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Abstract
Machine learning (ML) applications in medical artificial intelligence (AI) systems have shifted from traditional and statistical
methods to increasing application of deep learning models. This survey navigates the current landscape of multimodal ML,
focusing on its profound impact onmedical image analysis and clinical decision support systems. Emphasizing challenges and
innovations in addressing multimodal representation, fusion, translation, alignment, and co-learning, the paper explores the
transformative potential of multimodal models for clinical predictions. It also highlights the need for principled assessments
and practical implementation of such models, bringing attention to the dynamics between decision support systems and
healthcare providers and personnel. Despite advancements, challenges such as data biases and the scarcity of “big data” in
many biomedical domains persist. We conclude with a discussion on principled innovation and collaborative efforts to further
the mission of seamless integration of multimodal ML models into biomedical practice.
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1 Introduction

Machine learning (ML), the process of leveraging algorithms
and optimization to infer strategies for solving learning tasks,
has enabled some of the greatest developments in artificial
intelligence (AI) in the last decade, enabling the automated
segmentation or class identification of images, the ability
to answer nearly any text-based question, and the ability to
generate images never seen before. In biomedical research,
many of theseMLmodels are quickly being applied to medi-
cal images and decision support systems in conjunction with
a significant shift from traditional and statistical methods to
increasing application of deep learning models. At the same

2 Department of Medical and Imaging Informatics, University
of California Los Angeles, 924 Westwood Blvd Ste 420, Los
Angeles, CA 90024, USA

3 Almaden Research Center, IBM, 650 Harry Rd., San Jose,
CA 95120, USA

4 Department of Radiology, University of Pennsylvania, 3400
Spruce St., Philadelphia, PA 19104, USA

5 Center for Biomedical Informatics Research, Stanford, 1265
Welch Road, Stanford, CA 94305, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-024-02032-8&domain=pdf
http://orcid.org/0000-0001-6694-2701


International Journal of Computer Vision

time, the importance of both plentiful and well-curated data
has become better understood, coinciding as of the time of
writing this article with the incredible premise of OpenAI’s
ChatGPT and GPT-4 engines as well as other generative AI
models which are trained on a vast, well-curated, and diverse
array of content from across the internet (OpenAI, 2023).

As more data has become available, a wider selection
of datasets containing more than one modality has also
enabled growth in the multimodal research sphere. Multi-
modal data is intrinsic to biomedical research and clinical
care. While data belonging to a single modality can be
conceptualized as a way in which something is perceived
or captured in the world into an abstract digitized repre-
sentation such as a waveform or image, multimodal data
aggregates multiple modalities and thus consists of several
intrinsically different representation spaces (and potentially
even different data geometries). Computed tomography (CT)
and positron emission tomography (PET) are specific exam-
ples of single imaging modalities, while magnetic resonance
imaging (MRI) is an example itself of multimodal data, as
its component sequences T1-weighted, T2-weighted, and
fluid-attenuated inversion recovery (FLAIR) can eachbe con-
sidered their own unique modalities, since each of the MR
sequences measure some different biophysical or biological
property. Laboratory blood tests, patient demographics, elec-
trocardiogram (ECG) and genetic expression values are also
common modalities in clinical decision models. This work
discusses unique ways that differences between modalities
have been addressed and mitigated to improve accuracy of
AI models in similar ways to which a human would naturally
be able to re-calibrate to these differences.

There is conceptual value to building multimodal models.
Outside of the biomedical sphere, many have already wit-
nessed the sheer power of multimodal AI in text-to-image
generators such as DALL·E 2, DALL·E 3 or Midjourney
(Ramesh et al., 2022; Betker et al., 2023; Oppenlaender,
2022), some ofwhose artful creations havewon competitions
competing against humans (Metz, 2022). In the biomedical
sphere, multimodal models provide potentially more robust
and generalizable AI predictions as well as a more holis-
tic approach to diagnosis or prognosis of patients, akin to
a more human-like approach to medicine. While a plethora
of biomedical AI publications based on unimodal data exist,
fewer multimodal models exist due to cost and availabil-
ity constraints of obtaining multimodal data. However, since
patient imaging and lab measurements are decreasing in cost
and increasing in availability, the case for building multi-
modal biomedical AI is becoming increasingly compelling.

With the emergence of readily-available multimodal data
comes new challenges and responsibilities for those who
use them. The survey and taxonomy from Baltrusaitis et
al. (2019) presents an organized description of these new
challenges, which can be summarized in Fig. 1: (1) rep-

resentation, (2) fusion, (3) alignment, (4) translation, (5)
co-learning. Representation often condenses a single modal-
ity such as audio or an image to a machine-readable data
structure such as a vector, matrix, tensor object, or other geo-
metric form, and is concerned with ways to combine more
than one modality into the same representation space. Good
multimodal representations are constructed in ways in which
relationships and context can be preserved between modal-
ities. Multimodal fusion relates to the challenge of how to
properly combine multimodal data into a predictive model.
In multimodal alignment, models attempt to automatically
align one modality to another. In a simple case, models could
be constructed to align PPG signals taken at a 60Hz sampling
frequency with a 240Hz ECG signal. In a more challenging
case, video of colonoscopy could be aligned to an image
representing the camera’s location in the colon. Multimodal
translation consists of mapping one modality to another. For
example, several popular natural language processing (NLP)
models attempt tomap an image to a description of the image,
switching from the imaging domain to a text domain. In trans-
lational medicine, image-to-image translation tends to be the
most commonmethod,whereby one easily-obtained imaging
domain such as CT is converted to a harder-to-obtain domain
such as T1-weighted MRI. Lastly, multimodal co-learning
involves the practice of transferring knowledge learned from
one modality to a model or data from a different modality.

In this paper, we use the taxonomical framework from
Baltrusaitis et al. (2019) to survey current methods which
address each of the five challenges of multimodal learning
with a novel focus on addressing these challenges in med-
ical image-based clinical decision support. The aim of this
work is to introduce both current and new approaches for
addressing each multimodal challenge. We conclude with a
discussion on the future of AI in biomedicine and what steps
we anticipate could further progress in the field.

2 Multimodal Learning in Medical
Applications

In the following section, we reintroduce the five common
challenges in multimodal ML addressed in Sect. 1 and dis-
cuss modern approaches to each challenge as applied to
image-based biomedicine. The taxonomical subcategories of
Representation and Fusion are summarized in Fig. 2, while
those for Translation, Alignment and Co-learning are sum-
marized in Fig. 3. A table of relevant works by the challenge
addressed and data types used are given in Table 1.

2.1 Representation

Representation inmachine learning typically entails the chal-
lenge of transferring contextual knowledge of a complex
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Fig. 1 Challenges in
multimodal learning: (1)
representation, which concerns
how multiple modalities will be
geometrically represented and
how to represent intrinsic
relationships between them; (2)
fusion, the challenge of
combining multiple modalities
into a predictive model; (3)
translation, involving the
mapping of one modality to
another; (4) alignment, which
attempts to align two separate
modalities spatially or
temporally; and (5) co-learning,
which involves using one
modality to assist the learning of
another modality

entity such as an image or sound to a mathematically-
interpretable or machine-readable format such as a vector
or a matrix. Prior to the rise of deep learning, features were
engineered in images using techniques such as the aforemen-
tioned Scale-Invariant Feature Transform (SIFT) or through
methods such as edge detection. Features in audio or other
waveform signals such as ECG could be extracted utilizing
wavelets or Fourier transform to isolate latent properties of
signals and then quantitative values could be derived from
morphological patterns in the extracted signal. Multimodal
representation challenges venture a step further, consisting
of the ability to translate similarities and differences from
one modality’s representation to another modality’s repre-
sentation. For example, when representing both medical text
and CT images, if the vector representations for “skull” and
“brain” in medical text are closer than those for “skull” and
“pancreas”, then in a good CT representation, such relation-
ships between vector representations of these structures in
the image should remain preserved. The derivation of “good”
representations in multimodal settings have been outlined in

Bengio et al. (2013) and extendedbySrivastava andSalakhut-
dinov (2014).

It is crucial to acknowledge that representation becomes
notably challenging when dealing with more abstract con-
cepts. In a unimodal context, consider the task of craft-
ing representations from an image. Beyond pixel inten-
sities, these representations must encapsulate contextual
and semantically-proximate information from the image. A
simplistic model may fail to encode context adequately, dis-
cerning insufficient distinctions between a foreground and
background to represent nuanced visual-semantic concepts.
Achieving such subtleties in representations, particularly in
abstract contexts, poses increased challenges compared to
quantifying similarities and differences in less-nuanced data
such as cell counts or gene expression.

Prior to delving into multimodal representations, it is
instructive to elucidate strategies for crafting proficient
unimodal representations, as multimodal approaches often
involve combining or adapting multiple unimodal methods.
For images, pretrained networks are a common approach
for transforming images into good vector representations.
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Fig. 2 A graphical representation of the taxonomical sublevels of mul-
timodal representation and fusion, and the focus of each challenge.
Multimodal representation can be categorized into whether the repre-
sentations are joined into a single vector (joint) or separately constructed

to be influenced by each other (coordinated). Multimodal fusion can be
distinguished by whether a model is uniquely constructed to fuse the
modalities (model-based), or whether fusion occurs before or after the
model step (model-agnostic)

Another approach is use of autoencoders, which condense
image representations into lower-dimensional context vec-
tors that can be decoded to reconstruct the original image.
Multimodal autoencoders have been applied toMRI modali-
ties in Hamghalam et al. (2021) and in this example were also
utilized to impute representations for missing modalities.

Another approach for multimodal representation could be
through the use of disentanglement networks, which can sep-
arate latent properties of an image into separate vectors. In
such cases, an image is given as input and the autoencoder
is often split in such a way that two vectors are produced as
intermediate pathways, where joining the intermediate vec-
tors should result in the original input. Each intermediate
pathway is often constrained by a separate loss function term
to encourage separation of each pathway into the desired

latent characteristics. In this way, one input image can be
represented by two separate vectors, each representing a
disjointed characteristic of the image. This disentanglement
method has been applied in Jiang and Veeraraghavan (2020)
to separate context in CT and MRI from their style so that
one modality can be converted in to the other. It was also
applied for a single modality in Bône et al. (2020) to separate
“shape” and “appearance” representations of an input, which
could potentially be applied to different imaging modalities
to extract only similar shapes from each.

When two or more vectorized modalities are combined
into amodel, they are typically combined in one of twoways:
(1) joint, or (2) coordinated representations. A joint represen-
tation is characterized by aggregation of the vectors at some
point in the process,wherebyvector representations from two
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Fig. 3 A graphical representation of the taxonomical sublevels of mul-
timodal translation, alignment and co-learning, and the focus of each
challenge. In translation, models are distinguished based on whether
they require use of a dictionary to save associations between modalities
(dictionary-based), or if the associations are learned in a multimodal
network (generative). In alignment, distinction is made depending on

the purpose of the alignment, whether as the goal (explicit) or as an
intermediate step towards the goal output (implicit). In co-learning, a
distinction is made between the use of parallel (paired) multimodal
data, or non-parallel (unpaired) multimodal data. In co-learning mod-
els, one of the modalities is only used in training but does not appear in
testing
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separate modalities are joined together into a single vector
form through methods such as aggregation, concatenation or
summation. Joint representation is both a common and effec-
tive strategy for representation; however, a joint strategy such
as concatenation is often constricted to serving in situations
where both modalities are available at train- and test-time
(one exception using Boltzmann Machines can be found in
Srivastava and Salakhutdinov (2014)). If a modality has the
potential to be missing, a joint strategy such as aggregation
via weighted means could be a better option (Li et al., 2021;
Chen et al., 2020; Zhou et al., 2023; Cui et al., 2022). Using
mathematical notation from Baltrusaitis et al. (2019), we can
denote joint representations xm as the following:

xm = f (x1, ..., xn) (1)

This denotes that feature vectors xi , i = 1...n are com-
bined in some way through a function f to create a new
representation space xm . By the contrary, coordinated repre-
sentations are represented as the following:

f (x1) ∼ g(x2), (2)

whereby a function designed to create representations for
one modality may be constrained (represented by ∼) by a
similar function from another modality, with the assumption
that relationships between data points in the first modality
should be relatively well-preserved in the second modality.

Joint representations tend tobe themost commonapproach
to representing two or more modalities together in a model
because it is perhaps the most straightforward approach.
For example, joining vectorized multimodal data together
through concatenation before entering a model tends to be
one of the most direct approaches to joint representation.
Sonsbeek and Worring (2020), for example, chest x-rays are
combined with text data from electronic health records in
a vectorized form using a pretrained model first. Then, the
vectors from eachmodality are sent individually through two
attention-based blocks, then concatenated into a joint fea-
ture space to predict a possible cardiovascular disease and
generate a free-text “impression” of the condition. Other
joint representation models follow simpler methods, simply
extracting baseline features from a pretrainedmodel and con-
catenating them Daza et al. (2020); Yang et al. (2020).

Although coordinated representations have traditionally
tended to be more challenging to implement, the conve-
nience of neural network architectural and loss adjustments
have resulted in increased traction in publications embody-
ing coordinated representations (Xing et al., 2022; Wang et
al., 2023; Chauhan et al., 2020; Radford et al., 2021; Zhang
et al., 2022; Bhalodia et al., 2021). One of the most notable
of these in recent AI approaches is OpenAI’s Contrastive
Language-Image Pre-Training (CLIP) model, which forms

representations for OpenAI’s DALL·E 2 (Radford et al.,
2021; Ramesh et al., 2022) and uses a contrastive-learning
approach to shape both image embeddings of entire images
to match text embeddings of entire captions describing those
images. The representations learned fromCLIPwere demon-
strated to not only perform well in zero-shot image-to-text
or text-to-image models, but also to produce representations
that could outpace baseline supervised learning methods. In
a biomedical context, similarmodels abound, including Con-
VIRT, a predecessor and forerunner for CLIP (Zhang et al.,
2022), and related works (Bhalodia et al., 2021).

Coordinated approaches are especially useful in co-
learning. Chauhan et al. (2020), which employs a subset
of co-learning called privileged information, the geometric
forms of each modality are not joined into a single vector
representation. Instead, network weights are encouraged to
produce similar output vectors for each modality and ulti-
mately the same classifications. This constraint warps the
space of chest x-ray representations closer to the space of text
representations, with the assumption that this coordinated
strategy provides chest x-ray representations more useful
information because of the text modality. For more on privi-
leged information, see the Sect. 2.5 below.

In the biomedical sphere, where models are built to pri-
oritize biologically- or clinically-relevant outcomes, quality
of representations may often be overlooked or overshad-
owed by emphasis on optimization of prediction accuracy.
However, there is conceptual value in building good mul-
timodal representations. If models are constructed to ensure
that similar concepts in different modalities also demonstrate
cross-modal similarity, then there is greater confidence that
an accurate model is understanding cross-modal relation-
ships. While building good cross-modal representations for
indexing images on the Internet like in the CLIP model is
a digestible challenge, building similar cross-modal repre-
sentations for medical data presents a far more formidable
challenge due to data paucity. OpenAI’s proprietary Web-
TextImage dataset, used for CLIP, contains 400 million
examples, a sample size that is as of yet unheard of for
any kind of biomedical imaging data. Until such a dataset
is released, bioinformaticians must often rely on the ability
to leverage pretrainedmodels and transfer learning strategies
for optimal results amidst low resources to leverage big data
for good representations on smaller data.

2.2 Fusion

Next, we discuss challenges in multimodal fusion. This topic
is a natural segue from the discussion of representation
because many multimodal representations are subsequently
fed into a discriminatory model. Multimodal fusion entails
the utilization of methods to combine representations from
more than one modality into a classification, regression,

123



International Journal of Computer Vision

or segmentation model. According to Baltrusaitis et al.
(2019), fusion models can be classified into two subcate-
gories: model-agnostic and model-based approaches. The
term “model-agnostic” refers to methods for multimodal
fusion occurring either before or after the model execution
and typically does not involve altering the prediction model
itself. Model-agnostic approaches can further be delineated
by the stage at which the fusion of modalities occurs, either
early in the model (prior to output generation) or late in
the model (such as ensemble models, where outputs from
multiple models are combined). Additionally, hybrid mod-
els, incorporating a blend of both early and late fusion, have
been proposed (Carbonell et al., 2023). In contrast, a model-
based approach entails special adjustments to the predictive
model to ensure it handles each modality uniquely.

While model-agnostic methods remain pertinent as useful
strategies for multimodal fusion, the overwhelming popular-
ity of neural networks has led to a predominant shift towards
model-based methods in recent years. These model-based
methods involve innovative loss functions and architectures
designed to handle each modality differently. One common
model-based fusion strategy is multimodal multiple instance
learning (MIL), where multiple context vectors for each
modality are generated and subsequently aggregated into a
single representation leading to the output classification. The
method for aggregation varies across studies, with attention-
based approaches, emphasizing specific characteristics of
each modality, being a common choice (Li et al., 2021; Chen
et al., 2020; Zhou et al., 2023; Cui et al., 2022).

The construction of a good model architecture is crucial;
however, challenges associated with fusion are often highly
contextual, and thus it is important to understand what kinds
of data are being utilized in recent models andwhat problems
they try to solve. Most multimodal models understandably
incorporate MRI modalities, given that MR images are a
natural multimodal medium. Consequently, studies incor-
porating MRI such as Azcona et al. (2020), which aims
to classify Alzheimer’s Disease severity, and Zhou et al.
(2020), predicting overall survival in brain tumor patients,
exemplify the type of research often prevalent in multimodal
image-based clinical application publications. Brain-based
ML studies are also popular because of the wide availabil-
ity of brain images and a strong interest in applying ML
models in clinical neuroradiology. However, recent models
encompass a myriad of other clinical scenarios predicting
lung cancer presence (Daza et al., 2020), segmenting soft
tissue sarcomas (Neubauer et al., 2020), classifying breast
lesions (Habib et al., 2020), and predicting therapy response
(Yang et al., 2020), among others, by amalgamating and
cross-referencing modalities such as CT images (Daza et al.,
2020; Neubauer et al., 2020), blood tests (Yang et al., 2020),
electronic health record (EHR) data (Yang et al., 2020; Sons-
beek and Worring, 2020; Daza et al., 2020), mammography

images (Habib et al., 2020), and ultrasound (Habib et al.,
2020).

Multimodal fusion models are emerging as the gold stan-
dard for clinical-assisted interventions due to the recognition
that diagnosis andprognosis in real-world clinical settings are
often multimodal problems. However, these models are not
without limitations. For one, standardization across equip-
ment manufacturers or measurement protocols can affect
model performance dramatically, and this issue becomes
more pronounced as more modalities are incorporated into a
model. Second, while fusion models attempt to mimic real-
world clinical practice, they face practical challenges that
can limit their utility. For instance, physicians may face var-
ious roadblocks to obtaining all model input variables due to
a lack of permission from insurance companies to perform
all needed tests or time constraints. These issues underscore
challenges associated with missing modalities, and several
studies have attempted to address this concern (Carbonell et
al., 2023; Zhang et al., 2022; Cui et al., 2022; Wang et al.,
2023; Liu et al., 2023). However, incorporating mechanisms
to account for missing modalities in a model is not yet a
common practice for most multimodal biomedical models.

Lastly, many models are not configured to make pre-
dictions that adapt with additional variables. Most models
necessitate all variables to be present at the time of operation,
meaning that, even if all tests are conducted, the model can
only make a decision once all test results have been obtained.
In conclusion, in the dynamic and fast-paced environment of
hospitals and other care centers, even accurate models may
not be suitable for practical use, unless also coupled with
mechanisms to handle missing data.

2.3 Translation

In multimodal translation, a model is devised to operate
as a mapping entity facilitating the transformation from
one modality to another. This involves the conversion of
input contextual data, such as CT scans, into an alterna-
tive contextual data format, such as MRI scans. Before the
rise of modern generative methods leveraging multimodal
generative adversarial networks (GANs) or diffusion mod-
els to generate one modality from another, translation via
dictionary-based methods was common, which typically
involved a bimodal dictionary whereby a single entry would
contain a key belonging to one modality and a correspond-
ing value belonging to the other modality. Dictionary-based
translation was uncommon in biomedical research but popu-
lar in NLP fields as a way to convert images into text and vice
versa (Liao et al., 2022; Reed et al., 2016). The current ascen-
dancy of generative models and the availability of associated
coding packages have since catalyzed the growth of innova-
tive translational studies applying generative approaches.

123



International Journal of Computer Vision

Presently, generative models encompass a broad spec-
trum of potential applications both within and beyond the
biomedical domain. Outside the medical sphere, generative
models find utility in NLP settings, particularly in text-to-
image models like DALL·E 2 and Midjourney (Liao et al.,
2022; Ramesh et al., 2022; Oppenlaender, 2022). Addition-
ally, they are employed in style transfer and other aesthetic
computer vision techniques (Huang et al., 2021; Cao et al.,
2018; Zhu et al., 2017; Liu et al., 2018; Palsson et al., 2018;
Zhang andWang, 2020).Within the biomedical realm, gener-
ativemodels have proven efficacious in creating virtual stains
for unstained histopathological tissueswhichwould typically
undergo hemotoxylin/eosin staining (Lu et al., 2021). Fur-
thermore, these models serve as prominent tools for sample
generation (Tseng et al., 2017; Piacentino et al., 2021; Choi et
al., 2017), particularly in scenarios with limited sample sizes
(Chen et al., 2021). Despite the potential diversity of multi-
modal translation involving any twomodalities, predominant
translational efforts in the biomedical realm currently revolve
aroundmappingone imagingmodality to another, a paradigm
recognized as image-to-image translation.

In the contemporary landscape, the integration of simplis-
tic generative models into a clinical context are declining
in visibility, while methods employing specialized architec-
tures tailored to the involvedmodalities are acknowledged for
advancing the state-of-the-art in translational work. Within
this context, two notable generative translation paradigms
for biomedicine are explored: (1) medical image generation
models, and (2) segmentation mask models. In the former,
many studies attempt to form models that are bidirectional,
whereby the intended output can be placed back as input
and return an image similar to the original input image.
Bui et al. (2020), this is resolved by generating deforma-
tion fields that map changes in the T1-weighted sequence
modality of MRI to the T2-weighted sequence modality. Hu
et al. (2020), separate forward and backward training pro-
cesses are defined whereby an encoder representing PET
images is utilized to understand the underlying distribution
of that modality, allowing for more realistic synthetic gener-
ated images from MRI. In one unidirectional example, Shin
et al. (2020) modifies a pix2pix conditional GAN network
to allow Alzheimer’s disease classification to influence syn-
thetic PET image generation. In another interesting example,
Takagi and Nishimoto (2023) use functional MRI (fMRI)
scans and diffusion models to attempt to recreate images of
what their subjects had seen. Similarly, diffusion models and
magnetoencephalography (MEG) are utilized by Meta for
real-time prediction from brain activity of what patients had
seen visually (Benchetrit et al., 2023).

In the second potential application, image segmentation
models in multimodal image-to-image translation must han-
dle additional challenges, creating both a way to generate
the output modality as well as a way to segment it. Jiang and

Veeraraghavan (2020), a generative model converts CT to
MRI segmentation. In a reverse problem to image segmen-
tation, Guo et al. (2020) attempts to synthesize multimodal
MRI examples of lesions with only a binary lesion mask
and a multimodal MRI Atlas. In this study, six CNN-based
discriminators are utilized to ensure the authentic appearance
of background, brain, and lesion, respectively, in synthesized
images.

Multimodal translation still remains an exciting but
formidable challenge. In NLP and beyond, there have been
remarkable successes observed in new image generation
within text-to-image models beyond the biomedical sphere.
However, the adoption of translation models in biomedical
work is evolving at a more measured pace, with applica-
tions extending beyond demonstrative feasibility to practical
utility remaining limited. Arguments in favor of biomedi-
cal translation models are predominantly centered around
sample generation for datasets with limited sizes, as the
generated medical images must adhere to stringent accu-
racy requirements. Similar to other challenges in multimodal
research, translationmodelswould greatly benefit from train-
ing on more expansive and diverse datasets. However, with
the increasing digitization of medical records and a refined
understanding of de-identification protocols and data sharing
rights, the evolution of this field holds considerable promise.

2.4 Alignment

Multimodal alignment involves aligning two related modali-
ties, often in either a spatial or temporal way. Multimodal
alignment can be conducted either explicitly as a direct
end goal, or implicitly, as a means to the end goal, which
could be translation or classification of an input. One exam-
ple of explicit alignment in a biomedical context is image
registration. Leroy et al. (2023) highlights one approach
to multimodal image registration, where histopathology
slides are aligned to their (x, y, z) coordinates in a three-
dimensional CT volume. Another is in Chen et al. (2023),
where surgical video was aligned to a text description of
what is happening in the video. On the other hand, an exam-
ple of multimodal implicit alignment could be the temporal
alignment of multiple clinical tests to understand a patients
progress over time. Such an analysis was conducted in Yang
et al. (2020), where the authors built a customizedmulti-layer
perceptron (MLP) called SimTA to predict response to ther-
apy intervention at a future time step based on results from
previous tests and interventions.

Literature surrounding alignment has increased since the
rise of attention-basedmodels in 2016. The concept of “atten-
tion,” which relates to aligning representations in a way that
is contextually relevant, is a unimodal alignment paradigm
with origins in machine translation and NLP (Bahdanau et
al., 2015). An example use of attention inNLP could bemod-
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els which try to learn, based on order and word choice of an
input sentence, where the subject of the sentence is so that the
response can address the input topic. In imaging, attention
can be used to highlight important parts of an image that are
most likely to contribute to a class prediction. Vaswani et al.
(2017), introduced a more sophisticated attention network,
named transformers, an encoder-decoder-style architecture
based on repeated projection heads where attention learn-
ing takes place. Transformers and attention were originally
applied to natural language (Vaswani et al., 2017; Bahdanau
et al., 2015; Devlin et al., 2019) but have since been applied
to images (Parmar et al., 2018; Dosovitskiy et al., 2021),
including histopathology slides (Lu et al., 2021; Chen et
al., 2020) and protein prediction (Tunyasuvunakool et al.,
2021). Multimodal transformers were introduced in 2019,
also developed for the natural language community (Tsai
et al., 2019). While these multimodal transformers do not
contain the same encoder-decoder structure of a traditional
transformer architecture, they are hallmarked by crossmodal
attention heads, where onemodality’s sequences intermingle
with another modality’s sequences.

Although typical transformers themselves are not mul-
timodal, they often constitute in multimodal models. The
SimTA network mentioned above borrowed the positional
encoding property of transformers to alignmultimodal inputs
in time to predict therapy response (Yang et al., 2020). Many
models taking advantage of visual transformers (ViT) have
also utilized pretrained transformers trained on images for
multimodal fusion models. In both the TransBTS (Wang et
al., 25021) and mmFormer models (Zhang et al., 2022), a
transformer is utilized on a vector composed of an amal-
gamation of information from multiple modalities of MRI,
whichmay imply that the transformer attention heads here are
aligning information from multiple modalities represented
via aggregate latent vectors. The ultimate function of trans-
formers is a formof implicit alignment, and it can be assumed
here that this alignment is multimodal.

Transformer models have brought a new and largely suc-
cessful approach to alignment, sparking widespread interest
in their applications in biomedical use. Transformers forNLP
have also engendered new interest inLargeLanguageModels
(LLMs), which are already being applied to biomedical con-
texts (Tinn et al., 2023) and probing new questions about its
potential use as a knowledge base for biomedical questions
(Sung et al., 2021).

2.5 Co-learning

In this last section exploring recent research in multimodal
machine learning, the area of co-learning is examined, a
field which has recently garnered a strong momentum in
both unimodal and multimodal domains. In multimodal co-
learning, knowledge learned from one modality is often used

to assist learning of a second modality. This first modality
which transfers knowledge is often leveraged only at train-
time but is not required at test-time. Co-learning is classified
in Baltrusaitis et al. (2019) as either parallel or non-parallel.
In parallel co-learning, paired samples of modalities which
share the same instance are fed into a co-learning model.
By contrast, in non-parallel co-learning, both modalities are
included in a model but are not required to be paired.

While co-learning can embody a variety of topics such
as conceptual grounding and zero-shot learning, this work
focuses on the use of transfer learning in biomedicine. Inmul-
timodal transfer learning, a model trained on a higher quality
or more plentiful modality is employed to assist in the train-
ing of a model designed for a second modality which is often
noisier or smaller in sample size. Transfer learning can be
conducted in both parallel and non-parallel paradigms. This
work focuses on one parallel form of transfer learning called
privileged learning, and one non-parallel form of transfer
learning called domain adaptation. A visual representation
of these approaches be seen in Fig. 4.

2.5.1 Privileged Learning

Privileged learning originates from the mathematician Vlad-
mir Vapnik and his ideas of knowledge transfer with the
support vector machine for privileged learning (SVM+)
model (Vapnik and Vashist, 2009). The concept of privileged
learning introduces the idea that predictions for a low-
signal, low-cost modality can be assisted by incorporating
a high-signal, high-cost modality (privileged information) in
training only, while at test-time only the low-cost modality
is needed. Vapnik and Vashist (2009), Vapnik illustrates this
concept through the analogy of a teacher (privileged infor-
mation) distilling knowledge to a student (low-costmodality)
before the student takes a test. Although a useful concept,
the field is relatively under-explored compared to other areas
of co-learning. One challenge to applying privileged learn-
ing models was that Vapnik’s SVM+ model was one of few
available before the widespread use of neural networks. Fur-
thermore, it demands that the modality deemed “privileged”
must confer high accuracy on its own in order to ensure that
its contribution to the model is positive. Since then, neu-
ral networks have encouraged newer renditions of privileged
information models that allow more flexibility of use (Lam-
bert et al., 2018; Shaikh et al., 2020; Sabeti et al., 2021).

Recently, privileged learning has emerged as a growing
subset of biomedical literature, and understandably so.Many
multimodal models today require health care professionals
to gather a slew of patient information and are not trained
to handle missing data. Therefore, the ability to minimize
the number of required input data while still utilizing the
predictive power of multiple modalities can be useful in
real-world clinical settings. Hu et al. (2020) for example,
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Fig. 4 Two types of transfer learning described in this work are priv-
ileged learning (top) and domain adaptation (bottom). In privileged
learning, a plentiful set consisting of data which is normally of low
cost but also low signal-to-noise ratio is available in both training and
testing, while a limited gold-standard quality set is used for training
only. In this example, the plentiful set is used to train the target model,
while the limited set constrains the model parameters to increase the

model’s ability to associate the low-cost modality with the ground truth.
In domain adaptation, there is a target dataset which consists of a few
samples and a source dataset consisting of plenty of samples. If the tar-
get data is too small to build a reliable model in training, source data can
be augmented to make the model more robust. Else, the target model
could be trained with few examples, while a second source model is
used to help make the target model more generalizable

the authors attempt to train a segmentation network where
at train-time the “teacher network” contains four MR image
modalities, but at test-time the “student network” contains
only T1-weighted images, the standard modality used in pre-
operative neurosurgery and radiology. Chauhan et al. (2020),
chest x-rays and written text from their respective radiology
reports are used to train a model where only chest x-rays are
available at test-time.

In privileged models based on traditional approaches
(before deep neural networks), privileged information can
be embedded in the model either through an alteration of
allowable error (“slack variables” from SVM+) (Vapnik and
Vashist, 2009), or through decision trees constructed with
non-privileged features tomimic the discriminative ability of
privileged features (Random Forest+) (Warner et al., 2022;
Moradi et al., 2016). In a deep learning model, privileged
learning is often achieved through the use of additional loss
functions which attempt to constrain latent and output vec-
tors from the non-privileged modality to mimic those from
the combined privileged and non-privileged models (Hu et
al., 2020; Xing et al., 2022). For example, in Chauhan et al.
(2020), encoders for each modality are compared and cross
entropy loss is calculated for each modality separately. The
sum of these allows the chest x-ray network to freely train
for only the chest x-ray modality while being constrained

through the overall loss function to borrow encoding meth-
ods from the text network, which also strives to build an
accurate model.

While privileged learning models can be applied where
data is missing, users should heed caution when applying
models in situations where there is systematic bias in report-
ing. Those who train privileged models without considering
subject matter may inadvertently be choosing to include all
their complete data in training and their incomplete data
in testing. However, in clinical scenarios, data are often
incomplete because a patient either did not qualify for a test
(perhaps their condition was seen as not “dire enough” to
warrant a test) or their situation was too serious to require a
test (for example, a patient in septic shock may not pause to
undergo a chest x-ray because they are in themiddle of amed-
ical emergency). Therefore, while applying data to highly
complex models is a common approach in computer science,
the context of the data and potential underlying biases need to
be considered first to ensure a practical and well-developed
model.

2.5.2 Domain Adaptation

Domain adaptation has been shown to be useful in biomed-
ical data science applications where a provided dataset may
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be too small or costly to utilize for more advanced methods
such as deep learning, but where a somewhat similar (albeit
larger) dataset can be trained by such methods. The smaller
dataset for which we want to train the model is called the
“target” dataset and the larger dataset which will be used
to assist the model with the learning task and provide bet-
ter contextualization is called the “source” dataset. Domain
adaptation strategies are often tailored to single modalities
such as camera imaging or MRI, where measurements of
an observed variable differ based on an instrument’s post-
processing techniques or acquisition parameters (Xiong et
al., 2020; Varsavsky et al., 2020; Yang et al., 2020). However,
the distinct characteristics arising from disparate instruments
or acquisition settings can lead to considerable shifts in
data distribution and feature representations, mirroring the
challenges faced in true multimodal contexts. Therefore,
the discussion of uni-modal domain adaptation is a rele-
vant starting point for multimodal domain adaptation, as it
covers approaches to mitigate significant deviations within
data that may seem similar but are represented differently.
Additionally, understanding how to mitigate the impact of
such variations helps one to understand ways to construct
multimodal machine learning systems that confront simi-
lar challenges. We also discuss relevant multimodal domain
adaptation approaches in biomedicine, which have typically
consisted of applying CT images as a source domain to train
an MRI target model or vice versa (Chiou et al., 2020; Xue
et al., 2020; Pei et al., 2023; Jafari et al., 2022; Dong et al.,
2022).

One way to train a model to adapt to different domains is
through augmentation of the input data, which “generalizes”
the model to interpret outside of the domain of the original
data. Xiong et al. (2020), a data augmentation framework for
fundus images in diabetic retinopathy (DR) is proposed to
offset the domain differences of utilizing different cameras.
The authors show that subtracting local average color, blur-
ring, adaptive local contrast enhancement, and a specialized
principal component analysis (PCA) strategy can increase
both R2 values for age prediction and DR classification area
under the receiver operating curve (AUROC) on test sets
where either some domain information is known a priori and
also where no information is known, respectively. In another
method which attempts to augment the source domain into
more examples in the target style, Chiou et al. (2020) split
the source image into latent content and style vectors, using
the content vectors in a style-transfer model reminiscent of
cycleGAN to feed as examples with the target domain into
a segmentation network (Zhu et al., 2017). In other applica-
tions, data augmentation for domain generalization may be
executed utilizing simpler affine transformations (Varsavsky
et al., 2020). This demonstrates the utility of data augmenta-
tion strategies in more broadly defining decision boundaries
where target domains differ from the source.

A second strategy for domain adaptation involves con-
straining neural network functions trained on a target domain
by creating loss functions which require alignment with a
source domain model. Varsavsky et al. (2020), a framework
for adapting segmentation models at test-time is proposed,
whereby an adversarial loss trains a target-based U-Net to
be as similar to a source-based U-Net as possible. Then a
paired-consistency loss with adversarial examples is utilized
to fine-tune the decision boundary to include morpholog-
ically similar data points. In a specificially multimodal
segmentation-based model, Xue et al. (2020) attempts to
create two side-by-side networks, a segmenter and an edge
generator, which both encourage the source and target output
to be as similar as possible to each other. In the final loss func-
tion, the edge generator is used to constrain the segmenter in
such away as to promote better edge consistency in the target
domain. In yet another, simpler example, domain adaptation
to a target domain is performed in Hu et al. (2021) by taking
a network trained on the source domain and simply adjusting
the parameters of the batch normalization layer.

Domain adaptation in biomedicine can be a commonprob-
lem where instrument models or parameters change. Among
multimodal co-learning methods, most networks are con-
structed as segmentation networks for MRI and CT because
they are similar imaging domains, although measuring dif-
ferent things. While CT carries distinct meaning in its pixels
(measured in Hounsfield Units), MRI pixel intensities are
not standardized and usually require normalization, which
could pose challenges to this multimodal problem. Addi-
tionally, MRI carries much more detail than CT scans, which
necessitates the model to understand contextual boundaries
of objects much more than a unimodal case with only CT or
MRI.

3 Discussion

The rapidly evolving landscape of artificial intelligence (AI)
both within the biomedical field and beyond has posed a
substantial challenge in composing this survey. Our aim
is to provide the reader with a comprehensive overview
of the challenges and contemporary approaches to multi-
modal machine learning in image-based, clinically relevant
biomedicine. However, it is essential to acknowledge that our
endeavor cannot be fully comprehensive due to the dynamic
nature of the field and the sheer volume of emerging literature
within the biomedical domain and its periphery. This robust
growth has led to a race among industry and research insti-
tutions to integrate the latest cutting-edge models into the
healthcare sector, with a particular emphasis on the intro-
duction of “large language models” (LLMs). In recent years,
there has been an emergence of market-level insights into the
future of healthcare and machine learning, as exemplified by
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the incorporation of machine learning models into wearable
devices such as the Apple Watch and Fitbit devices for the
detection of atrial fibrillation (Perino et al., 2021; Lubitz et
al., 2022). This begs the question: where does this transfor-
mative journey lead us?

Healthcare professionals and physicians already embrace
the concept of multimodal cognitive models in their diag-
nostic and prognostic practices, signaling that such computer
models based onmultimodal frameworks are likely to endure
within the biomedical landscape. However, for these mod-
els to be effectively integrated into clinical settings, they
must exhibit flexibility that aligns with the clinical envi-
ronment. If the ultimate goal is to seamlessly incorporate
these AI advancements into clinical practice, a fundamental
question arises: how can these models be practically imple-
mented on-site? Presently, most available software tools for
clinicians are intended as auxiliary aids, but healthcare pro-
fessionals have voiced concerns regarding the potential for
increased computational workload, alert fatigue, and the
limitations imposed by Electronic Health Record (EHR)
interfaces (Ruiter et al., 2015; Ancker et al., 2017). There-
fore, it is paramount to ensure that any additional software
introduced into clinical settings serves as an asset rather than
a hindrance.

Another pertinent issue emerging from these discussions
pertains to the dynamics between clinical decision support
systems (CDSS) and healthcare providers.What occurswhen
a computer-generated recommendation contradicts a physi-
cian’s judgment? This dilemma is not new, as evidenced by
a classic case recounted by Evans et al. (1998), where physi-
cians were granted the choice to either follow or disregard
a CDSS for antibiotic prescription. Intriguingly, the group
provided with the choice exhibited suboptimal performance
compared to both the physician-only and computer-only
groups. Consequently, it is unsurprising that some health-
care professionals maintain a cautious approach to computer
decision support systems (Adamson and Welch, 2019; Sil-
cox et al., 2020). Questions arise regarding the accountability
of physicians if they ignore a correct computer-generated
decision and the responsibility of software developers if a
physician follows an erroneous computer-generated recom-
mendation.

A pivotal ingredient notably under-represented in many
CDSS models, which could help alleviate discrepancies
between computer-generated and human decisions, is the
incorporation of uncertainty quantification, grounded cal-
ibration, interpretability and explainability. These factors
have been discussed in previous literature, underscoring the
critical role of explainability in ensuring the long-term suc-
cess of CDSS-related endeavors (Reddy, 2022; Khosravi et
al., 2022; Kwon et al., 2020; Abdar et al., 2021).

The domain of multimodal machine learning for med-
ically oriented image-based clinical support has garnered

increasing attention in recent years. This interest has been
stimulated by advances in computer science architecture and
computing hardware, the availability of vast and publicly
accessible data, innovative model architectures tailored for
limited datasets, and the growing demand for applications in
clinical and biomedical contexts. Recent studies have show-
cased the ability to generate synthetic images in onemodality
based on another (as outlined in Sect. 2.3), align multiple
modalities (Sect. 2.4), and transfer latent features from one
modality to train another (Sect. 2.5), among other advance-
ments. These developments offer a promising outlook for a
field that is still relatively new. However, it is also imperative
to remain vigilant regarding the prevention of data biases and
under-representation in ML models to maximize the poten-
tial of these technologies.

Despite these promising developments, the field faces sig-
nificant hurdles, notably the lack of readily available “big
data” in the medical domain. For instance, the routine digi-
tization of histopathology slides remains a challenging goal
in many healthcare facilities. Data sharing among medical
institutions is fraught with challenges around appropriate
procedures for the responsible sharing of patient data under
institutional, national and international patient privacy regu-
lations.

Advancing the field will likely entail overcoming these
hurdles, ensuring more extensive sharing of de-identified
data from research publications and greater participation in
establishment of standardized public repositories for data.
Dissemination of both code and pretrained model weights
would also enable greater knowledge-sharing and repeata-
bility. Models that incorporate uncertainty quantification,
explainability, and strategies to account for missing data are
particularly advantageous. For more guidance on building
appropriate multimodal AI models in healthcare, one can
refer to the World Health Organization’s new ethics and
governance guidelines for large multimodal models (World
Health Organization, 2024).

In conclusion, the field of multimodal machine learning
in biomedicine has experienced rapid growth in each of its
challenge areas of representation, fusion, translation, align-
ment, and co-learning. Given the recent advancements in
deep learning models, escalating interest in multimodality,
and the necessity for multimodal applications in healthcare,
it is likely that thefieldwill continue tomature andbroaden its
clinical applications. In this ever-evolving intersection of AI
and healthcare, the imperative for responsible innovation res-
onates strongly. The future of multimodal machine learning
in the biomedical sphere presents immense potential but also
mandates a dedication to ethical principles encompassing
data privacy, accountability, and transparent collaboration
between human professionals and AI systems. As we navi-
gate this transformative journey, the collective effort, ethical
stewardship, and adherence to best practices will ensure the
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realization of the benefits of AI and multimodal machine
learning, making healthcare more efficient, accurate, and
accessible, all while safeguarding the well-being of patients
and upholding the procedural and ethical standards of clinical
practice.
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