
Journal of Signal Processing Systems (2019) 91:21–32
https://doi.org/10.1007/s11265-018-1415-2

Monotonic Optimization of Dataflow Buffer Sizes

Martijn Hendriks1,2 ·Hadi Alizadeh Ara2 ·Marc Geilen2 · Twan Basten1,2 · Ruben Guerra Marin3,4 · Rob de Jong3 ·
Steven van der Vlugt3,4

Received: 3 April 2017 / Revised: 19 March 2018 / Accepted: 27 September 2018 / Published online: 23 October 2018
© The Author(s) 2018

Abstract
Many high data-rate video-processing applications are subject to a trade-off between throughput and the sizes of buffers in
the system (the storage distribution). These applications have strict requirements with respect to throughput as this directly
relates to the functional correctness. Furthermore, the size of the storage distribution relates to resource usage which should
be minimized in many practical cases. The computation kernels of high data-rate video-processing applications can often
be specified by cyclo-static dataflow graphs. We therefore study the problem of minimization of the total (weighted) size
of the storage distribution under a throughput constraint for cyclo-static dataflow graphs. By combining ideas from the area
of monotonic optimization with the causal dependency analysis from a state-of-the-art storage optimization approach, we
create an algorithm that scales better than the state-of-the-art approach. Our algorithm can provide a solution and a bound on
the suboptimality of this solution at any time, and it iteratively improves this until the optimal solution is found. We evaluate
our algorithm using several models from the literature, and on models of a high data-rate video-processing application from
the healthcare domain. Our experiments show performance increases up to several orders of magnitude.

Keywords Monotonic optimization · Cyclo-static dataflow · Throughput · Buffer size

1 Introduction

Many high data-rate video processing applications have strict
requirements on throughput as it affects the (visual) quality.
It may even affect safety, as is the case for the medical
video-processing application in the image-guided therapy
domain that has motivated our work. Often, these types of
applications are subject to a trade-off between throughput
and the sizes of the buffers (the storage distribution from
now on). Since buffer space uses expensive or scarce
resources, one of the key design questions for these
applications is how to minimize the storage distribution
without violating the throughput constraint. We approach

� Martijn Hendriks
martijn.hendriks@tno.nl

1 ESI (TNO), Eindhoven, The Netherlands

2 Eindhoven University of Technology, Eindhoven,
The Netherlands

3 Philips Healthcare, Best, The Netherlands

4 TOPIC Embedded Systems, Best, The Netherlands

this problem using model-based design, and model and
analyze the application using the cyclo-static dataflow (CSDF)
formalism [5]. This formalism is a member of the dataflow
family [6] and is suitable for modeling a broad class of
streaming, parallel applications with cyclically changing
behavior and finite buffers such as our video-processing
applications. This model-based approach has the advantage
that the analysis of the model usually is much faster than
experimentation on a prototype. For instance, our driver
case has an FPGA as implementation target. The hardware
implementation step in the process takes several hours.
Using a storage-distribution minimization algorithm with an
analysis step that takes several hours clearly is infeasible for
even small search spaces.

Efficient methods exist to compute the throughput of a
CSDF graph with a given storage distribution. The problem
that we consider in this article is to minimize the size
of the storage distribution under a throughput constraint.
In general, this problem is NP-hard [8], and we therefore
present an anytime algorithm. The algorithm first tries to
quickly find an initial storage distribution that realizes
the throughput constraint. Then it iteratively improves the
storage distribution. During this process, the algorithm

http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-018-1415-2&domain=pdf
mailto: martijn.hendriks@tno.nl

22 J Sign Process Syst (2019) 91:21–32

provides an upper bound on the difference between the size
of the currently best storage distribution and the size of
the (unknown) minimal storage distribution. This can be a
useful feature because if the user has no patience to wait
for a real minimum storage distribution (finding one can
take long due to the NP-hardness), he can terminate the
algorithm and still have a feasible storage distribution and
an estimation of the quality of this solution.

Contribution In this work we combine principles from
monotonic optimization [12, 13] and the concept of knee
points of [7] with the causal dependency analysis from
[10, 11]. This results in an algorithm that minimizes the
storage distribution in CSDF graphs under a throughput
constraint. This algorithm scales better than the state-of-
the-art approach of [10, 11]. Our experiments show that
the performance may be improved by several orders of
magnitude. Furthermore, it is an anytime algorithm which
is able to present at any moment (after the initialization
phase and if it exists) a storage distribution that satisfies
the throughput constraint and a bound on the suboptimality
of this best solution so far. A secondary contribution is
an elaboration of the concept of knee points that has been
introduced in [7]. Knee points play a crucial role in our
algorithm.

Related work Closely related work that adresses the
problem of this article, optimization of the storage
distribution under a throughput constraint for CSDF graphs,
is the work of [3, 4, 10, 11, 15]. In [15], a fast approximation
algorithm is proposed that over-estimates the size of the
required storage distribution with an unknown factor. The
work of [10, 11], on the other hand, presents an exact
solution to a slightly more general problem than the problem
of this article: [10, 11] compute the whole trade-off space,
which can then be used to solve our problem. The work of
[3, 4] is closely related to [15] and provides an approximate
solution based on a relaxation of an integer-linear program.
Our work is complementary to [10, 11] as it can be regarded
as a fast heuristic to significantly prune the search space
after which the exact method of [10, 11] is used to obtain
the final solution. Our method can also be regarded as a
domain-specific specialization of the domain-independent
and generic monotonic optimization framework of [12,
13]. This framework to solve non-convex, but monotonic
optimization problems, has succesfully been applied in the
area of wireless communications [9, 14, 16], and we now
introduce it in the dataflow domain. The key difference
with the generic outer-polyblock approximation algorithm
of [12, 13] is that we bound the optimal solutions from
both the inside and the outside. This is similar to the

approach of [7], which uses a constraint solver to build
an approximation of the Pareto front of a multi-criteria
optimization problem, using monotonicity implicitly. We
use the concept of knee points of [7] to select a new
point in the search space to explore, instead of using a
binary search to compute the upper-boundary projection in
the outer-polyblock approximation algorithm of [12, 13].
Furthermore, the fact that we limit the scope of the approach
to CSDF allows us to take advantage of domain-specific
properties and analysis methods, i.e., the causal dependency
analysis of [10, 11], to make the search more efficient.

2 Explanation of the Approach

Let us consider a 2-dimensional buffer sizing problem
modeled in CSDF with buffers b1 and b2. A storage
distribution is a function δ : {b1, b2} → N ∪ {∞} that
gives the size of each buffer, measured in dataflow tokens.
The set S of feasible storage distributions (those storage
distributions that satisfy the throughput constraint) is shown
in Fig. 1 (it appears to have a smooth boundary due to
the scale of the figure). Of course, we do not know S
beforehand, and computing whether a storage distribution
is feasible by invoking a CSDF throughput analysis can be
time consuming. Let us assume in this example that both
buffers contain items of equal size, and that we want to
minimize the size of the total storage distribution, i.e., the
sum of the two buffer sizes.

Figure 1 Sketch of the approach.

J Sign Process Syst (2019) 91:21–32 23

Our approach is centered around monotonicity of
throughput and buffer sizes in the CSDF formalism:
increasing buffer sizes will not decrease throughput. This
monotonicity allows us to efficiently represent and bound
the search space. Suppose that we have analyzed four
points in the storage distribution space u0 – u3 and that
these resulted in a less than required throughput (they are
infeasible). Figure 1 shows these points, and because of
monotonicity we know that the area U− does not contain
any feasible points. In a similar way, we can build a view
of feasible points. Suppose that s0 – s2 are points that we
have analyzed and that have been shown to be feasible.
The area S+ then only contains feasible points because
of monotonicity. Because the total size of the storage
distribution is also monotone, the best solution in S+ is one
of the points s0 – s2, namely s0 with size 400+700 = 1100.
This representation of U− and S+ and the exploitation of
monotonicity is closely related to the area of monotonic
optimization [12, 13].

The second concept that we use are the special knee
points k0 – k4 [7]. These are induced by u0 – u3 and are
local minima in the sense that any feasible solution will have
a size greater than the size of one of the knees (because
of monotonicity). In particular, the knee points with the
smallest size provide a lower bound on the size of any
feasible solution. In this example, k2 has the smallest size of
400 + 120 = 520. This means that the optimal solution (at
best the point (401, 121)) has a size of at least 522 and at
most 1100 (size of s0). We thus say that the maximal error
� equals 1100 − 522 = 578. Given the state of knowledge
determined by the set of feasible points s0 – s2 and the set
of infeasible points u0 – u3, we select a new point to check
for feasibility. This selection process is based on the knees
and on the hyperplane of points with size equal to the best
solution so far (the dashed line through s0): We select a
point x = (545, 265) halfway on the line segment between
the hyperplane and a knee with the smallest size (k2 in this
example). Intuitively, this is the area where most can be
gained. By choosing the point x halfway between k2 and the
hyperplane, we apply a multi-dimensional binary search. In
the case that x is feasible, we extend S+ with the area to the
right and above x. Furthermore, x improves on s0 and the
maximal error � now equals 810 − 522 = 288, which is
approximately half of the previous maximal error.

The third ingredient in our approach is the causal
dependency analysis of [11], which we use to bound the
search space even further. Throughput analysis of a CSDF
graph can, in addition to the throughput, also provide
the channels that have a so-called storage dependency.
Intuitively, a channel creates a storage dependency if the
progress of the data processing depends on freeing storage

space in the buffer associated to that channel. From [11] it
follows that throughput can only increase if the size of at
least one channel with a storage dependency is increased.
Now, suppose that the analysis of x shows that it is
infeasible and that only buffer b2 has a storage dependency.
This means that not increasing the size of buffer b2 from
point x will never result in a feasible point. We therefore
can extend the infeasible point x = (545, 265) to (∞, 265),
resulting in a significant reduction in the search space: the
area filled with the pattern is added to U−. The knee points
k2, k3 and k4 are removed, and a new knee point k5 =
(400, 265) is added. This makes k1 = (400, 200) the knee
point with the smallest size in the new situation, and this
reduces the maximal error � from 578 to 1100 − (401 +
201) = 498.

Iteration of these steps reduces the gap between U− and
S+ and also the maximal error �, and will eventually find
the best feasible storage distribution.

3 Cyclo-Static Dataflow Graphs

We briefly repeat existing definitions and results concerning
CSDF graphs based on [11]. We let N0,∞ denote the set
N∪{0, ∞}. Let P be a set of ports, and let rate be a function
that assigns a finite sequence (r1, r2, . . . , rn) of rates in N

to each port (lengths of these sequences may differ among
the ports). An actor is a tuple (I, O, T) consisting of I ⊆ P

input ports, O ⊆ P output ports with I ∩ O = ∅, and of
T = (t1, t2, . . . , tn) execution times.

Definition 1 (CSDF graph) A CSDF graph is a tuple
(A, C) of a set of actorsA, and a set of channelsC ⊆ P ×P

such that (i) (p, q) ∈ C implies that p is an output port and
that q is an input port, and (ii) all ports are connected to
exactly one channel.

The initial state of a CSDF graph is determined by the
initial token distribution, which assigns a number (possibly
0) of initial tokens to each channel.

Consider, for instance, the CSDF graph in Fig. 2.
It shows the graph of a sample-rate converter [1]. The
nodes represent the actors and the edges represent the
channels (ports are not explicitly shown). The execution

Figure 2 The CSDF graph for a sample-rate converter.

24 J Sign Process Syst (2019) 91:21–32

time sequence is shown in the actor nodes. The numbers at
the beginning and end of the edges show the rates. Note that
all execution time and rate sequences have length one in this
example (effectively turning this model into a Synchronous
Dataflow (SDF) graph). Each self-loop has a single initial
token which limits auto-concurrency of the actors.

Channels have an unbounded storage space in the
semantics. As it is commonly done in literature, we model
finite buffer space of channels Cbuf ⊆ C by adding for each
channel (p, q) ∈ Cbuf from actor a ∈ A to actor b ∈ A a
new channel (pδ, qδ) from b to a where pδ and qδ are new
ports with rate(pδ) = rate(q) and rate(qδ) = rate(p). The
number of initial tokens on (pδ, qδ) equals the storage space
of the channel (p, q) minus the number of initial tokens on
(p, q).

Definition 2 (Storage distribution) Let (A, C) be a CSDF
graph and let Cbuf ⊆ C be a set of buffered channels. A
storage distribution for Cbuf is a function δ : Cbuf → N0,∞.
We let (Aδ, Cδ) denote the CSDF graph with the additional
channels that realize the storage constraints,1 and assume
that it is strongly connected.2

Consider the CSDF graph (A, C) of Fig. 2, and let
Cbuf = {c1, c2, . . . , c5}. Consider the storage distribution δ

such that δ(ci) = bi for 1 ≤ i ≤ 5. Figure 3 shows (Aδ, Cδ).
The dotted edges represent the special channels that model
the storage constraints. For instance, the constraint on the
channel c1 is modeled by the dotted channel from b to a

with b1 initial tokens on it. This models that there can be at
most b1 tokens in c1.

Let δ and δ′ be two storage distributions. We say that
δ � δ′ if and only if δ(c) ≤ δ′(c) for all c ∈ Cbuf .
Since the tokens in different channels may represent data of
different size we introduce a cost function w : Cbuf → N

that assigns a (non-zero) cost to each buffer channel. The
cost of a storage distribution δ, denoted by |δ|, then is∑

c∈Cbuf
w(c) · δ(c).

Throughput of a CSDF graph is a well-defined concept
and algorithms exist to compute it (see [11]). For (A, C)

we let ξ(A, C) ∈ R denote its throughput. A throughput
constraint tc ∈ R on (A, C) gives a lower bound on the
necessary throughput. We say that a storage distribution
δ is feasible if and only if the throughput constraint is
satisfied, i.e., ξ(Aδ, Cδ) ≥ tc. A useful property of the

1If δ(c) = ∞, then we can model this by removing the buffer edge for
channel c.
2Buffer sizing for non-strongly-connected graphs can be done for the
strongly-connected components.

Figure 3 The CSDF graph for a sample rate converter with additional
storage constraints.

CSDF formalism is that throughput, and thereby feasibility
of storage distributions, is monotone with respect to buffer
sizes.

Lemma 1 [11] Let (A, C) be a CSDF graph, and let δ, δ′ be
storage distributions such that δ′ � δ. Then ξ(Aδ′ , Cδ′) ≤
ξ(Aδ, Cδ).

A key contribution of [11] is the concept of storage
dependencies and we refer the reader to [11] for the precise
definition. Analysis of the self-timed execution of (Aδ, Cδ)

is used to compute a set Depδ ⊆ Cbuf of buffered channels
that have a storage dependency. The throughput of a CSDF
graph cannot be increased without increasing the capacity of
at least one such a channel. In Section 2, we have sketched
how this can be used to reduce the search space (cutting
off the area filled with the pattern in Fig. 1). The following
lemma and corollary formalize this.

Lemma 2 [11] Let (A, C) be a CSDF graph and let δ

and δ′ be a storage distributions such that δ � δ′ and
ξ(Aδ, Cδ) < ξ(A′

δ, C
′
δ). Then there is a channel c ∈ Depδ

such that δ(c) < δ′(c).

The following corollaries follow from these lemmas. The
first one states that increasing buffers that have no storage
dependency does not increase the throughput.

Corollary 1 Let (A, C) be a CSDF graph and let δ be a
storage distribution. For every storage distribution δ′ holds:
if for all c ∈ Depδ we have that δ′(c) ≤ δ(c), then
ξ(Aδ′ , Cδ′) ≤ ξ(Aδ, Cδ).

Proof Consider a storage distribution δ′ with δ′(c) ≤ δ(c)

for all c ∈ Depδ , let t = ξ(Aδ, Cδ), and let t ′ = ξ(Aδ′ , Cδ′).
Assume that t ′ > t . We define

δ′′(c) =
{

δ(c) if c ∈ Depδ

max(δ(c), δ′(c)) otherwise

Let t ′′ = ξ(Aδ′′ , Cδ′′). We have that δ′ � δ′′, and therefore
by Lemma 1 that t ′ ≤ t ′′, and thus t < t ′′. Furthermore, we
have that δ � δ′′. We can then apply Lemma 2 to conclude
that there is a channel c ∈ Depδ such that δ(c) < δ′′(c). This

J Sign Process Syst (2019) 91:21–32 25

contradicts the definition of δ′′, and therefore we conclude
that t ′
> t .

The second corollary informally states that if we have
an infeasible storage distribution without buffered channels
that have a storage dependency, then no feasible storage
distribution exists.

Corollary 2 Let (A, C) be a CSDF graph and let δ be an
infeasible storage distribution. If Depδ = ∅, then no feasible
storage distribution exists.

Proof Suppose that a feasible storage distribution δ′ exists,
which necessarily has a greater throughput than δ. Define δ′′
as δ′′(c) = max(δ(c), δ′(c)) for all c ∈ Cbuf . Then δ′ � δ′′
and therefore ξ(Aδ′ , Cδ′) ≤ ξ(Aδ′′ , Cδ′′) by Lemma 1. Thus,
ξ(Aδ, Cδ) < ξ(Aδ′′ , Cδ′′). We also have that δ � δ′′ and
therefore we can apply Lemma 2 to conclude that there
must be a channel c ∈ Depδ such that δ(c) < δ′′(c). This
contradicts that Depδ = ∅.

In the remainder of this article, we assume that we have
access to a CSDF analysis function analyze that, given a
CSDF graph (A, C), a set of buffered channels Cbuf ⊆
C and a storage distribution δ for Cbuf returns a tuple
(ξ(Aδ, Cδ),Depδ) where Depδ ⊆ Cbuf is the set of channels
with a storage dependency in (Aδ, Cδ). The problem that we
consider is the following:

Definition 3 (Optimization problem) Given are a CSDF
graph (A, C), buffered channels Cbuf ⊆ C, a throughput
constraint tc, and a cost function w : Cbuf → N. The
buffer optimization problem is to find a feasible storage
distribution δ such that for any other feasible storage
distribution δ′ holds that |δ| ≤ |δ′|.

Consider the CSDF graph (A, C) from Fig. 2 again. It
has throughput 1.04·10−3, and we use this as the throughput
constraint for (Aδ, Cδ) shown in Fig. 3. Then δ = {c1 �→
1, c2 �→ 4, c3 �→ 8, c4 �→ 14, c5 �→ 5} has a throughput of
9.19 · 10−4 and thus is not feasible. The causal dependency
analysis gives us that Depδ = {c1, c2, c3, c5}. From this we
can conclude that every buffer valuation {c1 �→ 1, c2 �→
4, c3 �→ 8, c4 �→ x, c5 �→ 5} with x ∈ N0,∞ is not
feasible. That is, increasing only buffer c4 in size and none
of the other buffers, will not lead to a better throughput.
We can use this to reduce the search space as explained in
Section 2.

In the next section, we formally explain the framework
that we use to approach the optimization problem of
Definition 3.

4Monotonic Optimization

We assume the problem setting of Definition 3 and let
d = |Cbuf |. A storage distribution δ is represented by
a point x = (x1, x2, . . . , xd) in N

d
0,∞ given a bijection

index : Cbuf → {1, 2, . . . , d} as follows: xindex(c) = δ(c)

for all c ∈ Cbuf . The cost of x, denoted by |x| is defined
as |δ|. We say that an x is feasible if and only if δ is
feasible. We use the abbreviation x[i ← v] for the point
(x1, x2, . . . , xi−1, v, xi+1, . . . , xd), i.e., the i-th element of
x is replaced by v. In the remainder of this article, we
assume that the sets D, E, K , S, and U all are subsets
of N

d
0,∞, and that k, s, u, q, x, x′, y, y′, z, and z′ all

are elements of N
d
0,∞. The set complement operation is

assumed to act with respect to the universe Nd
0,∞, i.e., U =

N
d
0,∞ \ U .
The forward (+) and backward (−) cones of x and their

strict versions (++, =) are defined as follows:

x+ = {x′ | ∀1≤i≤d x′
i ≥ xi}

x++ = {x′ | ∀1≤i≤d x′
i > xi}

x− = {x′ | ∀1≤i≤d x′
i ≤ xi}

x= = {x′ | ∀1≤i≤d x′
i < xi}

(1)

If U is closed under −, then its complement is closed
under +, and vice versa:

U−+ = U−
U=+ = U=

U+− = U+

U++− = U++

(2)

The backward (forward) cone of some set U is the union
of the backward (forward) cones of the elements of U .
A point x ∈ U is maximal in U if and only if for all
y ∈ U, y
= x holds that x /∈ y−. Similarly, x ∈ U is
minimal if and only if for all y ∈ U, y
= x holds that
x /∈ y+. We use this definition for the maximal elements
of sets as follows: max(U) = {x ∈ U | x is maximal in U},
and min(U) = {x ∈ U | x is minimal in U}. A set U is
maximal if and only if max(U) = U and minimal if and
only if min(U) = U . The cones of a finite set U can
be represented by a unique subset of itself containing only
maximal or minimal elements:

U+ = min(U)+
U− = max(U)−
U++ = min(U)++
U= = max(U)=

(3)

26 J Sign Process Syst (2019) 91:21–32

In some other contexts, these sets of minimal or max-
imal points are called Pareto points. In Fig. 1, for
instance, the backward cone of the set of maximal points
U = {u0, u1, u2, u3} is shown, as well as the forward cone
of the set of minimal points S = {s0, s1, s2}. Note that the
strict cones exclude the points on the boundaries, and that
the knee points of U , {k0, . . . , k4}, are elements of U−. In
fact, the knee points can be regarded as the duals of the
points in max(U). The following definition is an alternative
characterization of knee points as originally introduced in
[7].

Definition 4 (Knee points) The set of points (knees) of
a finite set U ⊆ N

d
0,∞, denoted by knee(U) is the set

knee(U) = min(U=).

The following corollary states an equivalent characteri-
zation of knee points, which we use further below.

Corollary 3 K = knee(U) if and only if K is minimal and
K+ = U=, i.e., K+ ∪ U= = N

d
0,∞ ∧ K+ ∩ U= = ∅.

Proof (⇒) Straightforward with Eqs. 2 and 3.
(⇐) We have that K+ = U=. Thus, min(K+) =

min(U=). Because clearly min(K+) = min(K),
we have by the assumption that K is minimal that
min(K+) = K and thus K = min(U=) = knee(U).

The next corollary states that under a specific condition,
the union of the strict forward cones of the knees K is equal
to the complement of the union of the backward cones of the
unsat points U . The extra condition on U is needed because
the hyperplane lower boundaries (i.e., the points in which
at least one dimension equals 0) by definition are not part
of K++ and hence should be included in U−. This extra
condition is true for at least every set U for which holds that
{∞[k ← 0] | 1 ≤ k ≤ d} ⊆ U−. In the context of buffer
sizing this makes perfect sense, as it models the situation in
which storage distributions that have buffers of size 0 are
infeasible.

Corollary 4 Let K = knee(U) and let U be such that for
every point x
∈ U−, there is some point y ∈ U− such that
y ∈ x=. Then K++ = U−.

Proof (K++ ⊆ U−) Let x ∈ K++. We need to show that
x /∈ U−. Then by definition of K , x ∈ U=++

. Hence, there
is some y ∈ U= such that y ∈ x=. We have that y ∈ U=, so
y /∈ U= and therefore, for any u ∈ U , y /∈ u= (1). Assume
towards a contradiction that there is some z ∈ U such that

x ∈ z−. From y ∈ x= and x ∈ z− it follows that y ∈ z=,
which contradicts (1).

(U− ⊆ K++) Let x ∈ U−, i.e. x /∈ U−. We need to
show now that x ∈ K++, i.e., that x ∈ U=++

. Let z0 be
such that z0 ∈ U− and z0 ∈ x=. Here we use the additional
assumption to ensure it exists. If z0 /∈ U=, we have some
z /∈ U= with z ∈ x=, thus x ∈ U=++

and we are done.
Otherwise, z0 ∈ U=, x /∈ U− and z0 ∈ x=. Hence, there
must be some z1 such that z1
= z0, z0 ∈ z−

1 , z1 ∈ U−,
and z1 ∈ x=. Again, if z1 /∈ U= we are done. Otherwise we
continue similarly with z2, z3, etcetera. Eventually, we must
find zk such that zk /∈ U=, because |x| − |zk| decreases in
every step and cannot go negative.

Finally, the following corollary formalizes that the knee
points are part of the backward cone of the generating set
(see, e.g., Fig. 1).

Corollary 5 Let K = knee(U). If U
= ∅, then K ⊆ U−.

Proof Suppose that U
= ∅ and K
⊆ U−. Then we have
that ¬∀k∈K∃u∈Uk ∈ u−. I.e., ∃k∈K∀u∈Uk /∈ u−. Consider
such a k. We distinguish two cases. First, k = 0d . Because
we have assumed that U
= ∅, there is at least one u ∈
U , and clearly k ∈ u−, which is a contradiction. Hence,
K ⊆ U−. Second, k
= 0d . Define the point x such that
xi = max(ki − 1, 0) for 1 ≤ i ≤ d. In that case, x
= k

and clearly x /∈ k+ and also x /∈ K+ because K consists
of minimal points. Furthermore, x /∈ u− since k /∈ u− for
all u ∈ U by assumption. Therefore also x /∈ U=. Thus,
we have that x /∈ K+ and x /∈ U=, which constradicts
Corollary 3. Hence, K ⊆ U−.

As our algorithm sketched in Section 2 progresses, it
can happen that a point x that just has been analyzed is
infeasible. This has impact on the existing knee points of
the infeasible set U that are in the backward cone of x.
Figure 4 shows an example of such a situation with U =
{u0, . . . , u3}. The knee points k1, k2 and k3 are in x−.
Adding x to the infeasible setU has the consequence that k1,
k2 and k3 are not knee points anymore. A point k in x− has
d extensions to x, namely the points {k[i ← xi]|1 ≤ i ≤ d}
where each time the value of one dimension of k is replaced
by the corresponding value of x. The knee points k1, k2 and
k3 in Fig. 4 are replaced by the points e12 and e31, which are
the minimal points of the extensions of the knees to x.

This is formalized by the following two lemmas and
Theorem 1 on knee generation.

Lemma 3 (Extension completeness) If k ∈ x−, then
k+ \ x= = {k[i ← xi] | 1 ≤ i ≤ d}+.
Proof First, let z ∈ {k[i ← xi] | 1 ≤ i ≤ d}+. Then z ∈
k[i ← xi]+ for some dimension i. We let q = k[i ← xi]

J Sign Process Syst (2019) 91:21–32 27

and thus have z ∈ q+. By definition we have zj ≥ qj for all
1 ≤ j ≤ d. We also have that qj ≥ kj for 1 ≤ j
= i ≤ d

and qi ≥ xi ≥ ki . Thus, zj ≥ kj which is to say that z ∈ k+,
but also zi ≥ xi , which implies that z /∈ x=.

Second, let z ∈ k+ \ x=. This means that zj ≥ kj for all
1 ≤ j ≤ d and some i exists such that zi ≥ xi . Let q =
k[i ← xi]. Then we have qj = kj for all 1 ≤ j
= i ≤ d and
qi = xi ≥ ki . Thus, zj ≥ qj for 1 ≤ j ≤ d, and z ∈ q+.
Therefore, z ∈ {k[i ← xi] | 1 ≤ i ≤ d}+.

The second lemma is a generalization of Lemma 3 and
is the basis for our knee computation method. It formalizes
(and generalizes to an arbitrary number of dimensions) the
situation sketched in Fig. 4.

Lemma 4 Consider a point x and a set K such that x ∈
K+. Then K+ \ x= = ((K \ D) ∪ min(E))+ where D =
K ∩ x− and E = {y[i ← xi] | y ∈ D ∧ 1 ≤ i ≤ d}.

Proof Note that this proof treats the term min(E)+ first as
E+ and as a last step reasons why this is valid.

First suppose that z ∈ K+ \ x=. Then z ∈ k+ for some
k ∈ K . We distinguish two cases: (a) k /∈ x−, and (b)
k ∈ x−. In case (a) k is not removed from K through D,
thus k ∈ (K \ D) ∪ E. Therefore, z ∈ ((K \ D) ∪ E)+. In
case (b) k is removed as part of D. However, the extensions
of D are added through set E, and by Lemma 3 we know
that z ∈ ((K \ D) ∪ E)+.

Second, suppose that z ∈ ((K \D)∪E)+. Then (a) some
k ∈ K \ D exists such that z ∈ k+, or (b) some k ∈ K

and i exist such that z ∈ k[i ← xi]+. In case (a) we thus
have that z ∈ k+, k ∈ K and k /∈ x− and thus z /∈ x−.
Therefore, z ∈ K+ \x=. In case (b) we have that z ∈ k[i ←
xi]+, k ∈ K and k ∈ x−. Clearly also z ∈ k+ because
xi ≥ ki and thus z ∈ K+. Furthermore, z /∈ x= because
zi ≥ xi .

Now we have proven that K+ \ x= = ((K \D)∪E)+. It
is clear that (U1 ∪ U2)

+ = U+
1 ∪ U+

2 , and the combination
with min(E)+ = E+ yields the desired result.

Figure 4 An example of knee generation.

The following theorem is fundamental to our method as
it provides a means to compute knee points efficiently.

Theorem 1 (Knee generation) Consider a set U and let
K = knee(U). Then K ′ = knee(U ∪ {x}) can be computed
as follows:

– if x ∈ U−, then K ′ = K , and otherwise:
– K ′ = (K \ D) ∪ min(E) where D = K ∩ x− and

E = {y[i ← xi] | y ∈ D ∧ 1 ≤ i ≤ d}

Proof The case for x ∈ U− follows straightforwardly
because then (U ∪ {x})− = U−. Now consider the case
x
∈ U−. Using Corollary 3, we have to prove that:

1. K ′+ ∩ (U ∪ {x})= = ∅,
2. K ′+ ∪ (U ∪ {x})= = N

d
0,∞, and

3. K ′ = min(K ′).

Item 1 reduces to ((K \D)∪min(E))+∩(U ∪{x})= = ∅.
From Lemma 4, we have that ((K \ D) ∪ min(E))+ =
K+ \ x= and we thus have to show that:

(K+ \ x=) ∩ (U ∪ {x})= = ∅ ⇔
(K+ \ x=) ∩ (U= ∪ x=) = ∅ ⇔
(K+ \ x=) ∩ U= = ∅ ∧ (K+ \ x=) ∩ x= = ∅

From our assumption that K = knee(U), we have via
Corollary 3 that K+ ∩ U= = ∅, which proves the first part
of the conjunction. The second part is straightforward from
definitions of set operations.

For item 2, we have to show – using the same reduction
as above – that (K+ \ x=)∪ (U ∪ {x})= = N

d
0,∞. Using our

assumption that K = knee(U), we can derive in a similar
way as above that this indeed is the case.

For item 3, notice that K \ D is minimal because K

is minimal. Furthermore, min(E) is minimal by definition.
Note that for e ∈ min(E) holds that e ∈ x−. Therefore,
such an extension e does not have a point in K \ D in its
backward cone, which is to say that no point in K \ D has e

in its forward cone. Furthermore, no extension e ∈ min(E)

has a point in K \ D in its forward cone, because then K

would not have been minimal. Therefore, K ′ is minimal:
K ′ = min(K ′).

The following theorem states that knees of a set of
infeasible storage distributions give a (non-tight) lower
bound on the cost of a feasible storage distribution.

Theorem 2 (Lower bound feasible cost) Consider a set U
of infeasible points such that {∞d [k ← 0] | 1 ≤ k ≤ d} ⊆

28 J Sign Process Syst (2019) 91:21–32

U− and a feasible point x. Then |x| ≥ min{|k + 1d | | k ∈
knee(U)}.
Proof Let K = knee(U). First, we have that for every point
x /∈ U− holds that every buffer has at least size 1, because
we assume that {∞d [k ← 0] | 1 ≤ k ≤ d} ⊆ U−. We can
apply Corollary 4 and have that K++ = U−.

Every point in U− is infeasible by Lemma 1 and our
representation of the storage distributions. Thus, a feasible
point is part of U−, which thus equals K++. Hence, there is
some knee k ∈ K such that k ∈ x= and |x| ≥ |k +1d |. Thus
|x| ≥ min{|k + 1d | | k ∈ knee(U)}.

In the next section, we apply the mechanism explained in
this section to the optimization problem.

5 Optimization Algorithm

Algorithm 1 solves the minimization problem of Defini-
tion 3. There are four local variables: the set U contains
infeasible points, K contains the knees of U , x is the point
that represents the storage distribution that is analyzed, and
S contains the feasible points (also see Fig. 1). A key
invariant throughout the algorithm is that K = knee(U)

holds.

The algorithm consists of three phases. First, lines
1–11 form the initialization phase in which a first
feasible solution is created, starting from the initial storage
distribution that gives each buffer a minimal necessary size
for deadlock-free execution (see, e.g., [2]). The while-loop
iteratively doubles the buffer sizes of the buffers with a
storage dependency until it finds a feasible solution. The
handleInfeasible function, which is defined in Algorithm 2,
updates the set of infeasible points U and the knees K for
every infeasible point that is encountered. Note that this
function reports an error if an infeasible point is encountered
with no storage dependencies, which implies that there is
no feasible storage distribution. Also note that lines 5 –
7 of handleInfeasible apply the additional pruning of the
search space using the causal dependency information. This
is formalized in the following lemma.

J Sign Process Syst (2019) 91:21–32 29

Lemma 5 Let x be infeasible and let Dep be the storage
dependencies. Define y = (y1, y2, . . . , yd) as follows:

yi =
{ ∞ if index−1(i)
∈ Dep

xi otherwise

for all 1 ≤ i ≤ d. Then every point in y− is also infeasible.

Proof Let x represent the infeasible storage distribution δ

and consider a storage distribution δ′ that is represented by
a point in y−. By definition, δ′(c) ≤ δ(c) for all c ∈ Dep.
Thus, by Corollary 1 we know that the throughput for δ′ is
not greater than the throughput for δ. Therefore, δ′ is also
infeasible.

The second phase of Algorithm 1, lines 12–22, form the
optimization phase which starts after a first feasible point
is found by the initialization phase. This phase iteratively
chooses a new point x to analyze and calls handleInfeasible
if the point is infeasible, and otherwise adds it to S. The
selection function is flexible (hence the . . . notation in the
list of parameters). A requirement is that implementations
either return a point that is neither in U− nor in S+, or ⊥
(in case it cannot find a good point to explore). Our current
implementation, shown in Algorithm 3, selects points on
the line through a knee with minimal cost, and the closest
point on the cost hyperplane of the best solution so far (see
Fig. 1). It starts halfway the line segment (lines 12 – 21),
and doubles the distance to the knee as long as the point
is infeasible and not part of S+ to prune as much of the
space as possible (lines 5 – 11). When the function cannot
select a point in the unexplored space between U− and S+,
it returns ⊥. This will eventually happen because we work
in N

d
0,∞.

The third phase of Algorithm 1, the final enumeration
phase, starts in line 23. It calls the algorithm from [11]
with the knee points that have the potential of leading to a
feasible point with a cost smaller than the cost of the best
point so far. This still is necessary because, in general, a
select function may have left some points between U− and
S+ that may give a better solution than the best one we have
found so far.

Invariant 1 At lines 10 and 21 of Algorithm 1 it holds that
(i) U− only contains infeasible points, (ii) S+ only contains
feasible points, and (iii) K = knee(U).

Proof Straightforward using Lemma 5 and Theorem 1.

Theorem 3 Algorithm 1 solves the optimization problem of
Definition 3.

Proof The initialization phase in fact is a greedy version of
the algorithm in [11] that takes exponentially growing steps
in the direction of the storage dependencies. Therefore, if
a feasible point exists, then the initialization phase will
find one. The conclusion that no feasible solution exists
for an empty set of storage dependencies is valid according
to Corollary 2. The optimization phase extends the sets
U , K and S until the selection function returns ⊥. This
happens eventually, because the extension part in lines 5 –
11 eventually will find that y ∈ S in which case a new point
is selected in lines 12 – 21. If U and S are sufficiently close,
then, due to the fact that we have a discrete search space,
we cannot find a point in between. Furthermore, if we find a
point in between and process it, then either S comes closer
to U (in case of a feasible point), or U comes closer to S

(in case of an infeasible point). Invariant 1 ensures that U ,
K and S are built in a proper way. Finally, the algorithm
from [11] is invoked with the still promising knee points
as a starting point. These are good starting points because
any feasible point must be part of K++, and by correctness
of the algorithm in [11] we thus solve the problem of
Definition 3.

Note that the algorithm can also be interrupted; in that
case the optimization and enumeration phases are stopped
or skipped, and the best result so far x and the maximal
cost error � = |x| − min{|k + 1d | | k ∈ K} are returned
(see Theorem 2). This interruption logic is not shown in
Algorithm 1 for readability.

6 Experimental Evaluation

We compare with the state-of-the-art approach of [11]
that computes the full buffer-size – throughput trade-off
space. Since the optimization problem of this article (see
Definition 3) is a slightly more restricted problem, [11]
can be used to solve it. In this section, we compare the
approaches, because no other reference algorithm exists. We
therefore set the throughput constraint to the throughput of
the self-timed execution of the graph, which is the highest
throughput possible. The approach of [11] terminates as
soon as it has analyzed the storage distributions up to and
including this self-timed throughput. Earlier results in the
algorithm on trade-off points with lower throughput are
needed for this, so [11] needs all earlier computations to
reach the final trade-off point of the self-timed throughput.
This makes the approaches comparable for the case in which
we optimize the size of the storage distribution under the
constraint that the throughput is maximal, i.e., equal to the
self-timed throughput.

30 J Sign Process Syst (2019) 91:21–32

We use the following models from the SDF3 website
[1]: an MP3 playback application, an H.263 decoder, a
sample-rate converter, and a satellite receiver. These are
all SDF models (i.e., CSDF models with constant rates
and execution times). The models MRF-32, MRF-64 and
MRF-128 are models from a real-life image processing
application, a multi-resolution filter with different input
sizes, from the healthcare domain. The MRF models are
all rather complex CSDF models with many different rates
for a number of actors due to data dependencies. The cost
function that we use gives each buffer a weight of one in
each model.

Table 1 shows the results. For each model, we list
whether it is an SDF model or a CSDF model, the number
of actors |A| and the number of sized buffers |Cbuf |. For
the state-of-the-art approach SGB08 [11], we then give the
size of the obtained storage distribution |δ|, the number of
throughput analysis calls and a running time for a given
multiplication factor of the step size n. This multiplication
factor is an approximation mechanism, i.e., a factor greater
than one trades computation effort against accuracy of the
obtained result: the obtained storage distribution may not
be minimal anymore. The models for the MP3 playback
application, the H.263 decoder and the multi-resolution
filter are not analyzable within reasonable time with n = 1
(indicated by - in the table). The first two models even
require many throughput calls with n = 10. For our
approach, Monotonic Buffer Sizing (MBS; Algorithm 1),
we also show the obtained storage distribution, the number
of throughput analysis calls and a running time. The �

column indicates the absolute maximal error in the storage
distribution that we tolerate for the optimization process.
This number is derived from the multiplication factor n

and the model properties. For instance, n = 10 for the

MP3 playback application allows an optimization error in
the storage distribution of 18 (there are two buffers, and
each buffer allows an error of at most 10 − 1 storage units
assuming a step size of one; see [11]). Algorithm 1 needs 27
throughput analysis calls to obtain a solution with at most
this error, and this is reported in the table.

To compare the performance of the approaches we
primarily use the number of throughput analysis calls, and
not the running time. The reason is that our prototype
implementation has been written in JAVA and invokes an
external SDF3 executable for each throughput analysis,
which has a significant overhead. The approach of SGB08
has, on the other hand, been fully integrated in a single SDF3
executable. In both approaches the throughput analysis
dominates the overall running time, and therefore we use
the number of throughput analysis calls as a measure of
performance to abstract from implementation details. The
running times are, nevertheless, also shown in Table 1,
and we expect that the values for a fully integrated MBS
implementation will be smaller.

The results show that both approaches obtain the same
size of the storage distribution when an optimal solution is
expected (i.e, for a step size of one and a � of zero). When
a suboptimal solution with a bounded error is accepted,
then both approaches result in storage distributions of
similar size, which is as expected. The MP3 playback
application and the H.263 decoder models are difficult
for SGB08, but easy for our approach. We believe that
this is caused by explicit visitation of a large part of the
search space by SGB08 to achieve the optimal throughput,
whereas our approach takes large steps and skips analysis
of many intermediate storage distributions. Both methods
show similar performance for the models of the sample-rate
converter and satellite receiver. These models differ from

Table 1 Experimental results.

SGB08 [11] MBS (Algorithm1)

SDF CSDF |A| |Cbuf | n |δ| # calls Time (s) � |δ| # calls Time (s)

MP3 playback � 3 2 1 – – – 0 2898 34 5

10 2907 1944724 8702 18 2906 27 4

H.263 decoder � 4 3 1 – – – 0 8006 46 13

10 8023 1223707 10751 27 8029 40 12

Sample rate � 6 5 1 34 16 0 0 34 14 1

Satellite � 22 26 1 1544 38 2 0 1544 32 4

MRF-32 � 21 4 1 – – – 0 500 106 31

5 503 211 18 16 505 46 10

MRF-64 � 21 4 1 – – – 0 985 115 272

5 993 749 1002 16 993 57 106

MRF-128 � 21 4 1 – – – 0 1962 149 4974

10 1968 506 8144 36 1965 51 1112

J Sign Process Syst (2019) 91:21–32 31

the MP3 playback and the H.263 decoder models in the fact
that the initial storage distribution that can be calculated by
a fast analysis is close to the optimal storage distribution
with the required throughput. The results also show that our
approach scales better than SGB08 for the rather complex
CSDF models of the image-processing application from the
healthcare domain.

7 Conclusions

We have introduced an algorithm to optimize the storage
distribution size given a throughput constraint for CSDF
graphs. This algorithm is based on three ingredients: (i) the
causal dependency analysis from [10, 11], (ii) principles
from the area of monotonic optimization [12, 13], and (iii)
the concept of knee points introduced in [7]. A useful
property of our algorithm is that it can provide some
feasible storage distribution and an upper bound on the
size difference with an optimal feasible storage distribution
any time after the initialization phase. The experimental
results show that our approach is better suited for buffer
minimization under a throughput constraint than (the more
general) approach of [10, 11] in the sense that solutions can
be obtained with fewer throughput analysis calls.

Our algorithm can in principle be applied to other models
of computation and other optimization problems than buffer
sizing in CSDF by removing or adapting the parts with
respect to causal dependency analysis (i.e., line 23 in
Algorithm 1 and lines 5 – 7 in Algorithm 2). The only
requirement is that the function that defines the feasibility
is monotone with respect to the optimization parameters
(in our case the throughput is monotone with respect to
the buffer sizes; see Lemma 1). The resulting approach
then would be closely related to the generic monotonic
optimization frameworks as presented in [12, 13].

Acknowledgements This research was supported by the ARTEMIS
joint undertaking under grant agreement no 621439 (ALMARVI).

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

1. Sdf3 website. http://www.es.ele.tue.nl/sdf3/.

2. Adé, M., Lauwereins, R., Peperstraete, J.A. (1997). Data memory
minimisation for synchronous data flow graphs emulated on dsp-
fpga targets. In Proceedings of the 34th annual design automation
conference. New York: ACM.

3. Benazouz, M., Marchetti, O., Munier-Kordon, A., Michel, T.
(2010). A new method for minimizing buffer sizes for cyclo-static
dataflow graphs. In 8th IEEE workshop on embedded systems for
real-time multimedia.

4. Benazouz, M., & Munier-Kordon, A. (2013). Cyclo-static
dataflow phases scheduling optimization for buffer sizes mini-
mization. In Proceedings of the 16th international workshop on
software and compilers for embedded systems. New York: ACM.

5. Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J. (1996).
Cycle-static dataflow. IEEE Transactions on Signal Processing,
44(2), 397–408.

6. Lee, E.A., & Parks, T.M. (1995). Dataflow process networks.
Proceedings of the IEEE, 83(5), 773–801.

7. Legriel, J., Le Guernic, C., Cotton, S., Maler, O. (2010).
Approximating the Pareto front of multi-criteria optimization
problems. In Proceedings of the 16th international conference on
tools and algorithms for the construction and analysis of systems.
Berlin: Springer.

8. Moreira, O., Basten, T., Geilen, M., Stuijk, S. (2010). Buffer sizing
for rate-optimal single-rate data-flow scheduling revisited. IEEE
Transactions on Computers, 59(2), 188–201.

9. Qian, L.P., Zhang, Y.J., Huang, J. (2009). Mapel: achieving global
optimality for a non-convex wireless power control problem. IEEE
Transactions on Wireless Communications, 8(3), 1553–1563.

10. Stuijk, S., Geilen, M., Basten, T. (2006). Exploring trade-offs in
buffer requirements and throughput constraints for synchronous
dataflow graphs. In Proceedings of the 43rd annual design
automation conference. New York: ACM.

11. Stuijk, S., Geilen, M., Basten, T. (2008). Throughput-buffering
trade-off exploration for cyclo-static and synchronous dataflow
graphs. IEEE Transactions on Computers, 57(10), 1331–1345.

12. Tuy, H. (2000). Monotonic optimization: problems and solution
approaches. SIAM Journal on Optimization, 11(2), 464–491.

13. Tuy, H., Al-Khayyal, F., Thach, P. (2005). Monotonic optimiza-
tion: branch and cut methods, (pp. 39–78). US: Springer.

14. Utschick, W., & Brehmer, J. (2012). Monotonic optimization
framework for coordinated beamforming in multicell networks.
IEEE Transactions on Signal Processing, 60(4), 1899–1909.

15. Wiggers, M.H., Bekooij, M.J.G., Smit, G.J.M. (2007). Efficient
computation of buffer capacities for cyclo-static dataflow graphs.
In 44th ACM/IEEE design automation conference.

16. Xing, C., Ma, S., Zhou, Y. (2015). Matrix-monotonic optimization
for mimo systems. IEEE Transactions on Signal Processing,
63(2), 334–348.

Martijn Hendriks is a
research fellow with ESI,
TNO, the Netherlands. He
holds an M.Sc. (2002) and
Ph.D. (2006) in computing
science from Radboud Uni-
versity Nijmegen. His current
research interests include
the modeling and analysis of
embedded and cyber-physical
systems, with an emphasis on
performance engineering.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.es.ele.tue.nl/sdf3/

32 J Sign Process Syst (2019) 91:21–32

Hadi Alizadeh Ara has rece-
ived his master’s degree in
Control Systems from the
Tehran Polytechnic in 2013.
He is currently a last year
PhD candidate at the Eind-
hoven University of Tech-
nology in Electronic Sys-
tems group of the Electrical
Engineering Department. His
research interests include
embedded systems, cyber-
physical systems, model-
based design, discrete event
systems, (max,+) algebra, and
trade-off analysis for realtime

streaming applications. He has (co)authored publications on these
topics.

Marc Geilen is an assistant
professor in the Department
of Electrical Engineering
at Eindhoven University of
Technology. He holds an MSc
and a PhD from Eindhoven
University of Technology. In
2010, he was a McKay Visit-
ing Professor at the University
of California, Berkeley. His
research interests include
modeling, simulation and
programming of multimedia
systems, formal models-of-
computation, model-based
design processes, multiproces-

sor systems-on-chip, networked embedded systems and cyber-physical
systems, and multi-objective optimization and trade-off analysis. He
is a member of IEEE. He has been involved with several national and
international research projects and programs on the above topics with
strong industrial connections. He has served on various TPCs and on
organizing committees for several conferences including DATE as a
topic chair and member of the executive committee.

Twan Basten is a Profes-
sor with the Department of
Electrical Engineering, Eind-
hoven University of Technol-
ogy (TU/e), Eindhoven, the
Netherlands, where he chairs
the Electronic Systems group.
He is also a Senior Research
Fellow with ESI, TNO, Eind-
hoven. He received the M.Sc.
and Ph.D. degrees in com-
puting science from TU/e.
His current research interests
include the design of embed-
ded and cyber-physical sys-
tems, dependable computing,
and computational models.

RubenGuerraMarin received
his M.Sc. degree in Embedded
Systems from the Eindhoven
University of Technology in
2016. Since then he worked in
several projects through Topic
Embedded Systems, including
Philips Healthcare where he
was an FPGA engineer for
the ARTEMIS ALMARVI
project. Since 2018 he is
working for TMC as a Hard-
ware Designer, focusing
mainly on FPGA design. His
main areas of research interest
include embedded systems,

real-time systems, broadcasting, healthcare and airspace technology.

Rob de Jong joined Philips
in 1985 and currently is a
system designer for medi-
cal X-ray systems within the
Image Guided Therapy depart-
ment of Philips Healthcare.
A large part of his work
involves realtime embedded
FPGA based image process-
ing and control devices includ-
ing model driven resource-
usage and development-time
optimization techniques.

Steven van der Vlugt
received his master’s degree
in Electrical Engineering
from Eindhoven Univer-
sity of Technology in 2014.
Since then he has been work-
ing as consultant for Topic
Embedded Systems. He was
at Philips Healthcare until
mid 2017 where he worked
with FPGA HLS tooling for
real-time image processing.
In that time he also joined
the ARTEMIS ALMARVI
project as lead engineer and
work package leader. His

interests are especially with real-time embedded systems, heteroge-
neous computing, healthcare and image processing applications. He is
currently on a project at ASML where he is working on new compute
architectures for control applications.

	Monotonic Optimization of Dataflow Buffer Sizes
	Abstract
	Introduction
	Contribution
	Related work

	Explanation of the Approach
	Cyclo-Static Dataflow Graphs
	Monotonic Optimization
	Optimization Algorithm
	Experimental Evaluation
	Conclusions
	Acknowledgements
	Open Access
	Publisher's Note
	References

