International Journal of Computer Vision
https://doi.org/10.1007/s11263-024-02027-5

®

Check for
updates

Unsupervised Point Cloud Representation Learning by Clustering and
Neural Rendering

Guofeng Mei'3 . Cristiano Saltori? - Elisa Ricci®? - Nicu Sebe? - Qiang Wu' - Jian Zhang'® - Fabio Poiesi3

Received: 3 April 2023 / Accepted: 2 February 2024
© The Author(s) 2024

Abstract

Data augmentation has contributed to the rapid advancement of unsupervised learning on 3D point clouds. However, we argue
that data augmentation is not ideal, as it requires a careful application-dependent selection of the types of augmentations
to be performed, thus potentially biasing the information learned by the network during self-training. Moreover, several
unsupervised methods only focus on uni-modal information, thus potentially introducing challenges in the case of sparse
and textureless point clouds. To address these issues, we propose an augmentation-free unsupervised approach for point
clouds, named CluRender, to learn transferable point-level features by leveraging uni-modal information for soft clustering
and cross-modal information for neural rendering. Soft clustering enables self-training through a pseudo-label prediction task,
where the affiliation of points to their clusters is used as a proxy under the constraint that these pseudo-labels divide the point
cloud into approximate equal partitions. This allows us to formulate a clustering loss to minimize the standard cross-entropy
between pseudo and predicted labels. Neural rendering generates photorealistic renderings from various viewpoints to transfer
photometric cues from 2D images to the features. The consistency between rendered and real images is then measured to
form a fitting loss, combined with the cross-entropy loss to self-train networks. Experiments on downstream applications,
including 3D object detection, semantic segmentation, classification, part segmentation, and few-shot learning, demonstrate
the effectiveness of our framework in outperforming state-of-the-art techniques.

Keywords Unsupervised learning - Point cloud - Data-augmentation - Clustering - Neural rendering

1 Introduction

Point clouds are collections of spatially arranged points that
approximate the surfaces of objects in three dimensions.
B Jian Zhang Their effectiveness in understanding 3D data has resulted

Communicated by Bodo Rosenhahn.

jian.zhang @uts.edu.au

Guofeng Mei
guofeng.mei@student.uts.edu.au

Cristiano Saltori
cristiano.saltori @unitn.it

Elisa Ricci
eliricci@fbk.eu

Nicu Sebe
niculae.sebe @unitn.it
Qiang Wu
giang.wu@uts.edu.au

Fabio Poiesi
poiesi@fbk.eu

in progress in different fields, including robotic navigation
(Biswas & Veloso, 2012; Zhou et al., 2022), autonomous
driving (Li et al., 2020) and exploration (Wang et al., 2019;
Wang & Bue, 2020), as well as augmented and virtual real-
ity (Park et al., 2008; Mei et al., 2022). Nevertheless, point
cloud data can face difficulties in intricate settings because
of its sparse and textureless nature (Yan et al., 2022). Multi-
modal data learning techniques, which integrate various data
sources such as RGB images, depth maps, and sensor data

Department of Information Engineering and Computer
Science (DISI), University of Trento, Via Sommarive 9,
38123 Trento, Italy

Faculty of Engineering and IT, University of Technology Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento,
Sydney, Ultimo, Sydney, NSW 2007, Australia Italy

Published online: 08 March 2024 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-024-02027-5&domain=pdf
http://orcid.org/0000-0002-7240-3541

International Journal of Computer Vision

with point cloud data, can help mitigate these issues (Afham
et al., 2022). Furthermore, the applications of point clouds in
different fields emphasize the critical importance of learn-
ing discriminative and transferable features for 3D shape
understanding (Lin et al., 2021; Poiesi & Boscaini, 2022).
However, deep learning heavily depends on large-scale anno-
tated data, which can be expensive, time-consuming, and may
require domain expertise. Unsupervised representation learn-
ing has thus emerged as a promising method for learning
features without human intervention (Eckart et al., 2021).
Unsupervised learning methods can be broadly classified
as either generative or discriminative (Grill et al., 2020).
Self-reconstruction or auto-encoding (Yang et al., 2018),
generative adversarial networks (Sarmad et al., 2019), and
auto-regressive (Sun et al., 2020; Mei, 2021) methods are
examples of the former. These methods can use an encoder
to map an input point cloud into a global latent representa-
tion (Rao et al., 2020; Shi et al., 2020), or a latent distribution
in the variational case (Hassani & Haley, 2019; Han et al.,
2019), and then use a decoder to attempt to reconstruct the
input. To model high-level and structural properties of input
point clouds, generative methods can be effective. However,
because they are sensitive to Euclidean transformations, they
usually assume that all 3D objects in a given category lie in
the same reference system and have the same canonical pose
(Sanghi, 2020). This assumption can lead to limitations, as
recovering the original point cloud from rotation-invariant
features may be unrealistic. Moreover, the handling of high-
dimensional data or large datasets can present challenges,
often necessitating significant computational resources.
Discriminative methods, as opposed to generative meth-
ods, learn to predict or discriminate augmented versions of
the input. These methods can produce rich latent representa-
tions for subsequent tasks (Wang et al., 2020). For example,
contrastive methods have produced promising results for
unsupervised representation learning (Du et al., 2021; Rao et
al., 2020; Sanghi, 2020) and can promote learning of rotation-
invariant representations through data augmentation in the
case of point cloud data (Poursaeed et al., 2020). These meth-
ods typically require negative mining to circumvent the issue
of model collapse, and in particular, they rely on ad-hoc neg-
ative sampling criteria. They frequently require large batch
sizes, memory banks, or customized strategies (Grill et al.,
2020). Furthermore, any modification to the original geome-
try, such as cropping or view-based occlusions, can affect its
semantics (Eckartetal.,2021). For instance, if a point cloud is
randomly cropped, it could represent different objects, which
could introduce conflicting information for learning. As a
result, contrastive techniques require humans to carefully
design artificial combinations of semantic-preserving data
augmentations that preserve similar semantic information to
learn informative representations. On the other hand, train-
ing on complete object instances can result in the learning

@ Springer

of global representations, which can lead to fewer discrimi-
nant representations because local geometric differences are
ignored (Rao et al., 2020; Han et al., 2019; Xie et al., 2020).

Therefore, our first aim is to design a data augmentation-
free learning strategy in order to avoid the limitation of
generating chains of ad-hoc combinations of data augmenta-
tions. Our second aim is to achieve the optimization of local
features, as opposed to global ones, in an unsupervised man-
ner, allowing the network to learn 3D geometric information
from point clouds and images. Although point cloud data can
provide more comprehensive geometric information about
the object than 2D images, there is key texture information
that can be exploited from 2D images. Several studies (Afham
et al., 2022; Jing et al., 2021; Wiles & Zisserman, 2019)
have started leveraging multiple streams’ synchronization to
convey semantic information between different modalities,
which has produced encouraging outcomes. These findings
motivated us to introduce rendering to encode diverse visual
cues from images without manual annotation.

In this paper, we propose to learn informative point-level
representations of 3D point clouds in an unsupervised manner
by using neural rendering and avoiding data augmentation.
In particular, our framework learns cluster affiliation scores
to softly group the 3D points of each point cloud into a given
number of geometric partitions (soft clustering) and render
images using learned features (neural rendering) (Aliev et al.,
2020). We then learn these point-level feature representations
by jointly minimizing the cross-entropy loss for soft cluster-
ing and fitting loss for neural rendering. The cross-entropy
loss is the result of an EM (Expectation-Maximization)-like
algorithm (Moon, 1996). We refer to this process as an EM-
like algorithm, as it involves two steps, such as pseudo-label
generation and network optimization. The E step employs
an optimal transport (Peyré & Cuturi, 2019) based clus-
tering algorithm to generate the point-level pseudo-labels,
i.e. focusing on local geometric information. Our CluRender
achieves this by softly labeling points based on their distance
from the centroids in geometric space, with the constraint
that labels partition data in equally-sized subsets (uniform
distribution). Optimal transport is then used to compare prob-
ability distributions with each other and to produce optimal
mappings by minimizing distances (Peyré & Cuturi, 2019).
The M step employs the optimal mappings of E-step to form
a point-to-cluster loss, which aids in optimizing the metric
learning network. The fitting loss is formulated by comparing
the rendered images with real images, enabling the networks
to be pre-trained in 2D domains, contributing to superior 3D
representations and appearance cues, resulting in more dis-
cerning features.

Our approach self-learns the partitioning network and
softly assigns points to geometrically coherent overlap-
ping clusters, overcoming the weakness of conventional
GMM and K-means that involve computationally expensive

International Journal of Computer Vision

iterative procedures. Our approach is inspired by DeepClus-
ter (Caron et al., 2018), SelLa (Asano et al., 2020) and
SwAV (Caron et al., 2020) but it differs from them, as they
implement clustering in the feature space at the instance level,
they use data augmentation, and they may degrade the geo-
metric information when used with 3D data. We show that
pre-training on datasets using CluRender can improve the
performance of a range of downstream tasks and outper-
forms the current state-of-the-art methods without any data
augmentation.

This paper extends our earlier work (Mei et al., 2022) in
several aspects. Specifically, we introduce a neural render-
ing module that allows 3D networks to perform cross-modal
translation, converting a given 3D object point cloud into
2D rendered images from various camera perspectives. It
employs a view-specific translation mechanism, which effec-
tively captures extra geometric patterns and appearance cues,
enabling the learning of more distinctive features. We also
expanded the related work of unsupervised point cloud
feature learning from multi-modal data. Besides, we sig-
nificantly expand our experimental evaluation and analysis,
considering additional recent methods, adding new back-
bones, and including new qualitative and quantitative results.
To summarize, our contributions are:

e We propose a data augmentation-free unsupervised me
thod, which does not rely on data augmentations, negative
pair sampling, and large batches, to learn transferable
point-level features on a 3D point cloud;

e We extend the pseudo-label prediction to an optimal
transport problem, which can be efficiently solved by
using an efficient variant of the Sinkhorn-Knopp (Cuturi,
2013) algorithm;

e We introduce neural rendering module to enable 3D net-
works to perform cross-modal translation from a given
3D object point cloud to its 2D rendered images from
different camera views;

e We conduct thorough experiments, and CluRender achi
eves state-of-the-art performance without having to use
data augmentation.

2 Related Work

In this section, we review research works related to unsu-
pervised learning on point clouds, which can be classified
into two categories: generative and discriminative methods.
We also review research works related to unsupervised point
cloud learning on multimodal data since our rendering mod-
ule involves image and point cloud modalities.
Generative methods

Generative methods learn features via self-reconstruction
(Han et al., 2019). For instance, FoldingNet (Yang et al.,

2018) leverages a graph-based encoder and a folding-based
decoder to deform a canonical 2D grid onto the surface of
a point cloud. L2g (Liu et al., 2019) uses a local-to-global
auto-encoder to learn the local and global structure of point
clouds simultaneously. In Chen et al. (2019), a graph-based
decoder with a learnable graph topology is used to push the
codeword to preserve representative features. In Achlioptas
etal. (2018), acombination of hierarchical Bayesian and gen-
erative models is trained to generate plausible point clouds.
GraphTER (Gao et al., 2020) self-trains a feature encoder by
reconstructing node-wise transformations from the represen-
tations of the original and transformed graphs. Recently, the
recovery of missing parts from masked input has also been
studied as a pre-text task in 3D point cloud learning, achiev-
ing remarkable performance (Yu et al., 2022; Pang et al.,
2022; Liu et al., 2022). However, generative models are sen-
sitive to transformations, weakening the learning of robust
point cloud representations for different downstream tasks.
Moreover, it is not always feasible to reconstruct back the
shape from pose-invariant features (Sanghi, 2020).
Discriminative methods

Discriminative methods are based on auxiliary hand-
crafted prediction tasks to learn point cloud representations.
Jigsaw3D (Sauder & Sievers, 2019) uses a 3D jigsaw puz-
zle approach as the self-supervised learning task. Recently,
contrastive approaches (Rao et al., 2020; Sanghi, 2020; Chen
and He, 2021; Xie et al., 2020; Huang et al., 2021), which
are robust to transformation, achieved state-of-the-art per-
formance. Info3D (Sanghi, 2020) maximizes the mutual
information between the 3D shape and a geometric trans-
formed version of the 3D shape. PointContrast (Xie et al.,
2020) is the first to research a unified framework of the
contrastive paradigm for 3D representation learning. Propos-
alContrast (Yin et al., 2022) enhances proposal representa-
tions by analyzing the geometric point relationships within
each proposal. It achieves this by optimizing for inter-cluster
and inter-proposal separation, resulting in better accommo-
dation of 3D detection properties. MaskPoint (Liu et al.,
2022) involves converting the point cloud into discrete occu-
pancy values, where the value of 1 denotes the presence of a
point in the cloud, and 0 indicates its absence. To accomplish
this, the proxy task they use is binary classification, which
distinguishes between the masked object points and the sam-
pled noise points. FAC (Liu et al., 2023) forms advantageous
point pairs belonging to the same foreground segment and
possessing similar semantics, and subsequently, it efficiently
acquires feature correlations within and across different point
cloud views using adaptive learning. We argue that the suc-
cess of contrastive methods relies on the correct design of
negative mining strategies and on the correct choice of data
augmentations that should not affect the semantics of the
input. To mitigate these issues, we propose an unsupervised
learning method, CluRender, formulated by implementing

@ Springer

International Journal of Computer Vision

clustering and rendering that provides point-level supervi-
sion to extract discriminative point-wise features. CluRender
operates on the premise that an individual data point can be
clustered into object parts, a concept also discussed in Leop-
art (Ziegler & Asano, 2022). However, a key difference lies
in the approach to Leopart that segments images into various
global and local views through cropping, CluRender elimi-
nates the need for such data augmentation processes to derive
informative representations.
Multimodal data-based methods

Recently, a few works have started to explore the pre-
training pipeline with multi-modality data of 2D images and
3D point clouds. Pri3D (Hou et al., 2021) uses 3D point cloud
and multi-view images to pre-train the 2D image networks,
where multiple modalities are learned correspondences with-
out the need for manual labeling. CrossPoint (Afham et
al., 2022) aligns the 2D image features and 3D point cloud
features through a contrastive learning pipeline. Li and Heiz-
mann (2022) proposes a unified framework for exploring the
invariances with different input data formats, including 2D
images and 3D point clouds. P2p (Wang et al., 2022) involves
converting point clouds into colored images, which are then
input into a pre-trained image model with fixed weights to
extract relevant features for subsequent tasks. Different from
previous methods, most of which attempt to align 2D images
and 3D point clouds in the feature space, our method pro-
poses to connect 2D and 3D in the RGB-D image domain
via differentiable rendering.

3 Method Overview

Our approach to unsupervised point cloud representation
learning involves a joint soft clustering of the 3D points
within each point cloud, dividing them into geometric parti-
tions, and rendering images using learned features through
differentiable rendering (Aliev et al., 2020). Figure 1 illus-
trates CluRender framework. Let P = {p; }IN= , be a3D point
cloud and its associated images I = {I;} lN:’ | obtained by ren-
dering P from N, camera viewpoints V = {VI} . N is
the number of points of P. Each point p; € R3 is repre-
sented by a 3D coordinate p; = {x, y, z}, and each image
has shape W x H x 3. Our goal is to train a feature encoder f,,
with parameters ¢ (e.g. PointNet) that extracts informative
point-level features F = { f, (pl»)}lN= | from P without super-
vision. To achieve this, we employ a joint learning objective
of soft clustering and neural rendering by minimizing L;.
In the former, we first use a segmentation head ¢,, which
takes F RN *? as input and produces joint log probabilities.
We then apply a softmax operator o to the log probabilities
to create a classification score matrix S, which is used to
segment the point cloud into a specified number of geomet-

@ Springer

ric partitions. Since no labels are available to supervise S,
we use a soft-labeling mechanism to generate pseudo-labels
automatically. Soft-labeling first uses a prototype computa-
tion block to calculate J cluster prototypes C to represent
each partition. Next, we assign soft labels y;; € y to indi-
vidual input points p; by leveraging these prototypes. This
assignment of soft labels is framed as an optimal transport
problem, which can be effectively solved using the Sinkhorn-
Knopp algorithm. Each y;; € [0, 1] is a soft-label score
indicating the likelihood that point p; belongs to cluster j.
The ultimate goal of the optimization process is to reduce
the average cross-entropy loss, denoted as Lc, between the
predicted class probability S and the soft-label p. In the
latter, we first employ a prediction network to operate on
the learned features, generating pseudo-color for each point,
followed by rendering images from given N, camera per-
spectives (views). Afterward, we compute the fitting loss L,
by comparing the differences between the ground truth and
rendered images. Finally, we train the network by minimizing
the joint loss, £;,;, which is defined as

Lior = Le+ Ly (D

The implementation of CluRender is described in Algo-
rithm 1 and in the next sections we will explain all its elements
in detail. Specifically, in Sect. 4, we introduce our point cloud
soft-clustering approach. In Sect. 5, we explain how point-
wise features are utilized for point-based neural rendering.

4 Point Cloud Soft-Clustering

Our soft-clustering consists of three steps: prototype com-
putation, soft-labeling, and optimization. These steps are
described in the following sections.

4.1 Prototype Computation

Our approach starts by learning a clustering task, which
involves computing a prototype for each cluster, or partition,
that serves as the representative feature for a group of points.
For each feature f; € F, ¢, produces a probability score
s;j indicating the likelihood that p; belongs to partition j.
We use prototypes as the representatives for each partition in
the geometric space. Specifically, we compute J prototypes
as the weighted average of the 3D coordinates P based on
the scores S. Let C = {¢ j}jl.z | be the set of prototypes in the
geometric space, respectively, which are defined as

N
1
Cj=—— D SijPi- ©2)
Zi:l Sij =1

International Journal of Computer Vision

Ty

o

multi-modal

\\\ \ softmax

encoder -head

7]
(9]
aQ

N\

=

3D branch rendering]
2D branch — models [
Iy clustering () losses [] pred. network

Fig.1 Architecture overview for our CluRender. Our approach consists
of two parallel modules, namely, point cloud soft-clustering (repre-
sented by orange lines) and rendering (represented by light blue lines).
CluRender requires a multi-modal input that includes a 3D point cloud
P, a 2D RGB image Z,,i, and its corresponding camera view V'. Our

Algorithm 1 CluRender (Python pseudocode).

Input: A dataset {(P, I, V)} with 3D point cloud P € RV <3 image

I € RW*H>3 and camera view V; K number of optimization steps.
Output: The backbone f, pretrained by using our algorithm.

1: for i in range(0, K) do

2 Lior =0

3 for P € {P} do

4: # compute classification scores S

5

6

S = softmax (ti)a (ﬁp (73)))
compute prototypes
N

) _ 1 N
T C= {m Y i Sijl’i}

j=1

8: # compute D

9 D={lp -3}

10: # compute y

11: y = SINKHORN (stopgrad (D), le—3, 20)
12: y=N-y

13: # rendering

14: I =R (¢ (P. f (P).V))

15: # compute loss

16: Liot += Lc + Ly

17: end for

18: #update backbone and segmentation head

19: fo» b, $p < optimize (%)
20: end for
21: return f,

¢ J
Prototype :
computation \ .
j=1
L. Sinkhorn-Knopp
scores soft-labels
(e
3
3
o
a
=X
[

rendered view

PoC

Ty

approach jointly learns how to cluster the points in 7 softly and gener-
ate a corresponding image I, based on the given camera view V'. The
network is trained by minimizing the joint loss, £;,;, which is the sum
of the cross-entropy loss £, and the fitting loss £, (Color figure online)

4.2 Soft-Labeling
4.2.1 Formulating Soft-Labeling as Assignment Problem

Soft-labeling involves the assignment of each point to a cer-
tain prototype based on the distance estimated in Eq. (2).
Our soft-label assignment enhances the ability of network to
learn geometric and location information from point clouds.
We base the assignment of soft-labels to the respective points
on the prototypes C, and by following two assumptions:

(1) Cluster cohesion If a point p; is assigned to partition j,
it should have the shortest distance to the prototype c;
compared to its distances with other prototypes in C.

(i1) Uniform distribution Each point cloud is assumed to be
segmented into equally-sized partitions of L%J elements,
where |- | indicates the greatest integer less than or equal
to its argument.

Relying solely on cluster cohesion for soft-label assignment
can lead to a degenerate solution, where all data points are
assigned to a single label, consequently leading to the learn-
ing of a constant representation. To circumvent this issue, we
thus introduce the constraint of a uniform distribution.

Based on assumption (i) we label points based on their
distance from the centroids. Formally, if p; belongs to cluster
Jothen||p; —cjll2 < llp; —cklaand y;; =y k # j. k=
1,---,J. | - |l2 is the Ly norm. This can be achieved by
minimizing the objective function

@ Springer

International Journal of Computer Vision

N J
o1
min > > Ip; = ¢jli3vi;, 3)

i=1 j=1

We define the matrix D as follows for ease of use:

D = {lp;i — <13},)

where the matrices are of size N x J. With this definition,
Eq. (3) can be rewritten as:

Y
mym <N, D> s (@)
where < -, - > is the Frobenius matrix dot product.

Assumption (ii) is expressed under a constrained condition
as Z,N:1 Yij = % which can alleviate the issue of clustering
all the data points into a single (arbitrary) label. Therefore,
based on ZIN=1 Yij = % and the property of the posterior
probability Z,J'=1 yij = L, y satisfies the following con-
straints

I T 1 1

—y 1y =-1;, —yl; = —1y, 6
vy W=7l grly=2ly (6)
where 1;(k = N, J) denotes the vector of ones in dimension
k. Therefore, the soft-label assignment ultimately leads to

solving the subsequent optimization problem:

min<%,D>,
Y
1 1 1 1)
S.t. —}’T1N= —1;, —yl; = —1y.
N J N N

This optimization problem can be addressed by formulating
it as a linear program, which can be solved in polynomial
time, as demonstrated by Cuturi (2013). The complexity of
this problem presents a challenge for traditional algorithms,
which may struggle to handle it due to the numerous data
points and classes involved. To overcome this challenge, we
convert the problem into an optimal transport problem (Peyré
& Cuturi, 2019). This transformation allows us to use a more
efficient version of the Sinkhorn-Knopp algorithm to solve
the problem (Cuturi, 2013).

4.2.2 Solving Assignment as Optimal Transport
The joint objective of assumptions (i) and (ii) can be framed

as an optimal transport (OT) problem. In this context, we can
view the assignment of data points to cluster centroids as a

@ Springer

transportation plan, assuming that both points and centroids
adhere to uniform distributions. In this analogy, each data
point represents a resource that requires transportation to a
cluster centroid. The transportation cost, in this context, sym-
bolizes the dissimilarity or distance between the data point
and the centroid.

In particular, the discrete formulation of OT involves find-
ing the optimal transportation plan between two discrete
probability measures u y and gy, which are defined on finite
sets X and Y respectively. Formally, starting from Eq. (4), we
can consider D : X x Y — R be the cost function repre-
senting the cost of transporting mass from a pointx € X toa
point y € Y. We aim to find a transportation plan I’ e Rf x¥
that minimizes the total cost of transportation while satisfy-
ing the marginal constraints, such that

min (T, D), (8)
I (X.Y)
Y Tx,y) =px),
R R 9
; Z;(F(x, y) = py(y), ©)

where I'(x, y) represents the amount of mass transported
from x to y, and the constraints ensure that the total mass at
each point in X and Y is preserved.

As for the assignment problem in Eq. (7), we set X =
P.Y = C.IT=%, [LX=%1N, and ;Lyz}lj. Then, the
soft-label assignment leads to solving the optimal transport
problem:

min (I, D),
Ir'(P,C) (10)

1 1
LT y==1,,T1;=—1y.
S N i J J N N

Sinkhorn-Knopp (Cuturi, 2013) is then employed to solve
Eq. (10). This requires the following regularization term:

min (I, D) — ¢H (T),

. 1 1 (11)
S N i J J N N

where H (I') = (T, log ' — 1) denotes the entropy of I' and
€ > 0 is a regularization parameter. When € is very small,
optimizing Eq. (11) is equivalent to optimizing Eq. (10).
However, even for moderate values of €, the objective func-
tion tends to approximate the same solution. According
to Cuturi (2013), larger values of € lead to faster conver-
gence. Our primary concern is the final results of clustering
and representation learning rather than an exact solution
to the transport problem. Therefore, using a fixed value of

International Journal of Computer Vision

€ = le — 3 as in Mensch and Peyré (2020) is appropri-
ate to achieve the balance between speed and accuracy. As
mentioned in Cuturi (2013), the solution to Eq. (11) can be
expressed using a normalized exponential matrix:

I' = diag (r) exp (D /¢) diag (v), (12)

where o = (w1, 12, ,uny) and v = (vi,v2, -+ ,Vy)
are re-normalization vectors in RV and R”. The vectors u
and v can be obtained by iterating the updates via u; =

-1
[exp (D/e) v]l._l andv; = [exp (D/E)T [L:I ~ with initial
J

values u = %1 Ny and v = %1 7, respectively. The choice
of distribution for initializing p and v can be arbitrary, but
using the constraint values as initial values can speed up the
convergence process. The notation [~]171 denotes the inverse
of the j element of its argument. In our experiments, we
have found that using 20 iterations works well in practice.
Once we have solved Eq. (12), we can obtain the soft-label
matrix as y = N - I'. For the Sinkhorn-Knopp algorithm, we
provide a detailed pseudo-code in Algorithm 2.

4.3 Optimization

The optimization procedure utilizes an EM-like framework,
in which the Expectation step E optimizes soft labels and
prototypes, and the Maximization step M optimizes the
parameters for representation learning. The following are the
specifics of each step:

e Step E Given the current encoder and segmentation layer,
we compute prototypes C following Eq. (2), and obtain
soft-labels y throughy = N - T.

e Step M Given the current soft-labels y from step E,
we optimize the encoder f, and segmentation layer ¢
parameters.

During E, we solve the OT problem with the Sinkhorn-Knopp
algorithm. During M, we minimize the segmentation loss
based on the resulting soft labels, such as

N J
1
Lsori (¥, S) = N '21 E lyij log sij, (13)
i=1 j=

which corresponds to the minimization of the standard cross-
entropy loss between soft-labels y and predictions S.

Note that, this EM-like algorithm incorporates both fea-
ture and coordinate information to generate pseudo-labels,
enabling the network to learn more informative features.
Alternatively, one could cluster points based on their coordi-

Algorithm 2 Sinkhorn-Knopp algorithm (Python pseu-
docode).
Input: D distance matrix, e=1e—3 and niters iterations.

1: function SINKHORN(D, €, niters)
2: T =exp(D/e)

3: I/ =sum(I)

4: N, J =T .shape

5: u,p,v =zeros(N), ones(N)/N,ones(J)/J
6: for _inrange(0, niters) do

7: u = sum(T’, dim=1)

8: I'ss = (u/u).unsqueeze(1)

9: I's = (v/sum(I", dim=0)).unsqueeze(0)
10: end for

11: return T'
12: end function

nates once at the beginning for the generation of pseudo-
labels, and then use the same pseudo-labels throughout
training. Although this approach is more efficient, as it does
not require the execution of clustering at each iteration, it
suffers from two main limitations: (i) It may lead to the for-
mation of less informative clusters because it only considers
the distance between points in the coordinate space. As a
result, it may cluster the same object into different parts. (ii)
It may produce inconsistent pseudo-labels since the same
objects from different point clouds may be clustered with
different cluster indexes. As a result, it may produce differ-
ent pseudo-labels for the same group of points. Therefore,
our EM-like algorithm is advantageous as it can mitigate
these two limitations by performing clustering in the feature
space and then mapping the results into the coordinate space.
We perform this process at each iteration because the qual-
ity of features improves over time. Moreover, our EM-like
algorithm employs a network to learn clustering, which helps
to mitigate the problem of inconsistent pseudo-labeling for
each point cloud.

The objective function of Eq. (13) does not prevent the
potential collapse of prototypes into an identical prototype.
In the event of such a prototype collapse, the equal parti-
tion constraint is unable to prevent the encoder f, from
predicting identical features for all points. To enhance the
separation of prototypes, we minimize the orthogonal reg-
ularization loss Lo (C) = ||CIC* — E||p, where C,
represents the normalized version of C obtained by perform-
ing C*.= e Teary s - ”,f!’”z], .and [- “Fr signifies the
Frobenius norm. E denotes an identity matrix.

We define the final clustering loss for the M step as

Le= »Csoft + @Lortn, (14)

where w = 0.01 is a weighting parameter. We set the value of
o empirically and found that @ < 0.01 can slightly improve
the performance. The minimization of this loss leads to the

@ Springer

International Journal of Computer Vision

maximization of the expected number of points correctly
classified, associating the correct neighboring prototypes.
This facilitates the encoder to learn more local geometric
information.

5 Differentiable Renderer

The rendering module makes full use of both 3D point cloud
and 2D image modalities, and thus facilitates the network
in extracting both photometric and structural information
from the appearance of 2D images. The basis for our neu-
ral rendering-based unsupervised learning draws inspiration
from the works of Aliev et al. (2020), Insafutdinov and Doso-
vitskiy (2018) and Wiles et al. (2020). We aim to generate
a set of N, images by rendering a point cloud from a given
collection of views, denoted as V = {V”}]Uvél, where each
view is defined by transformation 7. It is assumed that each
resulting image will be a pixel grid of dimensions W x H,
and N, represents the number of input views. Initially, a color
network ¢pg is applied to F to generate RGB color vectors C;
for point p;. The 3D coordinates of the raw point cloud are
then transformed into the standard coordinate frame using
the projective transformation that corresponds to the camera
pose. Next, we utilize the point-based differentiable renderer
R, which projects the 3D point cloud data into 2D view
images based on the camera pose settings. Finally, a Wasser-
stein (Cuturi, 2013) distance-based fitting loss is applied to
measure the consistency between the rendered pixels and
the corresponding pixels in the ground-truth image. Next, a
detailed illustration will be provided for ¢g along with an
explanation of renderer R and fitting loss L, .

5.1 Prediction Network ¢pg

Our approach involves utilizing a Tranformer-based UNet
(Ronneberger et al., 2015) architecture, accepting 3D point
coordinates along with features from the encoder as inputs.
The model, denoted as ¢g, employs three downsampling
and upsampling layers to generate a prediction output that
coincides with the spatial resolution of the input, thereby
assigning a color to each point in a point cloud. Each
stage of the downsampling process uses a distinct rate and
employs the farthest point sampling technique in the coor-
dinate space. Specifically, the rates are [1, 4, 4], leading to
point set cardinalities of [N, N /4, N /16]. Each stage of the
design incorporates a layered format similar to that of Point
Transformer (Zhao et al., 2021), with a total of six layers
having output dimensions of [512, 256, 128, 128, 64, 32].
The resulting output is subsequently fed through an MLP
with an output dimension of 3, followed by a sigmoid layer,
and finally, a renormalization step. The purpose of the renor-

@ Springer

malization step is to ensure that the predicted colors remain
within the specified color minimum and maximum values.

5.2 Renderer R

Traditional rendering techniques experience discontinuities
in splatting and z-buffering due to their use of a z-buffer to
consider only the closest source points when contributing
to a target image pixel. This approach is non-differentiable
and leads to sparse gradients in the xy-plane of the rendered
view when small neighborhoods are considered. Therefore,
it is unsuitable for our framework. To fix this gap, we adopt a
splatting technique to project and splat 3D points onto a disk
of varying influence, with the degree of influence determined
by a hyperparameter v > 0. The Euclidean distance from the
center of the region is proportional to the impact of a point
on a given pixel I?, located at (x, y) for view V*. Each 3D
point p; is projected and splatted onto a region with a center
p;, and a radius r, which can be expressed as:

O’ ||plL_lz)7|I%>r3

G(p;, 1l7,)= L .
(Pi- L) exp (_—|P152v2)@ ”2> , otherwise,

where r and v determine the range and decay of the influ-
ence of a 3D point to a target image pixel. The projected
points are then gathered in a z-buffer, sorted based on their
distance from the new camera view, and finally, only the K
closest points are retained for each pixel in the new view. The
sorted points are combined using the alpha over-compositing
algorithm (Porter & Duff, 1984), which can be expressed as:

pi){y = g(piv l)léy)v

K i—1
gl n 7
=2 rma]l (1 - pix,\,) ’
i=1 j=1

15)

where 7 is a hyperparameter that controls the blending and
é}c’y is the projected feature map in the new view. The result-
ing feature map is then used to construct a new RGB image
I, with three color channels. The whole process can be
described as

I, =R (¢p (P, F),V"). (16)
5.3 Fitting Loss L,
After rendering the point clouds into multi-view images, we

utilize the Wasserstein distance (Peyré & Cuturi, 2019) to
calculate a loss £,, that evaluates the consistency between

International Journal of Computer Vision

the rendered images’ pixels and the corresponding pixels in
the ground-truth images. The total rendering (fitting) loss £,
is then obtained by summing up all individual view losses
L, , where v ranges from 1 to N,. Then total loss L, for
rendering is the sum of all all £, as

Ly=) L, (17)

The Wasserstein loss between rendered image I, and ground-
truth image I, can be described as follows.

(18)

WHWH
(IU»I> ZZ xz,y, Tij,
i=1i=1

< 1
Z’w—ﬁ 2T =

Where x; is the location of pixel i in I, vandy j is the location
of pixel j in I, respectively. The objective is to find a trans-
portation matrix T that minimizes the overall transportation
cost L,. where t;; and D(x;, y j) denote the transportation
amount and unit transportation cost from pixel location x; of
fv to location y; of /,. The unit transportation cost is set as
the sum of a color distance and a positional distance:

. 2 o 2

D, j)=n(xi—y;)" +1=1) (éi—¢;j)",

where ¢; and ¢; indicate the colors of the rendered image I at
pixel x; and the ground truthimage / atpixel y ;, respectively.
To balance the relative importance of color and position, we
use a weighting parameter . In our experiments, we set A =

0.5, which is consistent with the approach taken in Xing et
al. (2022).

6 Experiments

In this section, we present the implementation details, the
setup of pre-training and the downstream fine-tuning.

6.1 Pre-training Setup
6.1.1 Implementation Details
PyTorch was used to implement CluRender, and experiments

were conducted on two Tesla V100-PCI-E-32 G GPUs. Dur-
ing pre-training, we set the values of J, N, and € to 64, §, and

0.001, respectively, following (Wiles et al., 2020). Addition-
ally, weused n = 1,r = 4 pixels, K = 128, W = H = 256,
and conducted pre-training for 250 epochs using the AdamW
(Loshchilov & Hutter, 2018) optimizer. The batch size was
set to 32, and the initial learning rate was set to 0.001, which
was then decayed by a factor of 0.7 every 20 epochs. No
data augmentations were used during the pre-training stage.
The segmentation head ¢, was composed of three fully con-
nected layers, each consisting of a linear layer followed by
layer normalization and a rectified linear unit, except for the
final layer. The output dimensions of the hidden layer and
the final linear layer were set to half the dimensions of the
encoder output and the number of clusters, respectively.

6.1.2 Datasets

We explore pre-training strategies on complex scenes with
multiple objects (ScanNet (Dai et al., 2017)) and single
objects (ShapeNet (Chang et al., 2015)) to evaluate the effec-
tiveness of CluRender.

ScanNet (Dai et al., 2017) is a dataset of real-world indoor
scenes with multiple objects and contains 2.5M views in
1,513 indoor scans for 707 distinct spaces. We use ScanNet as
the pre-training dataset for 3D object detection and semantic
segmentation. With a frame rate of 25, we gather the paired
RGB image data and 3D point cloud data from the scanned
RGB-D videos, thus obtaining 100K high-quality frames in
total. The data are split into the training and testing sets as
done in VoteNet (Qi et al., 2019). We sample 4,096 points
from each input point cloud using a farthest point sampling
algorithm.

ShapeNet (Chang et al., 2015) is a collection of single-object
CAD models and contains more than S0K synthetic objects
from 55 object categories. We use it as our pre-training
dataset for semantic segmentation, object classification, part
segmentation, and few-shot classification. We utilize the
same rendering approach as DISN (Xu et al., 2019) to pro-
duce RGB images, which involves a dataset of 24 images and
one point cloud for each single-object CAD model.

6.1.3 Backbones

To ensure a fair comparison, we select three different types
of encoders as backbones: point-based PointNet (Qi et al.,
2017), graph-based DGCNN (Wang et al., 2019), and Trans-
former (Vaswani et al., 2017). Notably, we employed the
Transformer encoder provided by Point-M2AE (Zhang et
al., 2022), which is an end-to-end hierarchical encoder that
downsamples the input point clouds three times. However,
since our method relies on point-level features, following
Point-M2AE, we use a propagation module (Qi et al., 2017a)
to upsample the point clouds that were previously downsam-
pled by the Transformer encoder, thus restoring the original

@ Springer

International Journal of Computer Vision

number of points in the raw point cloud. We remove the
masking and replace the final prediction head of Point-
M2AE with two heads, ¢, and ¢g. Lastly, we apply the
clustering and rendering to train the Transformer. We use
the pre-trained weights of the Transformer encoder as ini-
tialization for downstream tasks, including object detection,
object segmentation, object classification, part segmentation,
and few-shot learning.

6.2 Evaluation on Downstream Tasks

For fine-tuning downstream tasks, we remove the clustering
and rendering structures from pre-training and add various
task-specific heads to the backbones.

6.2.1 3D Object Detection

Object detection on a scene-level downstream task is chal-
lenging for 3D models. We first assess the effectiveness of
our pre-training approach on 3D point cloud detection, uti-
lizing a Transformer as the feature extractor and selecting
3DETR (Misra et al., 2021) and 3DETR-m (Misra et al.,
2021) as our benchmark models. We pre-train the Trans-
former encoder on ScanNet and evaluate the downstream
task 3D object detection on ScanNetV?2 (Dai et al., 2017).
To compare the performance of CluRender with other rel-
evant methods, we include Point-Bert (Yu et al., 2022) and
MaskPoint (Liu et al., 2022), both of which also utilize Trans-
former as a backbone pre-trained on ScanNet. The evaluation
metrics employed are average precision with 3D detection
IoU thresholds of 0.25 (AP25) and 0.5 (AP50), maintaining
consistency with the metrics used in Misra et al. (2021).
3DETR (Misra et al., 2021) is an end-to-end transformer-
based pipeline for 3D object detection. It combines the con-
ventional transformer structure with non-parametric queries
and Fourier positional embeddings to detect the bounding
boxes from 3D point clouds. The backbone structure for
3DETR corresponds to the pre-trained model, which contains
12-layer transformer blocks with a transformer dimension of
384.

ScanNetV2 (Dai et al., 2017) consists of 1,201 training
scenes, 312 validation scenes and 100 hidden test scenes.
Axis-aligned bounding box labels are provided for 18 object
categories. We follow the settings of 3DETR (Misra et al.,
2021) for point sampling and data augmentation.

Results Table 1 presents the 3D detection results, with
CluRender consistently outperforming its competitors. Not
ably, our method surpasses 3DETR without pre-training
by a substantial margin, yielding a 1.6% enhancement in
AP25 and a 4.8% improvement in AP50. Moreover, our
detection encoder, when initialized with CluRender, exceeds
the performance of the state-of-the-art pre-training method,
MaskPoint. Specifically, in comparison to MaskPoint, our

@ Springer

Fig. 2 Qualitative comparison results of 3D object detection in Scan-
NetV2. The color red represents the ground truth, and the color green
represents the predictions (Color figure online)

method achieves increments of 0.9% and 1.7% in AP25 and
AP50, respectively, further substantiating the effectiveness of
our pre-training strategy. This can be attributed to capacity
of CluRender to enable the backbone to assimilate both pho-
tometric and geometric information from the scene, thereby
enhancing accuracy. Furthermore, CluRender also surpasses
our previous pre-training approach, SoftClu, illustrating that
neural rendering is capable of capturing finer photometric
details in the learned features of point clouds, thereby affirm-
ing the efficacy of the newly introduced rendering module.
Our methodology also realizes superior accuracy compared
to pre-training methods based on 3DETR-m (Misra et al.,
2021). Figure 2 provides a qualitative comparison of the 3D
bounding box prediction outcomes on the ScanNetV2 vali-
dation set.

6.2.2 3D Semantic Segmentation

Semantic segmentation on large-scale 3D scenes is challeng-
ing, showing the understanding of contextual semantics and
local geometric relationships. To assess the effectiveness of
pre-trained features using CluRender for semantic segmenta-
tion, we conducted experiments on the S3DIS (Armeni et al.,
2016) benchmark dataset. To ensure a fair comparison, we
evaluated our method alongside Jigsaw3D (Sauder & Siev-
ers, 2019) and OcCo (Wang et al., 2021), which also use the
same three backbones. To measure the quality of segmenta-
tion, we reported Intersection over Union (mloU) averaged
over all classes.

S3DIS comprises 3D scans collected with the Matter-
port scanner in six indoor areas, featuring 271 rooms and
13 semantic classes. Following the pre-processing, post-
processing and training settings as in (Wang et al., 2020), we
split each room into 1m x lm blocks and use 4,096 points
as the model input. Following common practice, we finetune
the pre-trained model in areas 1,2,3,4 and 6 and test them in
area 5. We use an SGD optimizer with a momentum of 0.9
and a weight decay of 1e-4. The learning rate starts from 0.1
and then decays using cosine annealing with the minimum
value le-3. We train the models for 250 epochs with batch

International Journal of Computer Vision

Table 1 3D object detection
results on ScanNetV2 validation
set

Method Pre-training AP25 ¢ AP50 ¢
VoteNet-based pre-training methods

VoteNet (Qi et al., 2019) X 58.6 335
PointContrast (Xie et al., 2020) v 59.2 38.0
DepthContrast (Zhang & Misra, 2021) v 61.3 -
RandomRooms (Rao et al., 2021) v 61.3 36.2
STRL (Huang et al., 2021) v 59.5 38.4
PC-FractalDB (Yamada & Ogata, 2022) v 61.9 38.3
3DETR-based pre-training methods

3DETR (Misra et al., 2021) X 62.7 37.5
Point-Bert (Yu et al., 2022) v 61.0 38.3
MaskPoint (Liu et al., 2022) v 63.4 40.6
SoftClu (Mei et al., 2022) v 63.9 42.0
CluRender v 64.3 423
3DETR-m based pre-training methods

3DETR-m (Misra et al., 2021) X 65.0 47.0
Point-M2AE (Zhang et al., 2022) v 66.3 48.3
SoftClu (Mei et al., 2022) v 66.2 48.3
CluRender v 66.9 50.1

Our CluRender outperforms all previous state-of-the-art pretraining methods. Bold values indicate best per-

formance

size 16. We use the same post-processing during testing as
(Wang et al., 2021) for a fair comparison.

Results Table 2 reports the segmentation results of CluRen-
der and that of the other baselines on S3DIS (Armeni et
al., 2016). CluRender outperforms all the other approaches
with PointNet, DGCNN, and Transformer encoders. With the
PointNet encoder, CluRender achieves 56.3% mloU, out-
performing both the state-of-the-art OcCo (55.3% mloU)
and Jigsaw3D (52.6% mloU). With the DGCNN encoder,
CluRender achieves 60.4% mloU, outperforming Cross-
Point (Afham et al., 2022) (58.4% mloU), OcCo (58.0%
mloU) and Jigsaw3D (55.6% mloU). As for the transformer-
based backbone, our pre-training approach achieves a mloU
of 61.9% on ShapeNet and 62.6% on ScanNet. This out-
performs both the state-of-the-art ACT (Pang et al., 2022)
(61.2%) and our previous SoftClu (Mei et al., 2022) method
(61.6%). Note that, the rendering module is the primary
distinction between SoftClu and CluRender. The superior
performance of CluRender compared to SoftClu across all
backbones underscores the effectiveness of our rendering
module in promoting the learning of meaningful represen-
tations. Figure 3 presents qualitative examples of semantic
segmentation on S3DIS using DGCNN as the encoder. The
black dashed box indicates the areas where segmentation
failed. From this, it can be observed that the failure regions
are ambiguous and lack distinct geometric structures. In com-

parison to SoftClu, the introduction of the rendering module
significantly improves the segmentation performance. This
further suggests that the rendering module aids in facilitat-
ing the network to learn more discriminative features that are
helpful for accurate segmentation. Although these examples
demonstrate our approach’s limitations in some areas where
DGCNN struggles to extract distinct features. This challenge
arises because these regions share similar surfaces and geo-
metric characteristics, which makes it difficult for DGCNN to
differentiate between them. Despite this limitation, the over-
all results of the segmentation task demonstrate the potential
effectiveness of our approach.

6.2.3 Classification

We use linear Support Vector Machine (SVM) classification
on ModelNet40 (Sharma et al., 2016) benchmark to evaluate
the quality of their pre-trained versions on ShapeNet.
ModelNet40 (Sharma et al., 2016) is composed of 12,331
meshed models from 40 object categories split into 9,843
training meshes and 2,468 testing meshes, where the points
are sampled from CAD models. We randomly sample 1,024
points for each shape as in (Sauder & Sievers, 2019). The
pre-trained backbones are frozen and used to extract point
cloud features. Then, we train SVM on the features of the
train set and evaluate it on the test set.

@ Springer

International Journal of Computer Vision

Table2 3D semantic

segmentation mloU results on Method fnput Pre. data mloU 1

the S3DIS dataset using PointNet backbone

different pre-trained backbones
From Scratch xyz+rgb - 47.0
Jigsaw3D (Sauder & Sievers, 2019) xyz+rgh ShapeNet 52.6
OcCo (Wang et al., 2020) xyz+rgb ShapeNet 54.9
SoftClu (Mei et al., 2022) xyz+rgb ShapeNet 55.6
CluRender xyz+rgb ShapeNet 56.3
DGCNN backbone
From Scratch xyz+rgb - 54.9
Jigsaw3D (Sauder & Sievers, 2019) xyz+rgb ShapeNet 55.6
OcCo (Wang et al., 2020) xyz+rgb ShapeNet 58.0
SoftClu (Mei et al., 2022) xyz+rgb ShapeNet 59.7
CluRender xyz+rgb ShapeNet 60.4
Transformer backbone
From Scratch (Yu et al., 2022) xyz - 60.0
Point-Bert (Yu et al., 2022) xyz ShapeNet 60.8
Point-MAE (Pang et al., 2022) xyz ShapeNet 61.0
ACT (Dong et al., 2022) xyz Image 61.2
SoftClu (Mei et al., 2022) xyz ShapeNet 61.6
CluRender xyz ShapeNet 61.9
CluRender XxyzZ ScanNet 62.6

Pre. data indicates the data used as pre-training. The methods use different inputs, i.e. xyz+rgb stands for
colored point cloud, while in xyz, no color is used. The bold values indicate the best performance

SoftClu Ours GT

o
1
=

Fig.3 Semantic segmentation results on S3DIS (Armeni et al., 2016) of
CluRender using the DGCNN encoder (left column) compared to the
ground-truth annotations (right column). The black dashed box indi-
cates the areas where segmentation failed

@ Springer

Results Table 3 reports the classification accuracy of CluRen-
der, compared to the other approaches. Results show that the
CluRender is more effective than the alternative pre-training
methods on both datasets. Specifically, on ModelNet40,
CluRender with PointNet backbone achieves the higher
classification accuracy (90.4%) than the generative method
ParAE (Eckart et al., 2021) the contrastive approach STRL
(Huang et al., 2021) (88.3%). The linear SVM classification
performance of our method even surpasses the perfor-
mance of the fully supervised PointNet, which achieves
an 89.2% test accuracy. With the DGCNN encoder, our
method achieves a 92.3% test accuracy, outperforming the
second-best MAE3D (Jiang et al., 2022) (92.1%) by 0.2%,
and completion model OcCo (Wang et al., 2020) by 2.6%.
CluRender outperforms OcCo (Wang et al., 2020) and Jig-
saw3D (Sauder & Sievers, 2019) with both the encoding
networks. Compared to jigsaw tasks that coarsely segment
a point cloud into disjoint partitions, CluRender learns the
partitioning function itself to softly assign point clouds into
coherent clusters. Furthermore, CluRender surpasses all ded-
icated Transformer models in performance. For instance, it
exceeds the accuracy of the intricate Point-M2AE model
(Zhang et al., 2022) by 0.3%. Additionally, compared to our
prior method, SoftClu, CluRender exhibits enhanced classifi-

International Journal of Computer Vision

& o At A
o 'f-:*_‘.. e L A TN
) ¥ * - L o .
A g “_ T . Bt . PP
o “& O TN
L A ‘>
b -» “b

(a) CrossPoint (b) CluRender

Fig. 4 T-SNE embeddings of (a) CrossPoint (Afham et al., 2022) and
(b) CluRender on ModelNet40. Our method produces better separated
and grouped clusters for different categories

(a) ModelNet40

(b) ShapeNet

Fig. 5 Color-coded points based on PCA projections of the learned
features: (left) ModelNet40, (right) ShapeNet

cation accuracy across PointNet, DGCNN, and Transformer
backbones, thereby validating the efficacy of our rendering
module. We also utilize visualization techniques to explore
the pre-trained features before fine-tuning with the DGCNN
encoder. Figure 4 shows the features visualized with T-
SNE (Van der Maaten & Hinton, 2008) of CrossPoint and
CluRender on ModelNet40. Our method yields a better sepa-
ration of the features than CrossPoint, which indicates a better
ability of CluRender in clustering objects in the feature space.
Fig. 5 displays points, colored according to the PCA projec-
tions of network features, illustrating the effective embedding
of geometric information by the pre-trained encoder. Despite
implementing a softly equal partition constraint, our method
does not enforce a rigorously equal partition.

6.2.4 Part Segmentation

We evaluate CluRender on ShapeNetPart (Yi et al., 2016) for
part segmentation, which predicts per-point part labels and
requires a detailed understanding of local patterns.

ShapeNetPart (Yi et al., 2016) contains 16,881 objects of
2,048 points from 16 categories with 50 parts in total. To
ensure a fair comparison with prior work, we utilized the sam-
pled point sets produced by (Pang et al., 2022) and trained the
linear fully connected layer for 100 epochs using the AdamW
optimizer (Loshchilov & Hutter, 2018) with a batch size of
24, an initial learning rate of 0.001, and a learning rate decay

Table3 Overall accuracy (OAcc) of linear SVM classification on Mod-
elNet40 using pre-training on ShapeNet

Method OAcc ¢
PointNet backbone

DeepCluster (Caron et al., 2018) 86.3
Jigsaw3D (Sauder & Sievers, 2019) 87.3
Rotation3D (Poursaeed et al., 2020) 88.6
SwWAV (Caron et al., 2020) 85.4
OcCo (Wang et al., 2020) 88.7
SimCLR (Chen and Hinton, 2020) 88.4
STRL (Huang et al., 2021) 88.3
ParAE (Eckart et al., 2021) 90.3
CrossPoint (Aftham et al., 2022) 89.1
SoftClu (Mei et al., 2022) 90.3
CluRender 90.4
DGCNN backbone

DeepCluster (Caron et al., 2018) 90.4
Jigsaw3D (Sauder & Sievers, 2019) 90.6
Rotation3D (Poursaeed et al., 2020) 90.8
SwAV (Caron et al., 2020) 90.3
OcCo (Wang et al., 2020) 90.7
SimCLR (Chen and Hinton, 2020) 90.1
STRL (Huang et al., 2021) 90.9
ParAE (Eckart et al., 2021) 91.6
CrossPoint (Atham et al., 2022) 91.2
SoftClu (Mei et al., 2022) 91.9
MAE3D (Jiang et al., 2022) 92.1
CluRender 92.3
Transformer backbone

ViT-OcCo (Wang et al., 2020) 89.6
Point-BERT (Yu et al., 2022) 87.4
Point-MAE (Pang et al., 2022) 91.0
Point-M2AE (Zhang et al., 2022) 92.9
SoftClu (Mei et al., 2022) 92.7
CluRender 93.2

Bold values indicate best performance

of 0.5 every 20 epochs. We evaluated the segmentation qual-
ity of PointNet and DGCNN using overall accuracy (OAcc)
and mean Intersection over Union (mloU) metrics. mloU is
calculated by averaging IoUs for each part in an object before
averaging the obtained values for each object class as defined
in (Wang et al., 2020).

Results Table 4 reports the part segmentation results of
CluRender in comparison with alternative approaches on
ShapeNetPart (Yi et al., 2016). Notably, CluRender sur-
passes all competing approaches when employed with both
PointNet and DGCNN encoders, excelling in terms of both
OAcc and mloU. When coupled with the PointNet encoder,

@ Springer

International Journal of Computer Vision

CluRender achieves an OAcc of 94.1% and an mloU of
84.3%, marking an improvement over the state-of-the-art
CrossPoint, which registers 93.2% OAcc and 82.7% mloU,
by 0.9% and 1.6% in OAcc and mloU respectively. Similarly,
using the DGCNN encoder, we attain 94.9% OA and 85.9%
mloU, outstripping the second-best approach, SoftClu (with
94.6% OAcc and 85.7% mloU), by approximately 0.3% and
0.2% in OA and mloU, respectively.

Table 4 also presents the results of part segmentation uti-
lizing Transformer-based backbones initialized with various
pre-training methods. We re-implemented the transformer
results, employing both OcCo pretraining and random ini-
tialization, and achieved improved outcomes. By utilizing
models pretrained by Point-MAE and Point-M2AE, which
were provided by the authors, we were able to extract the
overall accuracy for both Point-MAE and Point-M2AE. The
proposed method, CluRender, achieves an exemplary 95.4%
overall accuracy and an 86.9% instance mloU, surpassing the
second-best Point-M2AE (Zhang et al., 2022) by margins of
0.5% and 0.4%, respectively. These outcomes emphatically
underscore the pivotal role of the proposed pre-training in
enhancing segmentation tasks.

Figure 6 presents a collection of examples showcasing the
part segmentation results, demonstrating a high success level
in accurately identifying and segmenting most of the parts.
However, the lights in the motorcycle cases were not suc-
cessfully segmented because of the significant difficulty in
distinguishing them from the handle parts. This difficulty
can be attributed to the complexity of the image and the
similarity in appearance between the light and handle parts,
which pose a significant challenge for the segmentation algo-
rithm. Despite this limitation, the overall performance of the
segmentation algorithm is commendable, as it successfully
identifies and separates the majority of the parts.

6.2.5 Few-Shot Learning

Few-shot learning (FSL) aims to train a model that gener-
alizes with limited data. We conduct FSL (N-way K -shot
learning) for the classification task on ModelNet40 (Sharma
et al., 2016), where the model is evaluated on N classes that
are randomly selected from the dataset, and each class con-
tains K samples randomly sampled for each class. We use
the same setting and train/test split as previous works (Wang
et al., 2020; Afham et al., 2022) and report the mean and
standard deviation across 10 runs. Table 5 shows the FSL
results on ModelNet40, where CluRender outperforms prior
works in all the FSL settings in the DGCNN backbone. Our
method with PointNet backbone slightly underperforms in
the 10-way 20-short settings compared to the results of Cross-
Point with PointNet. As for the Transformer backbone, our
CluRender consistently achieves the best performance com-
pared to other unsupervised methods.

@ Springer

Table 4 Part segmentation results on the ShapeNetPart dataset using
the pre-trained PointNet, DGCNN and Transformer backbones

Method OAcc ¢ mloU 1
PointNet backbone

Random 92.8 82.2
Jigsaw3D (Sauder & Sievers, 2019) 93.1 82.2
OcCo (Wang et al., 2020) 93.4 83.4
CrossPoint (Atham et al., 2022) 93.2 82.7
SoftClu (Mei et al., 2022) 93.9 83.8
CluRender 94.1 84.3
DGCNN backbone

Random 92.2 84.4
Jigsaw3D (Sauder & Sievers, 2019) 92.7 84.3
OcCo (Wang et al., 2020) 94.4 85.0
CrossPoint (Afham et al., 2022) 93.2 85.5
SoftClu (Mei et al., 2022) 94.6 85.7
CluRender 94.9 85.9
Transformer backbone

From Scratch (Yu et al., 2022) 94.4 85.5
PointViT-OcCo (Wang et al., 2020) 94 .4 85.6
Point-Bert (Yu et al., 2022) - 85.6
Point-MAE (Pang et al., 2022) 94.6 86.1
MaskPoint (Liu et al., 2022) - 86.0
Point-M2AE (Zhang et al., 2022) 94.9 86.5
SoftClu (Mei et al., 2022) 94.9 86.1
CluRender 95.4 86.9

Bold values indicate best performance

6.3 Ablation Study and Analysis
6.3.1 Impact of the Joint Learning

As our CluRender training networks using a joint learning
objective, we thus first study the contribution of cluster-
ing in intra-modal learning-based clustering and cross-modal
learning-based rendering. We conducted pre-training exper-
iments by training the networks using (i) only clustering, (ii)
only neural rendering, and (iii) both clustering and rendering.
Our experiments were performed on the ModelNet40 dataset.
The results of our study are presented in Table 6. We observed
that using only clustering achieved the second-best perfor-
mance, indicating that spatial information is still crucial in
feature learning. Our method, which employs clustering and
rendering, achieved the best performance on ModelNet40
with PointNet and DGCNN.

International Journal of Computer Vision

Table 5 Few-shot object classification results on ModelNet40 using different backbones

Backbone Method 5-way 10-way
10-shot 20-shot 10-shot 20-shot
PointNet Rand 52.0£3.8 57.8 +4.9 46.6 £4.3 3521438
Jigsaw (Sauder & Sievers, 2019) 66.5 +£2.5 692 +24 569 +£2.5 665+ 1.4
cTree (Sharma & Kaul, 2020) 63.2+34 68.9 + 3.0 492+ 1.9 50.1 £ 1.6
OcCo (Wang et al., 2020) 89.7+19 924+ 1.6 83.9+1.8 89.7+ 1.5
CrossPoint (Afham et al., 2022) 90.9 + 4.8 935+44 84.6 +£4.7 90.2 + 2.2
SoftClu (Mei et al., 2022) 90.6 + 4.0 938 £3.2 84.7+3.6 90.1 £4.5
CluRender 91.1 + 3.6 94.1 +2.7 85.0 +3.2 90.2 £3.9
DGCNN Rand 316 £2.8 40.8 £ 4.6 19.9 £ 2.1 169+ 1.5
Jigsaw (Sauder & Sievers, 2019) 343+1.3 422 4+3.5 26024 299 +2.6
cTree (Sharma & Kaul, 2020) 684 £34 71.6 £2.9 424 +27 43.0+3.0
OcCo (Wang et al., 2020) 90.6 + 2.8 925+ 1.9 829+ 1.3 86.5+22
CrossPoint (Afham et al., 2022) 92.5+3.0 949 + 2.1 83.6£53 87.9+42
SoftClu (Mei et al., 2022) 93.6 £33 973 +£2.0 89.1+14 93.2+34
CluRender 93.7 £ 3.1 974+ 1.5 90.2+14 93.6 £+ 3.1
Transformer Rand 87.8 £5.2 959+123 894 £5.1 9244+ 4.6
ViT-OcCo (Wang et al., 2020) 343+ 1.3 422 +35 26.0+24 299+ 2.6
Point-BERT (Yu et al., 2022) 94.6 £3.1 96.3 +2.7 91.0+54 92.7+5.1
MaskPoint (Liu et al., 2022) 95.0 £ 3.7 972+ 1.7 914+40 93.4+35
Point-MAE (Pang et al., 2022) 96.3 £2.5 978+ 1.8 92.6 £4.1 95.0+ 3.0
Point-M2AE (Zhang et al., 2022) 96.8 £ 1.8 983+ 14 923 +45 95.0+ 3.0
SoftClu (Mei et al., 2022) 96.5 £ 2.5 98.0+ 1.8 93.1+4.1 953 +33
CluRender 97.2+23 984+ 1.3 93.7 £ 4.0 96.0 + 2.9

We report mean and standard error over 10 runs for each setting and report mean accuracy (%) with standard deviation. Bold values indicate best

performance

CluRender

GT

CluRender

GT

Fig. 6 Part segmentation results on ShapeNetPart (Yi et al., 2016)
of CluRender using the DGCNN encoder (top row) compared to the
ground-truth annotations (bottom row)

Table 6 Ablation study

Encoder Cluster Render Accuracy
PointNet v X 90.0

X v 88.9

v v 90.4
DGCNN v X 91.4

X v 91.2

v v 92.3

Bold values indicate best performance. We investigate the effects of
different designs of CluRender, and report the classification accuracy
(%) after fine-tuning on ModelNet40. All models are tested with 1024
points

6.3.2 Computation of Soft-Labels

We assess our strategy for soft-label assignment based on
optimal transport (OT) by comparing it with a typical L2
distance-based approach on ModelNet40. Therefore, we
assess CluRender by using I' computed with Eq. (12) and by
using the L2 approach in Caron et al. (2018). In this exper-
iment, we do not consider the rendering module. Table 7
shows that OT achieves the best performance on all the

@ Springer

International Journal of Computer Vision

Table 7 Ablation study of CluRender on ModelNet40 with soft-labels
computed with our approach (OT) and with a typical distance-based
assignment (L2)

Dataset Encoder Accuracy
L2 oT
ModelNet40 PointNet 86.5 90.3
DGCNN 90.4 91.9

Bold values indicate best performance

Table 8 Ablation study results of CluRender with different number of
clusters J

Clusters 16 32 48 64 72 96 112 128

PointNet 924 93.0 93.1 935 934 933 932 931
DGCNN 942 948 946 948 947 946 946 945

-
o4
a &7 |
g Bl
me ket
E S
5 g
4
o5, 2
r IR
L% 43
S

Fig.7 Part segmentation failure cases using CluRender on ShapeNet-
Part (Yi et al., 2016) with the Transformer (top row), compared to the
corresponding ground-truth annotations (bottom row)

Table 10 Pre-training time of CluRender for Transformer backbone
and part segmentation results

Table 9 Ablation study results of CluRender with different number of
views in multi-view rendering

Method 4-views 8-views 12-views 24-views
PointNet 88.7 88.9 88.9 88.8
DGCNN 91.2 91.2 91.0 91.1

datasets with both PointNet and DGCNN encoders. This is
due to the equal partition constraint which prevents solutions
from being assigned to the same cluster and affecting the per-
formance.

6.3.3 Number of Clusters

We assess the effect of selecting different numbers of cluster
partitions J by using ModelNet40. In this experiment, we
do not consider the render module. We pre-train CluRender
with different values of J, i.e. from 16 to 128 with 8 different
number clusters (16, 32, 48, 64, 72,96, 112, 128), and report
the results in Table 8. CluRender achieves the best results
with J = 64 for both PointNet and DGCNN. We observed
stability with the results throughout different values of J.

6.3.4 Number of Views

We analyze the influence of multi-view rendering in our pre-
training performance. We perform object classification tasks
on ModelNet40 using shapes rendered with 4, 8, 12, and 24
views. The clustering module is not taken into consideration
for this experiment. The results are presented in Table 9. For
PointNet, the performance is optimal when 8 views are used,
while for DGCNN, using 4 or 8 views is generally sufficient.

6.3.5 Computational Time

CluRender is exclusively utilized for pre-training, wherein
each iteration encompasses two components: a forward pass

@ Springer

Method Random Point-M2AE CluRender (Ours)
Times (s) 0.0 583.10 188.99
Part(mloU) 85.5% 86.5% 86.9%

through the backbone and Sinkhorn optimization and ren-
dering. The Sinkhorn component, specifically employed for
pseudo-label generation, does not notably impact training
time as it does not involve gradient backpropagation. Given
that the cluster quantity is relatively minimal, the time com-
plexity remains at O (N), with N denoting the number of data
points, thereby not significantly influencing overall training
time. Note that the inference time for each utilized backbone
remains unaltered. Table 10 reports the time of pretraining a
transformer backbone and the mloU results of the part seg-
mentation. Experiments executed on one RTX A4500 GPU
(20G) and one Intel(R) Core(TM) i7-13700K CPU, adds
an average overhead of 188.99s per iteration on ShapeNet
with a Transformer backbone. In addition, a comparative
analysis, which includes results without pre-training (via
random initialization), unequivocally attests to the efficacy
of pre-training, evidenced by a performance augmentation
exceeding 1.4 percent part segmentaion tasks. It is worth
noting that the “pre-training + fine-tuning" procedure does
consume considerable time, akin to other pre-training meth-
ods. Enhancing the efficiency of the training process emerges
as a compelling avenue for future exploration.

6.3.6 Limitations

CluRender presumes a uniform distribution prior, possibly
overlooking the intrinsic imbalance often present in real-
world data. Some point cloud scenarios, such as indoor
spaces and street scenes, frequently exhibit notable content
imbalances, thus highlighting the potential merit of exploring
non-uniform clustering approaches. Figure 7 presents two
instances of failure in part segmentation on the ShapeNet-
Part dataset, attributable to this uniformity assumption. This

International Journal of Computer Vision

adherence compels the encoder to learn disparate features to
comply with the constraint. Therefore, relaxing the uniform
distribution assumption in favor of employing arbitrary prior
distributions to enhance performance constitutes a pivotal
direction for our future work.

7 Conclusions

We presented CluRender, a novel unsupervised representa-
tion learning method for 3D point cloud understanding that
does not require data augmentation. CluRender leverages
clustering and neural rendering techniques to train the feature
encoders in an implicit manner. Our results demonstrate that
the pre-trained representations obtained from our approach
can be effectively transferred to various downstream 3D
understanding tasks, including 3D object detection, semantic
segmentation, classification, part segmentation, and few-shot
learning. Additionally, CluRender is not reliant on specific
deep network architectures, making it a versatile method for
feature extraction from raw point cloud data that can enhance
the performance of other 3D models.

Acknowledgements This work was supported by the PNRR project
FAIR - Future Al Research (PE0O0000013), under the NRRP MUR pro-
gram funded by the NextGenerationEU.

Funding Open Access funding enabled and organized by CAUL and
its Member Institutions.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Achlioptas, P, Diamanti, O., Mitliagkas, I., & Guibas, L. (2018). Learn-
ing representations and generative models for 3d point clouds.
ICML.

Afham, M., Dissanayake, 1., Dissanayake, D., Dharmasiri, A., Thi-
lakarathna, K., & Rodrigo, R. (2022). CrossPoint: Self-supervised
cross-modal contrastive learning for 3D point cloud understand-
ing. CVPR.

Aliev, K. A., Sevastopolsky, A., Kolos, M., Ulyanov, D., & Lempit-
sky, V. (2020). Neural point-based graphics neural point-based
graphics (pp. 696-712). ECCV.

Armeni, L., Sener, O., Zamir, A. R., Jiang, H., Brilakis, I., Fischer, M.,
& Savarese, S. (2016). 3d semantic parsing of large-scale indoor
spaces. CVPR.

Asano, Y. M., Rupprecht, C., & Vedaldi, A. (2020). Self-labelling via
simultaneous clustering and representation learning. ICLR.
Biswas, J., & Veloso, M. (2012). Depth camera based indoor mobile

robot localization and navigation. ICRA.

Caron, M., Bojanowski, P., Joulin, A., & Douze, M. (2018). Deep clus-
tering for unsupervised learning of visual features. ECCV.

Caron, M., Misra, 1., Mairal, J., Goyal, P, Bojanowski, P., & Joulin,
A. (2020). Unsupervised learning of visual features by contrasting
cluster assignments. NeurIPS, 33, 9912-9924.

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q.,
Li, Z., & Yu, F. (2015). ShapeNet: An information-rich 3D model
repository.

Chen, S., Duan, C., Yang, Y., Li, D., Feng, C., & Tian, D. (2019).
Deep unsupervised learning of 3D point clouds via graph topology
inference and filtering. TIP293183-3198

Chen, T., & Hinton, G. (2020). A simple framework for contrastive
learning of visual representations. ICML

Chen, X., & He, K. (2021). Exploring simple Siamese representation
learning. CVPR.

Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of opti-
mal transport. NeurIPS

Dai, A., Chang, A. X., Savva, M., Halber, M., Funkhouser, T., &
NiefBner, M. (2017). Scannet: Richly-annotated 3d reconstructions
of indoor scenes. CVPR (5828-5839).

Dong, R., Qi, Z., Zhang, L., Zhang, J., Sun, J., Ge, Z., & Ma, K.
(2022). Autoencoders as cross-modal teachers: Can pretrained
2D image transformers help 3D representation learning? arXiv
preprint arXiv:2212.08320

Du, B, Gao, X., Hu, W., & Li, X. (2021). Self-contrastive learning with
hard negative sampling for self-supervised point cloud learning.
ACM MM (3133-3142).

Eckart, B., Yuan, W., Liu, C., & Kautz, J. (2021). Self-supervised learn-
ing on 3D point clouds by learning discrete generative models.
CVPR.

Gao, X.,Hu, W., & Qi, G. J. (2020). GraphTER: Unsupervised learning
of graph transformation equivariant representations via auto-
encoding node-wise transformations. CVPR.

Grill, J. B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya,
E., & Gheshlaghi Azar, M. (2020). Bootstrap your own latent: A
new approach to self-supervised learning. NeurIPS.

Han, Z., Wang, X., Liu, Y. S., & Zwicker, M. (2019). Multi-angle point
cloud-vae: Unsupervised feature learning for 3D point clouds from
multiple angles by joint self-reconstruction and half-to-half pre-
diction. ICCV (10441-10450).

Hassani, K., & Haley, M. (2019). Unsupervised multi-task feature learn-
ing on point clouds. ICCV.

Hou, J., Xie, S., Graham, B., Dai, A., & Niefiner, M. (2021). Pri3d: Can
3D priors help 2D representation learning? ICCV (5693-5702).

Huang, S., Xie, Y., Zhu, S. C., & Zhu, Y. (2021). Spatio-temporal self-
supervised representation learning for 3D point clouds. ICCV.

Insafutdinov, E., & Dosovitskiy, A. (2018). Unsupervised learning of
shape and pose with differentiable point clouds. Neurips31

Jiang, J., Lu, X., Zhao, L., Dazeley, R., & Wang, M. (2022). Masked
autoencoders in 3D point cloud representation learning. ECCV.

Jing, L., Zhang, L., & Tian, Y. (2021). Self-supervised feature learning
by cross-modality and cross-view correspondences. Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (1581-1591).

Li, L., & Heizmann, M. (2022). A closer look at invariances in self-
supervised pre-training for 3D vision. In European conference on
computer vision (656-673).

Li, Y., Ma, L., Zhong, Z., Liu, F,, Chapman, M. A., Cao, D., & Li,
J. (2020). Deep learning for LiDAR point clouds in autonomous
driving: A review. TNNLS

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2212.08320

International Journal of Computer Vision

Lin, X., Chen, K., & Jia, K. (2021). Object point cloud classification
via poly-convolutional architecture search. ACM MM (807-815).

Liu, H., Cai, M., & Lee, Y. J. (2022). Masked discrimination for self-
supervised learning on point clouds. ECCV (657-675).

Liu, K., Xiao, A., Zhang, X., Lu, S., & Shao, L. (2023). Fac: 3d rep-
resentation learning via foreground aware feature contrast. arXiv
preprint arXiv:2303.06388,

Liu, X., Han, Z., Wen, X., Liu, Y. S., & Zwicker, M. (2019).
L2g auto-encoder: Understanding point clouds by local-to-global
reconstruction with hierarchical self-attention. ACM MM (989—
997).

Loshchilov, 1., & Hutter, F. (2018). Decoupled weight decay regular-
ization. ICLR.

Mei, G. (2021). Point cloud registration with self-supervised feature
learning and beam search. DICTA (01-08).

Mei, G., Huang, X., Zhang, J., & Wu, Q. (2022). Overlap-guided
coarse-to-fine correspondence prediction for point cloud registra-
tion. ICME (1-6).

Mei, G., Saltori, C., Poiesi, F., Zhang, J., Ricci, E., Sebe, N., & Wu,
Q. (2022). Data augmentation-free unsupervised learning for 3D
point cloud understanding. BMVC.

Mensch, A., & Peyré, G. (2020). Online sinkhorn: Optimal transport
distances from sample streams. Neurips331657-1667

Misra, 1., Girdhar, R., & Joulin, A. (2021). An end-to-end transformer
model for 3d object detection. CVPR (2906-2917).

Moon, T. K. (1996). The expectation-maximization algorithm. IEEE
Signal processing magazine

Pang, Y., Wang, W., Tay, F. E., Liu, W., Tian, Y., & Yuan, L.
(2022). Masked autoencoders for point cloud self-supervised.
arXiv preprint arXiv:2203.06604,

Park, Y., Lepetit, V., & Woo, W. (2008). Multiple 3D object tracking
for augmented reality. ISMAR.

Peyré, G., & Cuturi, M. (2019). Computational optimal transport: With
applications to data science. Foundations and Trends® in Machine
Learning,

Poiesi, F., & Boscaini, D. (2022). Learning general and distinctive 3D
local deep descriptors for point cloud registration. TPAMI,

Porter, T., & Duff, T. (1984). Compositing digital images. ACM SIG-
GRAPH (253-259).

Poursaeed, O., Jiang, T., Qiao, H., Xu, N., & Kim, V. G. (2020). Self-
supervised learning of point clouds via orientation estimation.
3DV.

Qi, C. R, Litany, O., He, K., & Guibas, L. J. (2019). Deep hough voting
for 3D object detection in point clouds. ICCV (9277-9286).
Qi,C.R.,Su,H.,Mo, K., & Guibas, L. J. (2017). Pointnet: Deep learning
on point sets for 3D classification and segmentation. CVPR (652—

660).

Qi, C. R, Yi, L., Su, H., & Guibas, L. J. (2017). Pointnet++: Deep
hierarchical feature learning on point sets in a metric . NeurIPS
(5099-5108).

Rao, Y., Liu, B., Wei, Y., Lu, J., Hsieh, C. J., & Zhou, J. (2021). Ran-
domrooms: Unsupervised pre-training from synthetic shapes and
randomized layouts for 3d object detection. ICCV (3283-3292).

Rao, Y., Lu, J., & Zhou, J. (2020). Global-local bidirectional reason-
ing for unsupervised representation learning of 3d point clouds.
CVPR.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional
networks for biomedical image. MICCALI (234-241).

Sanghi, A. (2020). Info3d: Representation learning on 3d objects using
mutual information maximization and contrastive learning. Eccv:
ECCV.

Sarmad, M., Lee, HJ., & Kim, Y.M. (2019). Rl-gan-net: A reinforce-
ment learning agent controlled GAN network for real-time point
cloud shape completion. CVPR Cvpr (5898-5907).

Sauder, J., & Sievers, B. (2019). Self-supervised deep learning on point
clouds by reconstructing space. NeurIPS (12942-12952).

@ Springer

Sharma, A., Grau, O., & Fritz, M. (2016). Vconv-dae: Deep volumetric
shape learning without object labels. ECCV (236-250).

Sharma, C., & Kaul, M. (2020). Self-supervised few-shot learning on
point clouds. NeurIPS337212-7221

Shi, Y., Xu, M., Yuan, S., & Fang, Y. (2020). Unsupervised deep shape
descriptor with point distribution learning. CVPR (9353-9362).

Sun, Y., Wang, Y., Liu, Z., Siegel, J., & Sarma, S. (2020). Point-
grow: Autoregressively learned point cloud generation with self-
attention. WACV (61-70).

Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE.
JMLR.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.
N., & Polosukhin, I. (2017). Attention is all you need. Neurips30

Wang, H., Liu, Q., Yue, X., Lasenby, J., & Kusner, M. J. (2020).
Unsupervised point cloud pre-training via view-point occlusion,
completion. ICCV.

Wang, P S., Yang, Y Q., Zou, Q F,, Wu, Z., Liu, Y., & Tong, X. (2021).
Unsupervised 3D learning for shape analysis via multiresolution
instance discrimination. AAAI (35, 2773-2781).

Wang, Y., & Bue, A. D. (2020). Where to explore next? ExHistCNN for
history-aware autonomous 3D exploration. ECCV.

Wang, Y., Carletti, M., Setti, F., Cristani, M., & Bue, A. D. (2019). Active
3d classification of multiple objects in cluttered scenes. ICCVW.

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., & Solomon,
J. M. (2019). Dynamic graph CNN for learning on point . ACM
TOG3851-12,

Wang, Z., Yu, X., Rao, Y., Zhou, J., & Lu, J. (2022). P2p: Tuning pre-
trained image models for point cloud analysis with point-to-pixel
prompting. arXiv preprint arXiv:2208.02812,

Wiles, O., Gkioxari, G., Szeliski, R., & Johnson, J. (2020). Synsin: End-
to-end view synthesis from a single image. CVPR (7467-7477).

Wiles, O., & Zisserman, A. (2019). Learning to predict 3D surfaces of
sculptures from single and multiple views . ICV127111780-1800

Xie, S., Gu, J., Guo, D., Qi, C. R, Guibas, L., & Litany, O. (2020).
Pointcontrast: Unsupervised pre-training for 3D point cloud
understanding. ECCV.

Xing, J., Luan, F, Yan, L. Q., Hu, X., Qian, H., & Xu, K. (2022).
Differentiable rendering using RGBXY derivatives and optimal
transport. ACM TOG, 41(6), 1-13.

Xu, Q., Wang, W., Ceylan, D., Mech, R., & Neumann, U. (2019). Disn:
Deep implicit surface network for high-quality single-view 3D
reconstruction. Neurips 32

Yamada, R., & Ogata, T. (2022). Point cloud pre-training with natural
3d structures. CVPR (21283-21293).

Yan, X., Gao, J., Zheng, C., Zheng, C., Zhang, R., Cui, S., & Li, Z.
(2022). 2dpass: 2d priors assisted semantic segmentation on lidar
point clouds. ECCV (677-695).

Yang, Y., Feng, C., Shen, Y., & Tian, D. (2018). Foldingnet: Point cloud
auto-encoder via deep grid deformation. CVPR (206-215).

Yi, L., Kim, V. G., Ceylan, D., Shen, I. C., Yan, M., Su, H., & Guibas,
L. (2016). A scalable active framework for region annotation in
3D shape collections. ACM TOG

Yin, J., Zhou, D., Zhang, L., Fang, J., Xu, C. Z., Shen, J., & Wang,
W. (2022). Proposalcontrast: Unsupervised pre-training for lidar-
based 3D object. ECCV (17-33).

Yu, X., Tang, L., Rao, Y., Huang, T., Zhou, J., & Lu, J. (2022). Point-
bert: Pre-training 3d point cloud transformers with masked point
modeling. CVPR (19313-19322).

Zhang, R., Guo, Z., Gao, P., Fang, R., Zhao, B., Wang, D., & Li, H.
(2022). Point-M2AE: Multi-scale masked autoencoders for hier-
archical point cloud pre-training . arXiv preprint arXiv:2205.14401

Zhang, Z., & Misra, I. (2021). Self-supervised pretraining of 3d features
on any point-cloud. ICCV (10252-10263).

Zhao, H., Jiang, L., Jia, J., Torr, P. H., & Koltun, V. (2021). Point trans-
former. ICCV (16259-16268).

http://arxiv.org/abs/2303.06388
http://arxiv.org/abs/2203.06604
http://arxiv.org/abs/2208.02812
http://arxiv.org/abs/2205.14401

International Journal of Computer Vision

Zhou, Y., Wang, Y., Poiesi, F., Qin, Q., & Wan, Y. (2022). Loop closure
detection using local 3D deep descriptors. IEEE RAL

Ziegler, A., & Asano, Y.M. (2022). Self-supervised learning of object
parts for semantic segmentation Self-supervised learning of object
parts for semantic segmentation. CVPR (14502-14511).

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

	Unsupervised Point Cloud Representation Learning by Clustering and Neural Rendering
	Abstract
	1 Introduction
	2 Related Work
	3 Method Overview
	4 Point Cloud Soft-Clustering
	4.1 Prototype Computation
	4.2 Soft-Labeling
	4.2.1 Formulating Soft-Labeling as Assignment Problem
	4.2.2 Solving Assignment as Optimal Transport

	4.3 Optimization

	5 Differentiable Renderer
	5.1 Prediction Network φβ
	5.2 Renderer mathcalR
	5.3 Fitting Loss mathcalLr

	6 Experiments
	6.1 Pre-training Setup
	6.1.1 Implementation Details
	6.1.2 Datasets
	6.1.3 Backbones

	6.2 Evaluation on Downstream Tasks
	6.2.1 3D Object Detection
	6.2.2 3D Semantic Segmentation
	6.2.3 Classification
	6.2.4 Part Segmentation
	6.2.5 Few-Shot Learning

	6.3 Ablation Study and Analysis
	6.3.1 Impact of the Joint Learning
	6.3.2 Computation of Soft-Labels
	6.3.3 Number of Clusters
	6.3.4 Number of Views
	6.3.5 Computational Time
	6.3.6 Limitations

	7 Conclusions
	Acknowledgements
	References

