for different regions across mainland
China between 1961 and 2013

Regions Estimated Parameters for Marginal Distributions

β α λ

NE Generalized
Pareto

−0.609 11.90 1.576

NC Generalized
Pareto

−0.305 13.493 1.363

CS Generalized
Pareto

−0.554 18.168 0.732

SC Generalized
Pareto

−0.205 10.351 1.473

IM Gamma 1.787 5.623
NW Generalized

Pareto
−0.007 13.490 1.349

TP Generalized
Pareto

−0.063 9.183 1.286

EMC Generalized
Pareto

−0.499 16.267 1.249

*Note:β; shape parameter, α; scale parameter, λ; location parameter
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periods of d, s, p and i estimated for 5-, 10-, 20-, 50- and 100-year, the TDSPI were obtained for
each region. Figure 7 shows the TDSPI for the historical, 5-, 10-, 20-, 50- and 100-year return
periods. The graph showed that the TDSPI trends increased with the year.

For example, in region NE, considering 20- years univariate return period, the values of d,
s, p, and i, were 13.56 months, 17.46, 2.44 and 20.73 months, respectively. The TDSPI, (Dd ≥
13.56,Ds ≥ 17.46,Dp ≥ 2.44,Di ≥ 20.73)was 6.27 years. TheTDSPIwere lowest in regions NE
and CS. This implied that drought frequency would be higher in these regions compared to the
other regions. The return period of drought variables obtained from univariate frequency
analysis is higher than those by joint distribution for the AND case (TDSPI). This showed that
the univariate analysis does not furnish satisfactory knowledge about the drought risks
associated with the four-variates. If engineers design hydraulic structures based on the results
from univariate frequency analysis, the drought variables may be overestimated and this will
lead to an increased cost of the structure. These results could be valuable in risk evaluation of
water resources operations under severe and extreme drought situations.

The PDSPI and TDSPI showed that the result computed agreed with the actual data and
confirmed that the selected copula functions for each region fitted the data well. Figure 7

Fig. 4 Comparison between empirical and theoretical probabilities for symmetric and asymmetric Archimedean
copulas in different regions of mainland China during 1961–2013
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further explained that for a particular recurrence interval, the PDSPI showed a decreased trend
while the TDSPI showed an increased trend. For example, given the occurrence of d, s, p, and i
in region NE, the estimated PDSPI of 5- and 100-year plan drought are 0.332 and 0.029,
respectively. Considering these illustrations, the calculated results seemed feasible. Therefore,
from Fig. 7, the PDSPI and TDSPI of any other drought events in regions NE, NC, CS, SC, IM,
NW, TP, and EMC can be obtained directly through interpolation.

4.4.3 Spatial Distribution of Four-Variate Probability and Return Periods

The average d, s, p, and i for EMC were 5.81 months, 4.96, 1.15 and 11.1 months respectively.
Similar to the regional drought analysis, the station-based PDSPI and TDSPIof drought events
exceeding these specific values, (i. e.,Dd ≥ 5.81,Ds ≥ 4.96,Dp ≥ 1.15,Di ≥ 11.1)were estimat-
ed for each station using the symmetric Frank copula. The spatial distribution of thePDSPI and
TDSPI are mapped in Fig. 8.

The PDSPIvaried from 0.34 to 0.75. In this case, most of northern China experienced higher
probability spreading from the northwest to northeast China. Notably, it seems that the PDSPI

were very high in NWand some stations in NC and TP. Based on the spatial pattern of drought

Fig. 5 Quantile-Quantile (Q-Q) plots of symmetric and asymmetric Archimedean copulas in different regions of
mainland China during 1961–2013. The solid line indicates the 450 line
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events, the drought risk resulted from these regions are consistent. On the other hand, the
results for southern China including SC and CS were slightly different as relatively lower PDSPI

was observed. Accordingly, counter measures of drought hazards need to be set for proactive
actions especially in regions that had greater drought risks.

The TDSPI ranged from 1.02 to 6.79 years. Long TDSPIwere found around NC while short
TDSPI dominated parts of CS, NW, and TP. MediumTDSPIwere found in eastern China, most
especially NE, NC, CS. The spatial pattern of PDSPI and TDSPI suggested tremendous variations
within different regions. In most cases, regions with high PDSPIare often associated with short
TDSPI and vice versa. Severe droughts are most liable to eventuate in most of the northwestern
and southwestern regions because of short TDSPI. Also, because these areas are commercially
advanced with huge populations, severe drought events could place grave danger on water
resources in these regions. This requisite information is needed by water managers and other
government agencies for adequate planning as well as management of water resources under
severe drought situations. In this study, four-variate distribution was determined and success-
fully used.

5 Summary and Conclusions

Most meteorological phenomena are multiplicative, and the advantages of using a multivariate
assessment strategy are evident in this study. In particular, drought events are characterized by
Dd, Ds, Dp, and Di and the joint drought risk, which reveals their probability at the same time,
is vital for management and planning of water resources under drought situations. Using the

Fig. 6 Station-based comparison of (a) AIC and (b) RMSE for symmetric and asymmetric Archimedean copulas
in different regions of mainland China during 1961–2013
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symmetric and asymmetric Archimedean copula functions, annual droughts were studied as
four-dimensional phenomena incorporating these variables to build the joint four-variate
distributions. Next, the PDSPI for different TDSPI in each region and EMC were then estimated.

The foremost outcomes of this research were summed as follows: (1) For Di, the general-
ized Pareto was the best distribution for regions NE, NC, CS, SC, NW, TP, and EMC while
gamma was the best distribution for region IM. (2) The RMSE and AIC values were utilized to
choose the suitable copula. We employed Clayton copula in regions NE, CS, and EMC, and
Frank copula in regions NC, SC, IM, NW, and TP. Symmetric Frank copula was used for the
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Fig. 7 Four-variate joint probability and return periods of Dd, Ds, Dp, and Di in different regions across
mainland China during 1961–2013
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station-based drought analysis. The selected copula functions provided the best fit for the
dependence structures of Dd, Ds, Dp, and Di, and consequently, it was adopted for the joint
risk drought analysis. (3) The risk of drought event is determined based on PDSPI and TDSPI,
which furnished vital information for drought analysis. For instance, by using only the
univariate information provided by either Dd, Ds, Dp, and Di, may yield under or overesti-
mates of the actual drought state, and, in turn, of the corresponding risk. (4) Analyzing the
probabilities and return periods of four-variate drought events, the trends or changes in drought

Fig. 8 Spatial pattern of four-variate (a) joint probability and (b) joint return periods (years) of Dd, Ds, Dp, and
Di in different regions across mainland China during 1961–2013
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events were then assessed over time. The concept of return period used in this study is a
familiar concept in the community of water resources professionals. However, for a deep
understanding of drought event, the ultimate evaluation was based on the hazard
which the event possesses, and the vulnerability of this region to the drought event.
Therefore, based on the results of our analysis, it is reasonable to increase drought
control concerns especially in regions with very high PDSPI and low TDSPI. As a
recommendation, a drought return period of below ten years seems to indicate that the drought
is entering an alert or a dangerous state.

This study added to a better valuable knowledge in the sphere of disaster management,
especially concerning the appraisal of drought issues and the performance of full drought-risk
investigations. Our insights on the real-time evaluation of meteorological droughts of different
regions may provide valuable information about the possible evolution of drought episode and
also help the water manager to plan effective mitigation strategies. As a conclusion, in this
paper, a multivariate frequency analysis of meteorological droughts in seven climatic regions is
addressed using Copulas. Such an approach is flexible, comprehensive and offered other
several advantages over previous definitions of multivariate frequency analysis (Salvadori
et al., 2015). The copula-derived drought analysis considers complete interdependencies
between the drought variables over a geographical region. Finally, in this paper, no consider-
ation has been included for the climate change influence on the above analysis although
climate change will affect the estimation of the return period of droughts. For this aspect,
rigorous and systematic attempts should be made for estimating the anticipated changes in the
meteorological parameters which directly or indirectly affect the Dd, Ds, Dp, and Di and
ultimately the frequency of drought events.
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