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Abstract
The creation or manipulation of facial appearance through deep generative approaches, known as DeepFake, have achieved
significant progress and promoted a wide range of benign and malicious applications, e.g., visual effect assistance in movie
andmisinformation generation by faking famous persons. The evil side of this new technique poses another popular study, i.e.,
DeepFake detection aiming to identify the fake faces from the real ones. With the rapid development of the DeepFake-related
studies in the community, both sides (i.e., DeepFake generation and detection) have formed the relationship of battleground,
pushing the improvements of each other and inspiring new directions, e.g., the evasion of DeepFake detection. Nevertheless,
the overview of such battleground and the new direction is unclear and neglected by recent surveys due to the rapid increase
of related publications, limiting the in-depth understanding of the tendency and future works. To fill this gap, in this paper, we
provide a comprehensive overview and detailed analysis of the research work on the topic of DeepFake generation, DeepFake
detection as well as evasion of DeepFake detection, with more than 318 research papers carefully surveyed. We present
the taxonomy of various DeepFake generation methods and the categorization of various DeepFake detection methods, and
more importantly, we showcase the battleground between the two parties with detailed interactions between the adversaries
(DeepFake generation) and the defenders (DeepFake detection). The battleground allows fresh perspective into the latest
landscape of the DeepFake research and can provide valuable analysis towards the research challenges and opportunities
as well as research trends and future directions. We also elaborately design interactive diagrams (http://www.xujuefei.com/
dfsurvey) to allow researchers to explore their own interests on popular DeepFake generators or detectors.
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1 Introduction

If you know the enemy and know yourself, you need
not fear the result of a hundred battles. If you know
yourself but not the enemy, for every victory gained
you will also suffer a defeat. If you know neither the
enemy nor yourself, you will succumb in every battle.
The Art of War
Sun Tzu

Ever since digital visual media came along, there has
always been a need to manipulate them for various purposes.
Usually, such digital media manipulation requires domain
expertise and is quite time and effort consuming, such as
using professional software like Adobe Photoshop (Adobe
2021c) for editing a photograph, orAdobeLightroom (Adobe
2021b) for retouching it. In the sound and voice domain, sim-
ilar professional software is available for carrying out various
types of signal manipulation such as using Adobe Audition
(Adobe 2021a), or Auto-Tune (Antares Audio Technologies
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2021), etc. In the domain of motion pictures, the manipula-
tion of videos oftentimes require very sophisticated theatrical
visual effects (VFX) in the post-processing, and when it
comes to recreating animated faces with realistic facial mus-
cle movements and expressions, motion capture techniques
with the help of high-speed tracking of markers are usually
adopted, such as in James Cameron’s Avatar (IMDb 2021)
movie.

With the advances of deep generative models such as
autoregressive models (Van Oord et al. 2016; Van den Oord
et al. 2016), variational autoencoders (VAE) (Kingma and
Welling 2013, 2019), normalizing flow models (Rezende
and Mohamed 2015), and generative adversarial networks
(GAN) (Goodfellow et al. 2014a), anyone can now produce
a realistically looking face whose identity does not exist in
the world, or perform facial manipulations, such as identity
swap, in a video with a high level of realism. The AI- or deep
learning-based face image and video manipulation is what
the community refers to as the DeepFake. In contrast, the
notion of CheapFake is recently coined to encompass non-AI
(“cheap”) manipulations of multimedia content (Aneja et al.
2021). The low barriers to entry and wide accessibility of
pre-trained high-performance DeepFake generator are what
the problem is. DeepFake, when used maliciously, is a press-
ing and tangible threat to the integrity of media information
available to us.

In this survey, we follow the widely adopted conventions
and define DeepFake as the creation and the manipulation of
facial appearance (attributes, identity, expression) through
deep generative approaches, and it can be classified into the
following 4 categories: (1) entire face synthesis, (2) attribute
manipulation, (3) identity swap, and (4) expression swap
(aka reenactment), as depicted in Fig. 1. Here, the facial
attributes (such as hair color, facial hair, skin tone, eyewear,
etc.) exclude identity and expression as attributes. Deep-
Fake manipulations may exhibit different risk levels and the
risk level highly depends on the type of specific applica-
tions and somewhat subjectively depending on the actual
use case. Here, we provide some examples that may pose
risks based on different DeepFake categories. The identity
swap, altering the hard biometrics (Jain et al. 2007) (per-
tains to identity information) of a subject, poses risks to
a wide range of safety-critical scenarios since the identity
information is tampered. The expression swap and attribute
manipulation, although only tampers with the soft biomet-
rics (Jain et al. 2007) (pertains to facial attributes) of the
subject, may also pose risks to certain applicable scenarios
where people can easily verify the identity of the subject, but
not what she/he says, such as in political elections, e.g., the
DeepFakedObamavideo (NPR2020).Generically speaking,
the entire face synthesis may seem to pose a lower risk than
the three categories mentioned above since it is not based on
the manipulation of hard or soft biometrics of the subject.

However, depending on the applications, even the entire face
synthesis can become risky and troublesome, imagining the
swarm of fake accounts on social media platforms. In short,
all four aforementioned DeepFakemodalities can potentially
pose high level of risks and need to be addressed properly.
In terms of the popularity ranking measured by how often
the categories are tested by DeepFake detectors according to
the surveyed literature, the identity swap ranks the highest for
the popularity, and the expression swap is the least attempted
category. For attribute manipulation and entire face synthe-
sis, usually theDeepFake generation process does not require
a target face, and one can tune the desired facial attributes
through adjusting the latent vector during the deep genera-
tive modeling. For identity swap, the target can either be a
video sequence or simply a single face image, with the for-
mer renders better swap results. For expression swap, the
target is usually in the form of a video sequence. Although
it is technically manageable to use just a single face image
as the target, the result will look weird since the expression
won’t be changing throughout the entire DeepFake video.
From top to bottom, the four panels in Fig. 1 illustrate the
four categories of DeepFakes. Four examples are shown for
both ‘identity swap’ and ‘expression swap’, with each exam-
ple associated with a target, real, and DeepFake sequences of
5 frames. Within each panel, the two examples in the top row
show the DeepFake manipulation that is pretty subtle, which
demonstrate the minuscule manipulations that some Deep-
Fakes can present, and the two examples in the bottom row
showmore drasticDeepFakemanipulations. Across ‘identity
swap’ and ‘expression swap’, as a comparison, one example
is shown in both scenarios and is highlighted by ●, to show-
case the difference in the DeepFake frames for these two
modalities coming from the same ‘target’ and ‘real’ sources.
Readers are encouraged to zoom in on the image. Actual full-
resolution videos are available on the project website (http://
www.xujuefei.com/dfsurvey) to better illustrate the Deep-
Fake phenomenon. For ‘attribute manipulation’ and ‘entire
face synthesis’ on the bottom panel, both real and DeepFakes
are shown.

The DeepFake technology itself, in our opinion, is neu-
tral and can be used both benignly and maliciously. We first
discuss some of the positive and benign uses of DeepFake
technology. For example, Synthesia (2021) uses DeepFake
technology to provide cost-effective synthetic training videos
for companies during the Covid-19 pandemic when it is get-
ting harder and more expensive to shoot corporate training
videos with real actors. On the same line of thought, there has
been an increase in a digital avatar or virtual assistance by
means of DeepFake technology (Pinscreen 2021) to be used
for e.g., video conferencing scenarios (Wang et al. 2021).
DeepFake can also be used for assisting the facial visual
effects in movie and TV show production for re-creating a
role appearance for some celebrities that may have passed
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Fig. 1 From top to bottom, the four panels illustrate the four categories
of DeepFakes. Four examples are shown for both ‘identity swap’ and
‘expression swap’, with each example associated with a target, real, and
DeepFake sequences of 5 frames. Within each panel, the two examples
in the top row show the DeepFake manipulation that is pretty subtle,
which demonstrate the minuscule manipulations that some DeepFakes
can present, and the two examples in the bottom row show more dras-
tic DeepFake manipulations. Across ‘identity swap’ and ‘expression
swap’, as a comparison, one example is shown in both scenarios and is
highlighted by●, to showcase the difference in theDeepFake frames for

these two modalities coming from the same ‘target’ and ‘real’ sources.
Readers are encouraged to zoom in on the image. Actual full-resolution
videos are available on the project website (http://www.xujuefei.com/
dfsurvey) to better illustrate the DeepFake phenomenon. For ‘attribute
manipulation’ and ‘entire face synthesis’ on the bottom panel, both real
and DeepFakes are shown. In terms of popularity as being attempted
by DeepFake detectors according to the survey results, the ranking is as
the following: identity swap > entire face synthesis > attribute manip-
ulation � expression swap
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away, or for paying tribute to the lost ones in a memorial
concert. Sometimes, creative scenes can be made by using
DeepFake to join together celebrities across geographic and
generation boundaries. For example, Pinscreen (2021) has
used DeepFake technology to bring Prime Minister Mark
Rutte, and Queen Máxima of The Netherlands, as well as
other Dutch celebrities to a live TV broadcast. We have
also seen a surge in popularity of DeepFake being used in
consumer smartphone applications for everyday entertain-
ment purposes, especially targeted formaking viral videos on
social media platforms, such as Zao (2021), Reface (Reface
2021), Facebrity (Facebrity 2021), etc.

The aforementioned cases are benign DeepFakes. Power-
ful as the technology is, there is a thin line between good
and evil depending on what the content is, as well as what
the intent is, and it is easy to cross over. DeepFake can be
maliciously capitalized by bad actors to cause real harm. For
example, when it is applied to politicians and fueled with
targeted misinformation or disinformation, it can really sway
people’s opinions and can lead to detrimental outcomes such
as manipulated and interfered election without people even
knowing about it. To this date, many politicians and state
leaders have beenmisrepresented by DeepFakes. Recently in
September of 2020,DeepFake videos featuringRussian Pres-
ident Vladimir Putin and North Korean leader Kim Jong-un
appeared on social media stating the message that “America
doesn’t need any election interference from them; it will ruin
its democracy by itself”. This was a campaign put forward by
the nonpartisan advocacy group RepresentUs to protect vot-
ing rights during the then upcomingUS presidential election,
and the goal of the videos is to shock Americans into under-
standing the fragility of democracy (MIT TR 2020). In April
2018, aDeepFakeofBarackObamawas created by comedian
Jordan Peele in collaboration with BuzzFeed which served
as a public service announcement (PSA) to increase aware-
ness of DeepFakes (BuzzFeed 2018). During the most recent
Christmas holidays, a DeepFake Queen Elizabeth II was
shown dancing across TV screens as part of a British broad-
caster’s warning against the proliferation of misinformation
(CNN 2020). Not just world leaders, celebrities or even aver-
age people can also fall victims of malicious DeepFakes. In
fact, some of the earliest infamous use cases of malicious
DeepFakes have been DeepFake pornography often featur-
ing female celebrities. Financial fraud as a result ofDeepFake
or looming fake accounts on social media platforms created
realistically by using DeepFakes are all examples of mali-
cious use of DeepFake technology.

Lawmakers and governing bodies across the world are
responding to the proliferation of malicious DeepFakes with
new policies, regulations, and laws. Take the United States
for example, in December 21, 2018, US Senator Ben Sasse
introduced a bill “S.3805—Malicious Deep Fake Prohibi-
tion Act of 2018” (115th Congress 2018) that “establishes a

new criminal offense related to the creation or distribution of
fake electronic media records that appear realistic”. In June
12, 2019, US Congresswoman Yvette Clarke introduced the
“H.R.3230 Defending Each and Every Person from False
Appearances by Keeping Exploitation Subject to Account-
ability Act of 2019”, also known as the “DEEP FAKES
Accountability Act”. The act aims at “combating the spread
of disinformation through restrictions on deep-fake video
alteration technology” (116th Congress 2019a). In July 9,
2019,USSenatorRobPortman introduced the bill “S.2065—
Deepfake Report Act of 2019” (116th Congress 2019b) that
requires “the Science and Technology Directorate in the
Department ofHomeland Security to report at specified inter-
vals on the state of digital content forgery technology. Digital
content forgery is the use of emerging technologies, includ-
ing artificial intelligence and machine learning techniques,
to fabricate or manipulate audio, visual, or text content with
the intent to mislead”. State-wide legislature entities have
also responded byproposing counter-measures ofDeepFakes
such as the “Nonconsensual pornography law” in Virginia
(The Verge 2019b), a law “to criminalize publishing and dis-
tributing DeepFake videos intended to harm a candidate or
influence results within 30 days of an election” in Texas
(Texas 2019), and a similar law in California (California
2019). Mirroring this new California law on political ads,
the Chinese government “makes it a criminal offense to pub-
lish deepfakes or fake news without disclosure” (The Verge
2019a). Many more countries followed suit.

Social media platforms are also actively taking measures
to tackle synthetic and manipulated media on their platform.
For example, Twitter signals viewers that a tweet contains
manipulated media content such as DeepFakes by placing a
tag on the tweet and providing a link to credible news articles
debunking the hoax (Twitter Blog 2019). Facebook fosters
the development of high-performance DeepFake detection
tools by hosting the DeepFake Detection Challenge (DFDC)
(Dolhansky et al. 2020) in December 2019 with 2114 world-
wide participants generating more than 35,000 models.

In the computer vision community, the study of DeepFake
has certainly gained traction in recent years. Figure 2 shows
the year-by-year number of papers on the topic of DeepFakes
from its inception in 2016, andwewill detail the paper collec-
tion schema in Sect. 2. As shown in Fig. 2, around 78% of the
papers appeared in the last two years, indicating the trending
research interests revolved around the topic of DeepFakes.

This paper seeks to further raise the awareness of the dan-
ger of the emerging DeepFake technology by surveying the
state-of-the-art DeepFake literature. We organize the litera-
ture according to three aspects: the generation of DeepFakes
in Sect. 3 (such as the aforementioned four main Deep-
Fake categories, other generation methods not covered, and
datasets), detection of DeepFakes in Sect. 4 (such as meth-
ods based on spatial, frequency, and biological cues, as well
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Fig. 2 This figure shows a growing trend in the number of papers in
the DeepFake field in recent years. The papers are collected according
to the criteria introduced in Sect. 2.1, including arXiv, conference, and
journal articles. They are categorized by the year of the last updated
version. (L) The number of published DeepFake related papers year
over year since its inception in 2016. (R) The cumulative number of
published DeepFake related papers year over year since its inception in
2016. It shows that over 78% papers were published in the last 2 years.
The bars with shadow are the projected number of published papers

as other detection methods not covered), and the evasion of
DeepFake detection in Sect. 6. More importantly, we present
the battleground between DeepFake generation methods and
DeepFake detection methods in Sect. 5 where we analyze
the tightly-knit interactions between the two parties and how
the later DeepFake detectors outcompete the earlier ones,
supplemented by statistics and analyses through large-scale
visualizations. In Sect. 7, we recapitulate the findings after
surveying eachDeepFake-related topics and identify existing
challenges and research opportunities while being forward-
looking with discussions on the horizons and how the future
generation technology surrounding DeepFakes may evolve
into.

1.1 Importance of the Survey of the Battleground

Unlike many other sub-fields of computer vision, the emerg-
ing domain of DeepFake generation and detection is, by
nature, competitive. The rapid development of the defend-
ers (i.e., DeepFake detectors) are further accelerated by the
push from the adversaries (i.e., DeepFake generators), and
vice versa. When a novel method, say from the DeepFake
generator side, is being developed, the authors will natu-
rally want their method to penetrate some latest DeepFake
detectors, and the resulting generator, will later be attempted
to be blocked by some newer detectors down the line. Just
within last year or two, we have seen huge progresses made
alternately on both sides of the battleground, both aiming to
outcompete the other side.

That is exactly why understanding each individual Deep-
Fake generation and detection method, albeit important, may
not be enough, and it does not tell the whole story. The col-
lective understanding of the interplay and the interactivity
of the methods both within each side and across two sides
will bring fresh and clearer view of the landscape, and will

bring new knowledge and insight for the development of the
next-generation defenders and adversaries.

For these very reasons mentioned above, we have taken
the effort to survey, extract, tabulate, and finally construct
the battleground landscape between the DeepFake gener-
ation methods and DeepFake detection methods that have
been proposed so far. By analyzing which of the DeepFake
generation methods are attempted by each of the Deep-
Fake detection method from the battleground, we are able
to present to the readers the visualization of one aspect of
the battleground using a Sankey diagram in Fig. 11 with
interactive diagrams available on the project website for bet-
ter interactive probing. Readers can simply select one node
on either side of the battleground, and all the highlighted
paths will connect the corresponding opponents on the other
side. Similarly, by analyzingwhich baselineDeepFake detec-
tion methods that each detector has benchmarked against, as
observed from the battleground, we are able to showcase and
trace back the technical evolution of each detector using a
chord diagram in Fig. 14 with interactive diagrams avail-
able on the project website. Readers can select one node
on the interactive chord diagram, and the highlighted paths
will connect all the corresponding baseline detection meth-
ods benchmarked by the selected detector.

Some collective knowledge are quite unique to the battle-
ground and are not conspicuous if we only analyze individual
methods. For example, from the battleground landscape in
Figs. 11 and 14, we can identify important trends on both
sides, as well as algorithmic hot zones where seminal papers
are indicated by busy nodes. We can also locate and dis-
cover where themajor battles are fought, which nodes are the
uprising feuds and which nodes are becoming obsolete algo-
rithmically. With the color-coded paths indicating various
types of detection methods (i.e., spatial-based, frequency-
based, biological signal-based, etc.),we are able to provide an
insightful understanding of what types of detection methods
are being attempted on which particular generation methods.
From the battleground, we are able to systemically extract
the performance scores of each DeepFake detection method
on every generation method it has evaluated on. Of course,
the same generation method will be attempted by multiple
detectors, each with a detection accuracy scores. By knitting
the entire network and sorting the rankings, we are able to
provide some strength measurement for each DeepFake gen-
eration method by means of Elo rating (Wikipedia 2021a),
as can be seen in Table 6. Maybe more surprisingly, we may
be able to identify the paths in the woods that are less trav-
eled. From a practical point of view, if a practitioner is just
entering the field, we are quite confident that the battleground
presented in this survey paper will serve as an asset to both
help identify a research direction more effectively, and to
help understand the status quo more comprehensively. We
provide more detailed analysis in Sect. 5.
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As the battleground landscape serving as the cornerstone,
we strive to continue building a DeepFake survey that is both
content-rich and content-distinctive especially in terms of the
following important traits such as the timeliness, the scale, the
detailedness of the textual, tabular, and visual presentation,
the thoroughness of the technical evolution, battleground
analyses, and horizon analyses.

There has been previous work that surveyed or discussed
aspects of the literature on topics related to DeepFake gen-
eration and detection. However, our survey that uniquely
manifest the battleground landscape between the adversaries
and the defenders still stands out. Mirsky and Lee (2021)
pivoted their survey to the DeepFake generation aspect with
detailed model architecture charts for each individual DNN
used for DeepFake generation methods the authors have
surveyed, which is both informative and illustrative. How-
ever, less attention is paid to the DeepFake detection aspect,
the technical evolution of both the generation and detection
methods, and interplay and the battle between the two in
their survey. Neekhara et al. (2021) provided a practical per-
spective that focuses on the adversarial threats to DeepFake
detection. By studying the commonalities between vari-
ous DeepFake detection methods by interpreting the model
decisions using gradient-based saliency maps, the authors
can create adversarial examples that are highly transferable
across different DeepFake detection methods, revealing the
vulnerabilities of the DeepFake detectors. Verdoliva (2020)
discussed the interplay between multimedia forensics and
DeepFakes. From the visualmedia integrity verification point
of view, the authors have provided a detailed discussion on
how the conventional and modern media forensics meth-
ods are conducted for general-purpose image and video
manipulation. Later, they discuss how some of the meth-
ods can be applied to DeepFake detection. With the majority
of the surveyed papers being conventional media forensics
approaches, the overlapping is insignificant. In addition,
there are also a few relatable DeepFake surveys first pub-
lished in late 2019 and early 2020 (Nguyen et al. 2019d;
Tolosana et al. 2020; Lyu 2020). As far as we know, although
these earlier surveys shared similar themes, they were still
deficient in terms of the following important aspects such as
timeliness, scale, and detailedness of the survey, as well as
thorough analyses on the technical evolution together with
discussions and analyses of the horizons. Most importantly,
the battleground landscape between the DeepFake genera-
tion and detection methods were not covered in these prior
surveys. Here we list some of the comparisons between ours
and prior surveys in Table 1.

In summary, this paper differentiates itself from the ear-
lier survey papers with the following unique features and
important contributions:
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(1) Timeliness The field of DeepFake generation and detec-
tion is fast growing. The paper collects and surveys
the most up-to-date research work that shows the state-
of-the-art performance in DeepFake generation and
detection.

(2) Scale The paper provides by far the largest scale and the
most comprehensive survey of over 318 research papers
on the topics of DeepFake generation, DeepFake detec-
tion, and evasion of DeepFake detection, with detailed
categorizations and analyses.

(3) Detailedness This survey utilizes many graphic visu-
alizations and diagrams (Sankey diagrams, fishbone
diagrams, chord diagrams, etc.), as well as many very
detailed long tables to best illustrate and highlight the
properties, interactions, characteristics, evolution, and
important traits of the technical methods surveyed and
discussed. The diagrams and long tables may serve as a
starting point for quick lookup andmethod comparisons,
and the accompanying text provides in-depth discussion
as a complement.

(4) Technical evolution analyses In addition to the detailed
methodological introduction of each individual Deep-
Fake generation and detection methods following the
taxonomy, this paper uniquely manifests the technical
evolution among the aforementionedmethods, providing
a more comprehensive and clearer picture of the evolu-
tionarily technological landscape of the state-of-the-art
DeepFake generation methods and detection methods.

(5) Battleground analyses There exists an adversarial and
battling nature between DeepFake generation methods
and DeepFake detection methods. Each party progresses
by outcompeting the other side. The paper uniquely
captures the tightly-connected interactivities between
DeepFake generation and detection methods as well as
among various detection methods themselves, revealing
evidence for research hot zones and trends for future
topics.

(6) Horizon analyses By virtue of the detailed surveys
and analyses of the battleground landscape, the paper
exposes challenges, identifies open research problems,
and hints promising future research directions on the
topics of DeepFake generation and detection.

Figure 3depicts the tree diagramof the paper structure. For
enhanced readability, here we provide suggestions for differ-
ent types of readers and practitioners. For those who are new
to the field and want to get up to speed quickly, it is advised
to first go through Sects. 3.9 and 4.5 for the summary of the
DeepFake generation and detection methods, along with the
technical evolution highlights in Sects. 3.2.1, 3.3.1, 3.4.1,
3.5.1 and 4.1.6, 4.2.3, 4.3.4, respectively. Then the readers
can move on to Sect. 5 for the Battleground, Sect. 6 for the
Evasion methods, and Sect. 7 for the Horizon. For those who

Fig. 3 Tree diagram showing the paper structure

are already in the field and are interested in the technical
details, it is advised to first go through all the subsections in
Sects. 3 and 4, and then move on to Sects. 5 and 6. For those
who are already in the field and want to identify latest techni-
cal trend in the DeepFake generation and detection literature,
or in a particular direction, it is advised to first go through
Sect. 5 in detail, and then pay attention to Sects. 3.2.1, 3.3.1,
3.4.1, 3.5.1 and Sects. 4.1.6, 4.2.3, 4.3.4 for the technical
evolution, and finally move on to individual sections.

2 Paper Collection and Review Schema

This section covers the survey scope, survey methodology,
and paper collection results.

2.1 Survey Scope

The paper focuses on the technical aspect of DeepFakes via
surveying related research papers on the topics of DeepFake
generation, DeepFake detection, and evasion of DeepFake
detection. The social and ethical aspects regarding Deep-
Fakes, although briefly touched in this paper, are not the focus
of this survey. Amore loosely defined DeepFake could mean
voice, gesture, body, and any type of media manipulation.
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Fig. 4 a For the papers in DeepFake research area, we can find that a
large amount of papers are fromOthers and arXiv. The papers published
in top conferences and journals only account for a third of the total. Fur-
thermore, a lot of top papers are published in CVPR, which accounts for
about half the published top papers. b For DeepFake generation meth-
ods, we can find that a large amount of the papers are from CVPR and
arXiv. Two thirds of the generation papers are published in top confer-

ences and journals. c For DeepFake detection methods, we can find that
a large amount of the papers are from Others and CVPR. The published
top papers only make up a small part of the total. This suggests that
progress in DeepFake detection is not enough. d For DeepFake eva-
sion methods, we can find that the volume of articles is not large and a
large amount of the papers are from arXiv. One fourth of the papers are
published in top conferences

In this survey paper, we focus solely on the topics of facial
DeepFakes.

2.2 Paper CollectionMethod

To collect research papers on DeepFakes across different
research areas as comprehensive as possible, we first collect
the papers from a Github repository1 which lists more than
100 papers about DeepFakes generation, DeepFake detec-
tion, and evasion of DeepFake detection. Then, we apply
keywords matching to search DeepFake papers from two
popular scientific databases (Google Scholar and DBLP) and
arXiv where the newest papers are posted. The keywords are
listed below.

– DeepFake/fake/editing/edit + facial image/face/swapping
/video

– synthesis/GAN-synthesized/AI-synthesized
– manipulation/forgery/tampered face + detection

To ensure a more comprehensive and accurate survey,
we also manually browse the recent three years publications
in top-tier conferences and the corresponding workshops to
avoid the limitations of keywordsmatching. Additionally, for
DeepFake generation papers, we mainly collect the methods
which have been mentioned in the previous DeepFake detec-
tion papers.

2.3 Paper Collection Results

Overall, we have collected 318 papers from Google Scholar
and arXiv. The papers mainly include DeepFake generation,

1 https://github.com/clpeng/Awesome-Face-Forgery-Generation-
and-Detection.

DeepFake detection, and evasion of DeepFake detection top-
ics. Figure 4 shows the distribution of papers published in
different research venues. Here we categorize the papers of
top conferences and journals to specific classification (i.e.,
one of CVPR, ICCV, ECCV, TPAMI, etc.). Meanwhile, we
bucket other published papers in non-top conferences and
journals into the “Others” category. For unpublished papers
with exposure on arXiv, we define them as the “arXiv” cate-
gory.

ForDeepFake generationmethods, we can find that a large
amount of the papers are from CVPR and arXiv. Two-thirds
of the generation papers are published in top conferences and
journals. This shows that a large proportion ofDeepFake gen-
erationmethods have gone through strict peer-review process
and are relatively trustworthy. For DeepFake detection meth-
ods, however, we can find that a mass of the papers are from
arXiv and Others. The published top-tier papers only make
up a small part of the total. This suggests that progress in
DeepFake detection is slower compared to that of the Deep-
Fake generators. For DeepFake evasionmethods, we can find
that the volume of articles is small and a large amount of the
papers are from arXiv, ECCV and Others. Half of the papers
are published in top conferences. This shows that there is con-
siderable improvement in DeepFake evasion research area.

In summary, for the papers in DeepFake research area, we
can find that a large number of papers are from Others and
arXiv. The papers published in top conferences and journals
only account for a third of the total. Furthermore, a lot of
top papers are published in CVPR, which accounts for about
two-thirds the published top papers.

3 Generation of DeepFakes

In the research area of DeepFake generation, there are two
parts to focus on: generation methods and datasets. We first
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provide an overview of the general DeepFake techniques
and introduce the methods which can be seen as DeepFake
generation methods in a broader sense (e.g., style transfer,
inpainting, super resolution, etc.) in Sect. 3.1. This gives
readers an understanding of the general DeepFake genera-
tion techniques.

Then we focus on face appearance-related DeepFake
methods which are most anticipated and influential in the
field. For DeepFake generation methods, according to the
consensus in the DeepFake field (Mirsky and Lee 2021; Ver-
doliva 2020; Tolosana et al. 2020), there are mainly four
categories based on their function: entire face synthesis,
attributemanipulation, identity swap, and expression swap as
depicted in Fig. 1. We introduce these methods in Sects. 3.2–
3.5. The other important part is the dataset. We highlight
the major real image/video datasets which are used in the
generation methods above and the fake image/video datasets
generated by them. The content is introduced in Sects. 3.6
and 3.7, followed by DeepFake challenges in Sect. 3.8. The
various DeepFake generation methods are summarized in
Sect. 3.9. The highlights of the technical evolution of Deep-
Fake generation methods discussed in Sects. 3.2.1, 3.3.1,
3.4.1, and 3.5.1.

3.1 Overview of Deep Image Generation and
ManipulationMethods

In this section, we aim to give readers an understanding of
the general deep image generation techniques which can be
seen as the DeepFake technique in a broader sense.

The methods such as style transfer (Chen et al. 2018c;
Yao et al. 2019), image inpainting (Yu et al. 2018, ?), ren-
dering (Chen and Koltun 2017; Park et al. 2019; Liu et al.
2021a), super resolution (Dai et al. 2019; Guo et al. 2020b;
Liu et al. 2020a; Mei et al. 2020), fusion (Lin et al. 2019),
de-identification (Sun et al. 2018; Li and Lin 2019;Maximov
et al. 2020), etc. share some of the technical similarities of
DeepFake generation. However, these methods are not the
focus of this survey. Instead, we mainly pay attention to the
face appearance-related DeepFake methods.

As introduced in Sects. 3.2–3.5, existing DeepFake gen-
eration methods mainly consist of four types (i.e., entire face
synthesis, attribute manipulation, identity swap, expression
swap), depending on the tasks’ requirements. To achieve a
comprehensive survey, we detail the technological evolution
of the four types, respectively. Note that, we focus on intro-
ducing their intuitive idea and categorizing their optimization
methods. To make it clear, we use Fig. 5 to show the overall
evolution of the four types of DeepFake generation methods,
respectively.

3.2 Entire Face Synthesis

Definition 1 Entire face synthesis aims to generate non-
existent fake face image xf from random vector vwith neural
network φ(·). That is xf = φ(v).

For entire face synthesis tasks, GANs and VAEs are both
feasible neural networks φ(·). However, according to the
surveys (Verdoliva 2020; Nguyen et al. 2019d; Tolosana
et al. 2020; Lyu 2020), GANs are the mainstream baseline
technique. Many famous and popular entire face synthesis
techniques such as PGGAN, StyleGAN, etc. are GAN-based
and are able to generate high-qualityDeepFake images.Com-
pared with GANs, VAEs usually generate less realistic faces
(i.e., being blurred). The reasonwhy the images generated by
VAEs tend to be blur is that the training principlemakesVAEs
assign a high probability to training data points, which cannot
ensure that blurry data points are assigned to a lowprobability
(Huang et al. 2018). Since theDeepFake images generated by
VAE are not realistic enough, this section mainly introduces
the GAN-related works.

Using GANs for entire face synthesis is actually a kind of
distribution mapping. The GANs learn the mapping from
random distribution to human face distribution. Existing
state-of-the-art methods can stably generate high-resolution
images. which is benefited from the continuous improvement
of the GAN network and training procedure. However, the
current methods still suffer from the training difficulty (e.g.,
mode collapse problem of GAN training procedure). Fur-
thermore, the generated images are not realistic enough due
to the lack of general knowledge of face distribution (e.g.,
facial symmetry).

As shown in the entire face synthesis part of Fig. 1, the
fake images are very realistic and it is hard to distinguish
real images from fake ones. Existing works mainly focus on
improving the training stability, resolution, and controllable
face attribute.

The classical examples are deep convolutional GAN
(DCGAN) (Radford et al. 2015),WassersteinGAN (WGAN)
(Arjovsky et al. 2017), progressive growing GAN (PGGAN)
(Karras et al. 2017), and style-based GAN (StyleGAN) (Kar-
ras et al. 2019).

The very first work which combines convolutional neural
network (CNN) and GAN is a deep convolutional genera-
tive adversarial network (DCGAN) (Radford et al. 2015). It
focuses on unsupervised learning and has comparable per-
formance in image classification tasks with the pre-trained
discriminator. The generator of it can easily manipulate lots
of the semantic properties (i.e., manipulate attribute of a
human face) of generated images profile from its interest-
ing vector arithmetic properties.

Two years later, there has been an explosion of in-depth
research on GANs. Some GANs put emphasis on the sta-
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Fig. 5 The evolution of DeepFake generation techniques with a fishbone diagram for each DeepFake generation type

bility of the GAN training. The groundbreaking work is
Wasserstein-GAN (WGAN) (Arjovsky et al. 2017). In the
first published GANs, the procedure requires researchers
to carefully maintain a balance between generator and dis-
criminator. The mode dropping phenomenon also occurs
frequently. To solve these hot potatoes, WGAN has theoret-
ically minimized a reasonable and efficient approximation
of the expectation-maximization (EM) distance, which only
needs a few optimization designs on the original GANs.

There are many types of research based on the WGAN.
Gradient penalty WGAN (WGAN-GP) (Gulrajani et al.
2017) has indicated that WGAN sometimes still generates
poor samples or fails to converge. The reason is that WGAN
uses weight clipping to enforce a Lipschitz constraint. To
improve the weight clipping operation, they have proposed
to penalize the norm of the gradient of the discriminator
with respect to its input fake image. The new designs train
stably when generating high-quality home images. Simply
usingWasserstein probability can not simultaneously satisfy
sum invariance, scale sensitivity, and unbiased sample gradi-
ents. To improve it, Cramer GAN (CramerGAN) (Bellemare
et al. 2017) has combined the best of the Wasserstein and
Kullback–Leibler divergences to propose the Cramér dis-
tance. TheCramerGANperforms significantly better than the
WGAN. Boundary equilibrium GAN (BEGAN) (Berthelot
et al. 2017) is also an improved version ofWGAN (Arjovsky
et al. 2017). To further balance the power of the discrimi-
nator against the generator, they have suggested pairing an
equilibrium enforcing method with a loss derived from the
Wasserstein distance together. They also have proposed a
new way to control the trade-off between image diversity
and visual quality.

Some other works focus on how to generate high-
resolution images. The resolution of the images generated

by them is at least 1024 × 1024. Meanwhile, the images are
detailed, and it is quite difficult to distinguish between the
genuine and the fake, which is very amazing. PGGAN (Kar-
ras et al. 2017) is the very first and famouswork that proposes
an effective method to generate high-resolution images. The
resolution of the generated images is 1024×1024. It has pro-
posed to progressively grow both the image resolution of the
generator and discriminator. The images are starting from a
low resolution and being detailed step by step with the new
layers added in the model. This method is very reasonable in
that it can speed up the training as well as greatly stabilize
the GAN. However, the training procedure is still not good
enough that some of the generated images are far from real.
BigGAN (Brock et al. 2018) has attempted to generate high-
resolution diverse images from datasets such as ImageNet
(Deng et al. 2009). They have applied orthogonal regular-
ization to enforce the generator to be satisfied with a simple
“truncation trick”. Thus, the user can control the trade-off
between image fidelity and variety by reducing the variance
of the generator’s input.

To control the properties of generated images elaborately,
StyleGAN (Karras et al. 2019) has proposed a new design to
automatically learn the unsupervised separation of high-level
attributes such as pose and human identity. The architecture
also leads to stochastic variation in the generated images
(e.g., freckles, hair). Furthermore, it enables intuitive, scale-
specific control of the synthesis. StyleGAN2 (Karras et al.
2020) has exposed several typical artifacts of StyleGAN and
has proposed changes in bothmodel architecture and training
methods to address them. In particular, they have encouraged
good conditioning in themapping from latent codes to images
by the new design of generator normalization, progressive
growing, and generator regularization.
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Different from the previous methods which use the GAN
framework, generative flow (Glow) (Kingma and Dhariwal
2018) is a flow-based generativemodel that uses an invertible
1 × 1 convolution. The method is based on the theory that a
generative model optimized towards the plain log-likelihood
objective has the ability to generate efficient realistic-looking
synthesis and manipulate large images.

3.2.1 Technical Evolution of Entire Face Synthesis

To summarize, a straightforward way for the entire face syn-
thesis is to regard it as an image generation task. Goodfellow
et al. (2014a) propose the generative adversarial network
(GAN) and the trained generator is able to produce mean-
ingful examples, e.g., handwritten numbers and human faces.
However, the generated examples are usually with low reso-
lution and artifacts. Moreover, the networks are unstable to
train (Goodfellow et al. 2014a). Then, to address the issues
of GANs, Radford et al. (2015) propose the deep convo-
lutional generative adversarial network (DCGAN), which
utilizes demonstrated CNN designing skills to let the gen-
erator produce natural scenes including human faces. As a
result, DCGAN is identified as the early work for DeepFake
(Radford et al. 2015).

After that, some similar GAN-based methods are pro-
posed. Nevertheless, they usually encounter difficulties (e.g.,
non-convergence, gradient vanishing, collapsed mode) in the
training procedure. To solve these difficulties and generate
images effectively and stably, Arjovsky et al. (2017) analyzes
the defects of the GAN method theoretically and proposes
Wasserstein GAN by takingWasserstein distance as the loss.
Wasserstein distance cures the main training problems of
GANs including DCGAN with relaxed requirements on the
balance between discriminator and generator, the designs
of network architecture, and reduced mode dropping phe-
nomenon (Arjovsky et al. 2017). As a result, Wasserstein
GAN usually generates more natural and higher quality fake
faces than DCGAN.

Although achieving significant progress, the GAN-based
methods could not synthesize fake faces with high resolu-
tion. In particular, the fake images generated by the previous
methods are less than 256 × 256. The capability of gen-
erating high-resolution images is particularly important for
real-world applications since the low-resolution fake faces
can be easily identified. To address this issue, Karras et al.
(2017) propose to grow both the generator and discriminator
progressively and implement the PGGAN, which signif-
icantly improves the generation size to at least 1024 ×
1024. Specifically, the main challenges of generating high-
resolution fake images stem from two aspects. First, it is easy
to distinguish the fake images from the real ones with the
discriminator when the resolution is high, which magnifies
the vanishing gradient problem of the generator during GAN

training. Second, due to the memory limitation, generating
high-resolution images leads to smaller batch sizes, affect-
ing the stability of training. To solve these problems, PGGAN
proposes to progressively increase the image resolution of the
generated images of the generator and the discriminator in
the training procedure with the spatial resolution of the gen-
erator and discriminator being 4 × 4 pixels at the beginning.
As the training advances, they incrementally add layers to
the generator and discriminator and increase the spatial res-
olution of the generated images. As a result, the method is
able to produce high-resolution fake faces.

The above methods are able to generate natural and real-
istic fake faces but cannot control the properties we want to
be fake. To complement the capability, based on PGGAN,
Karras et al. (2019) propose StyleGAN that feeds the style
instead of the latent code into the generator directly. Specifi-
cally, StyleGAN transforms the latent code to ‘style’ code via
a nonlinear mapping network. Then, the style code is used to
conduct the adaptive instance normalization after each con-
volution. In addition, Gaussian noise images are embedded
after each convolution layer for stochastic detail generation.
The StyleGAN is able to generate high-resolution images
with higher image quality and wider detailed variations.

Overall, the technical evolution of the entire face synthe-
sis mainly follows the development of the GAN, which aims
to solve the challenges that may arise in real-world applica-
tions, e.g., high-resolution and style-guided generations. For
the entire face synthesis, we think the improvements of train-
ing stability, resolution, and controllable facial attributes are
the major technical characteristics that have been evolved
throughout the years, and we highlight seminal works
DCGAN, WGAN, PGGAN, StyleGAN in the top left panel
of Fig. 5, showcasing the improvements in different angles.

3.3 Attribute Manipulation

Definition 2 Attribute manipulation aims to modify facial
properties P of a real face image xr to generate a new fake
image xf with neural network φ(·, ·). That is xf = φ(xr,P).

Using GANs for attribute manipulation is actually a kind
of latent space editing. The key point is the quality of the
GAN inversion technique. With a better attribute disen-
tangle technique, the GANs for attribute manipulation can
achievemore accurate attribute control. Existing state-of-the-
art methods [e.g., HifaFace (Gao et al. 2021d)] can perform
accurate face editing while maintaining rich details of non-
editing areas. However, the current methods are still limited
by the labels in the training dataset. That is, it is difficult
to control the attributes that do not exist in the label of the
training dataset.

As shown in the attribute manipulation part of Fig. 1, the
real images are modified with facial attributes such as bald,
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blond hair, eyeglasses, etc. Existing works mainly focus on
improving attribute manipulation accuracy.

Attribute manipulation is also known as face editing,
which can not only modify simple face attributes such as
hair color, bald, smile, but also retouch complex attributes
like gender, age, etc. The classical examples are StarGAN
(Choi et al. 2018) and selective transfer GAN (STGAN) (He
et al. 2019b).

Invertible conditional GAN (IcGAN) (Perarnau et al.
2016) is the earliest attempt in GAN-based facial attribute
manipulation. Based on an extension of the idea of condi-
tional GAN (cGAN) (Mirza and Osindero 2014), they have
evaluated encoders tomap a real image into a latent space and
a conditional representation, which allows the reconstruc-
tion and modification of arbitrary attributes of real human
face images. The expression generative adversarial network
(ExprGAN) (Ding et al. 2018) has added an expression con-
troller module that can learn an expressive and compact
expression code to the encoder-decoder network. The expres-
sion controller module enables it to edit photo-realistic facial
expressions with controllable expression intensity.

Previous studies can only perform image-to-image trans-
lation for two domains, which is cumbersome and time-
consuming. To bemore efficient, StarGAN (Choi et al. 2018)
has designed a single model to perform image-to-image
translations for multiple domains. It allows simultaneous
training of multiple different-domain datasets within a single
network. As an improvement, StarGAN2 (Choi et al. 2020)
simultaneously satisfies two properties in image-to-image
translation: diversity of generated images as well as scala-
bility over multiple domains. To represent diverse styles of a
specific domain, they have replaced StarGAN’s domain label
with their domain-specific style code. To adapt the style code,
they have proposed two modules: a mapping network and a
style encoder. The style code can be extracted from a given
reference image with a style encoder while the mapping net-
work can transform randomGaussian noise into a style code.
Utilizing these style codes, the generator learns to success-
fully synthesize diverse images over multiple domains.

Although StarGAN is effective, due to the limitation of the
content of the datasets, it can only generate a discrete number
of expressions. To address this limitation, GAN animation
(GANimation) (Pumarola et al. 2018) has introduced a novel
GAN conditioning method based on action units (AU) anno-
tations. It defines the human expression with a continuous
manifold of the anatomical facialmovements. Themagnitude
of activation of each AU can be controlled independently.
Different AUs can also be combined with each other with
this method.

Most of the previous work inevitably changes the attribute
irrelevant regions. To solve this problem, spatial attention
GAN (SaGAN) (Zhang et al. 2018) propose amodule to only
change the attribute-specific region and keep the other area

unchanged. This work properly exploits the attention mech-
anism to ensure a better face editing effect, which shows the
feasibility of the attention mechanism in face manipulation.

Previousmethods have attempted to establish an attribute-
independent latent representation for further attribute editing.
However, since the facial attributes are relevant, requesting
for the invariance of the latent representation to the attributes
is excessive.Therefore, simply forcing the attribute-independent
constraint on the latent representation not only restricts its
representation ability but also may result in information loss,
which is harmful to attribute editing. To solve this prob-
lem, facial Attribute editing (AttGAN) (He et al. 2019b) has
removed the strict attribute-independent constraint from the
latent representation. It just applies the attribute classification
constraint to the generated image to guarantee the correctness
of attributemanipulation.Meanwhile, it groups attribute clas-
sification constraint, reconstruction learning, and adversarial
learning together for high-quality facial attribute editing. The
model supports direct attribute intensity control on multiple
facial attribute editing within a single model.

Considering that the specific editing task is only related
to the changed attributes instead of all target attributes, as
an improvement of AttGAN, STGAN (Liu et al. 2019) has
selectively taken the difference between target and source
attribute vectors as the input of the model. Furthermore, they
have enhanced attribute editing by adding a selective transfer
unit that can adaptively select andmodify the encoder feature
to the encoder-decoder.

Mask-guided portraiting editing (MaskPE) (Gu et al.
2019) proposes a unique way to manipulate face attributes.
They use a face parsing mask to guide the generation of face
attributes. The main idea is to separately embed five facial
components (i.e., left eye, right eye, mouth, skin & nose, and
hair) into latent codes based on face parsing masks. Then
they can modify any facial component independently.

Due to the lack of paired images during training, pre-
vious methods typically use cycle consistency to keep the
non-editing attributes unchanged. However, even if the cycle
consistency is satisfied, images may still be blurry and lose
rich details from input images for that the generator tends to
find a tricky way (i.e., encodes the rich details of the input
image into the output image in the form of hidden signals) to
satisfy the constraint of cycle consistency. To solve this prob-
lem, Gao et al. (2021d) propose high-fidelity arbitrary face
editing (HifaFace) to maintain rich details (e.g., wrinkles) of
non-editing areas. Their work has two improvements. The
first is that they directly feed the high-frequency informa-
tion of the input image into the end of the generator with
wavelet-based skip-connection, which relieves the pressure
of the generator to synthesize rich details. The second is that
they use another high-frequency discriminator as a comple-
ment to the image-level discriminator to encourage the image
to have rich details.
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Text-guided diverse image generation and manipulation
GAN (TediGAN) (Xia et al. 2021) is a special network for
multi-modal image generation andmanipulation with textual
descriptions. They map the image and text into a common
embedding space to learn text-image matching. The method
allows the user to edit the appearance of different attributes
interactively.

HistoGAN (Afifi et al. 2021) chooses a special angle to
manipulate images. They use color histograms to manipulate
the color blending of the images only,which is a very targeted
research content.

3.3.1 Technical Evolution of Attribute Manipulation

In contrast to the entire face synthesis, the attributemanipula-
tion of the face is usually regarded as the imagemanipulation
task that changes facial properties (e.g., hair’s color and style,
facial hair, etc.) of input faces. The task can be tackled by
incorporating encoder-decoder and GANs.

Perarnau et al. (2016) start the first work for attribute
manipulation, which is denoted as IcGAN. This work pro-
poses a universal pipeline and lays the foundation for attribute
manipulation tasks. Specifically, IcGAN first encodes real
images into the latent space and then changes the latent
codes corresponding to different facial properties. After that,
it decodes the changed latent codes to fake face images.
Although effective, IcGAN can be time-consuming when it
aims to perform themanipulation of multiple facial attributes
since each attribute is addressed via an independent deep
model.

To allow flexible GANs and avoid high time consumption,
Choi et al. (2018) propose the StarGANand design a network
that enables to manipulate faces along with different proper-
ties with a single generator. The intuitive idea is to encode
the real image and its respective source domain label via the
generator and produce the fake image. At the same time,
the discriminator is designed to classify the real or fake faces
and identify the domain. As a result, the learned GAN cannot
only contain the semantic representation of facial properties
and the respective domain information.

Although face attribute editing is available, the desired
attribute variation is specified as the input for the encoder
while the latent representation is not constrained, which may
result in information loss and lead to over-smooth and dis-
torted generation. To alleviate these drawbacks, He et al.
(2019b) propose the AttGAN that applies an attribute clas-
sification constraint to the generated image. As a result, the
correct change of attributes can be guaranteed.

In addition to the AttGAN, Liu et al. (2019) implement a
better generator (STGAN), forcing the network to emphasize
the desired changed facial properties while preserving the
other property areas. To this end, they use the subtraction of
attribute vectors (i.e., source vector—target vector) to replace

the source vector as the inputs of the decoder. Moreover, they
propose a novel architecture named the selective transfer unit
to improve attribute manipulation ability and image quality.
As a result, this work can improve attribute manipulation
accuracy as well as perception quality.

Although AttGAN and STGAN do not raise obvious vari-
ations on the undesired face attributes, they may lead to
the variations of details (e.g., wrinkles) in those undesired
areas. This is caused by the cycle consistency during training.
Specifically, due to the lack of paired images during training,
AttGAN and STGAN use the cycle consistency to avoid the
changing of the undesired attributes. However, these genera-
torsmap the details of the input image to a newone via hidden
signals to achieve the cycle consistency that cannot be guar-
anteed. To solve this problem, Gao et al. (2021d) propose
high-fidelity arbitrary face editing (HifaFace) to maintain
rich details of undesired attribute areas. The main idea is
to transmit and retain high-frequency image information in
the encoding and decoding process. There are two main
improvements. First, they directly feed the high-frequency
information of the input image into the end of the genera-
tor with wavelet-based skip-connection, which relieves the
pressure of the generator to synthesize rich details. Second,
they add a high-frequency discriminator as a complement
to encourage the image to have rich details, which prevents
the generator from finding a trivial solution for cycle con-
sistency. As a result, the generated images have rich details
with higher fidelity.

Recently, Xia et al. (2021) propose a new design to use
text as input instead of an attribute vector to change the facial
properties of real images. The main idea of them is to map
text and images to the same semantic latent space. Thus they
can use text to replace attribute vectors. They extend the
availability and diversity of attribute manipulation tasks.

In summary, recent works for attribute manipulation
mainly focus on how to change the desired face attribu-
tions effectively while preserving other areas via a single
generator. For the attribute manipulation, we think the basic
pipeline and the improvements of multi-domain transforma-
tion, accurate attribute manipulation, and new representation
of modified attributes are the major technical characteristics
that have been evolved throughout the years, and we high-
light seminal works IcGAN, StarGAN, AttGAN, STGAN,
HifaFace, TediGAN in the top right panel of Fig. 5, show-
casing the improvements in different angles.

3.4 Identity Swap

Definition 3 Identity swap aims to replace the identity of
source image xs by the identity ti of target image xt with
neural network φ(·, ·) and generate a new fake image xf .
That is xf = φ(xs, ti).
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As shown in the identity swap part of Fig. 1, the images in
the fake videos have uneven qualities. Existing works mainly
focus on improving the realism and resolution of the image.

In general, the architectures used for these functions
mainly fall into two categories: autoencoder-based and
GAN-based. The classical works are cycle-consistent GAN
(CycleGAN) (Zhu et al. 2017, 2021b).

The methods which make the concept of DeepFake, espe-
cially identity swapping, become widely known are meth-
ods based on autoencoder. The autoencoder-based methods
(OValery 2017) have no specific name or architecture. How-
ever, as they are all based on autoencoder, their pipeline is
similar. The methods use one shared encoder and two inde-
pendent decoders. The encoder and one of the decoders are
trained by source identity while the encoder and the other
decoder are trained by target identity. When the model is
well trained, the encoder has the ability to extract the com-
mon features of source and target identities while the decoder
records the specific features. At inference time, the image of
the source identity goes through the encoder and the opposite
decoder, producing a realistic swap.

Nowadays, GAN-based methods are the mainstream in
identity swap. The first work of the GAN-based method was
CycleGAN (Zhu et al. 2017) proposed in 2017. In previous
works, the absence of paired examples is always the limita-
tion in image transformation tasks. CycleGAN has artfully
solved this problem. Define a source domain X and a target
domain Y , it builds a mapping G : X → Y which is highly
under-constrained and similarly constructs an inverse map-
ping F : Y → X . Then the cycle consistency loss which
enforces F(G(X)) ≈ X (and vice versa) is the optimiza-
tion target of the model. Through this circulation, there is no
need for paired samples.Meanwhile, although notmentioned
in the paper, the framework of CycleGAN can be used for
identity swap easily. Faceswap-GAN (Lu 2018) is the imple-
mentation of CycleGAN which provides an identity swap
functionality. It simply adds the adversarial loss and percep-
tual loss to encoder architecture.

Face swapping GAN (FSGAN) (Nirkin et al. 2019) is a
subject agnostic method that doesn’t rely on the training of
pairs of faces. It is also the first to simultaneously adjust the
pose, expression, and identity variations for both a single
image and a video sequence.

The research in identity swap has been stagnated for
a long time until the appearance of FaceShifter (Li et al.
2020b). It proposes a two-stage procedure for high fidelity
and occlusion-aware face-swapping. Unlike many existing
face-swapping works that leverage only limited information
from the target image, FaceShifter generates the swapped
face by thoroughly and adaptively exploiting the informa-
tion of the target image.

Appearance optimal transport (AOT) (Zhu et al. 2020)
has formulated appearance mapping as an optimal transport

problem. They have proposed an AOT model to formulate
it in both latent and spatial space. In particular, a relighting
module is designed to simulate the optimal transport plan.
The optimization target is minimizing the Wasserstein dis-
tance of the learned features in the latent space,which enables
better performance and less computation than conventional
optimization.

Information disentangling and swapping network (InfoS-
wap) (Gao et al. 2021a) aims to extract the most expressive
information for identity representation. The main idea is to
formulate the learning of disentangled representations as
optimizing an information bottleneck trade-off. The infor-
mation bottleneck principle provides a guarantee that in the
latent space, areas scored as identity-irrelevant indeed con-
tribute little information to predict identity.

Megapixel level face swapping (MegaFS) (Zhu et al.
2021b) has proposed the first one-shot ultra-high-resolution
face swapping method. To overcome the information loss
in the encoder, they use a hierarchical representation face
encoder (HieRFE) to find the complete face representation.
Then they use a face transfer module (FTM) to control
multiple attributes synchronously without explicit feature
disentanglement. The contributions are ground-breaking.

FaceInpainter (Li et al. 2021a) proposes a controllable
face inpainting network under heterogeneous domains (i.e.,
oil painting, 3D cartoons, pencil drawing, exaggerated draw-
ing, etc.). The framework has two stages. In the first stage,
they use a styled face inpainting network (SFI-Net) to map
the identity and attribute properties to the swapped face. The
second stage contains a joint refinement network (JR-Net)
that refines the attributes and identity details, generating
occlusion-aware and high-resolution swapped faces with
visually natural fused boundaries.

3.4.1 Technical Evolution of Identity Swap

Identity swap is usually achieved by conducting replacement
on the identity-related features and decoding these features
to the image level. As a result, the identity of the input face
image (i.e., the source identity) can be changed to the desired
one (i.e., the target identity). Specifically, the general pipeline
is implemented via the autoencoder (OValery 2017) that con-
tains one shared encoder and two independent decoders. It
first uses the encoder to extract features of the source and
target identities, respectively, and get their respective latent
codes. Then, the method uses the two independent decoders
to reconstruct the source and target images, respectively.Dur-
ing the identity swap, the latent code of the source identity
is fed to the decoder of the target identity. As a result, the
decoded face is swapped. Under this pipeline, one of the
key problems is how to extract or select faces’ features as
the latent code for replacement. Another problem is how to
make the generated images more realistic.
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To improve the fidelity of the generated face images,
Lu (2018) combines the autoencoder and GAN. Compared
with the naive autoencoder-based methods, it adopts GAN’s
advantages while making the fake images more realistic due
to the supervision of the discriminator. The above meth-
ods do well on low-resolution images but cannot generate
high-resolution swapped faces. This issue stems from the
compressed representationswhose information is insufficient
for high-quality face generation during the swapping. To alle-
viate this drawback, MegaFS (Zhu et al. 2021b) proposes the
hierarchical representation face encoder (HieRFE), which
uses a pyramid structure to collect facial features under dif-
ferent scales and retain the information entirely. As a result,
the method can focus on processing the high-level semantic
information while retaining the low-level details after iden-
tity swap at the megapixel level.

The previous methods have achieved great progress on
photorealistic images. However, their capability of address-
ing source and target images with heterogeneous materials
(e.g., oil painting, 3D cartoon, etc.) is less effective due to the
different textures of the source and target images. A recent
work (Li et al. 2021a) designs a two-stage framework to solve
the issue. After explicitly disentangling the foreground (i.e.,
face and neck) from the background (e.g., hair, clothes, etc.)
in the source identity, the first stage is to combine the attribute
codes of the source identity and identity code of the tar-
get identity with the fixed background extracted from source
identity. As a result, the swapped face contains the target
identity with source background and attributes. However, the
segmented background and the generated foreground cannot
be well integrated under some complex scenes. Then, the
second stage is to refine the coarse result from the first stage
to make the source and the target background consistent at
the fusion boundary.

Overall, the technical evolution of identity swap mainly
focuses on the better separation of identity and attribute
features of the source and target images and how to fuse
them. For the identity swap, we think that the basic pipeline
and the improvements of realistic, resolution, and heteroge-
neous fields are the major technical characteristics that have
been evolved throughout the years, and we highlight semi-
nal works autoencoder-based method, GAN-based method,
MegaFS, and FaceInpainter in the bottom left panel of Fig. 5,
showcasing the improvements in different angles.

3.5 Expression Swap

Definition 4 Expression swap aims to replace the expression
of source image xs by the expression te of target image xt
with neural network φ(·, ·) and generate a new fake image
xf . That is xf = φ(xs, te).

As shown in the expression swap part of Fig. 1, usually
the mouth of the real images are changed. Existing works
mainly focus on improving the diversity of input source and
video consistency.

Expression swap is also known as face reenactment. The
classical examples are ICface (Tripathy et al. 2020) and
SVGAN (Hyun et al. 2021).

Face2Face (Thies et al. 2016) has proposed a three-
step procedure. It first uses a global non-rigid model-based
bundling approach to reconstruct the shape identity of the tar-
get human based on a prerecorded training sequence. Then
it uses a transfer function to efficiently exploit deforma-
tion transfer in the low-dimensional semantic space. At last,
the image-based mouth synthesis approach exploits the best
matching mouth shapes offline sample sequence to generate
a realistic mouth.

A2V (Suwajanakorn et al. 2017) has used a recurrent neu-
ral network to train a model that can map from raw audio
features ofObama’sweekly address footage tomouth shapes.
It is a cross-modal method that leverages the pronunciation
features of the target person to synthesize the correct lip
shapes for given audio content. It doesn’t need an original
video as expression-drivenmaterial. Tomatch the input audio
track, they have synthesized high-quality mouth texture and
composited it with proper 3D pose matching to change what
he appears to be saying.

Pose-controllable audio-visual system (PC-AVS) (Zhou
et al. 2021a) is another state-of-the-art cross-modal method.
Previous audio-driven talking human face synthesis methods
fail tomodel headpose, oneof the key factors for talking faces
to look natural. This is because pose information can rarely be
inferred from audios. To solve this problem, PC-AVS intro-
duces extra pose source video to compensate only for head
motions and successfully disentangle the representations of
talking human faces into the spaces of speech content, head
pose, and identity respectively.

Previous cross-modal methods only put emphasis on the
lip motions and ignore the implicit ones such as head poses
and eye blinks that have a weak correlation with the input
audio. To model these implicit relationships, face implicit
attribute learning generative adversarial network (FACIAL-
GAN) (Zhang et al. 2021a) integrates the phonetics-aware,
context-aware, and identity-aware information to synthesize
the 3D face animation with realistic motions of lips, head
poses, and eye blinks.

Previous works may lose detailed information of the tar-
get leading to a defective output. To solve this problem,
MarioNETte (Ha et al. 2020) has proposed a few-shot face
reenactment framework that preserves the information of tar-
get identity even in situations where the facial characteristics
of the source identity are far from the target. It has also
introduced landmark transformation to cope with the varying
facial characteristics of different people.
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Interpretable and controllable face reenactment network
(ICface) (Tripathy et al. 2020) has proposed a two-stage neu-
ral network face animator which can control the pose and
expressions of a given face image. The face animator is a
data-driven andGAN-based system that is suitable for a large
number of identities.

Self-supervised video GAN (SVGAN) (Hyun et al. 2021)
first puts emphasis on exploiting the discriminator of the
GAN. They hypothesize two prominent constraints for real-
istic videos: consistency of appearance and coherency of
motion.With these constraints, GANs aremore likely to gen-
erate realistic videos. In other words, they have well defined
what constraints should synthesized videos satisfy first.

Wang et al. (2021) propose a one-shot neural talking-head
synthesis approach. The method uses unsupervised learning
to decompose for key features of an image: appearance fea-
ture, canonical keypoint, head pose, expression deformation.
With the appearance feature and canonical keypoint of the
source image, and synthesizedwith the head pose and expres-
sion deformation, a new fake image can be created. This
work clearly disassembles the face information and reason-
ably exploits them.

Most of the DeepFake detection methods did not take
expression swap as the main detection objective. In our
opinion, there are several reasons. As we can see from the
previous description, expression swaphas a similar technique
to identity swap. Thus most of the detection methods are not
specifically designed for them and only a few detectionmeth-
ods consider detecting expression swaps. On the other hand,
it usually needs the coordination of audio to achieve a bet-
ter display effect in the expression swap. Only the detection
methods which simultaneously take images and audio into
account are designed for this problem. The swapped expres-
sion strongly depends on the source video or image. The
audio-video coordination opens the door for detection algo-
rithm to tackle this problem from multiple angles, reducing
the difficulty of this problem. Therefore, as we mainly inves-
tigate the DeepFake generation methods that are mentioned
by theDeepFake detectionmethods,we take expression swap
as an extension of identity swap in the survey.

3.5.1 Technical Evolution of Expression Swap

In contrast to identity swap, expression swap is to replace the
features of the mouth in the source image and produce a new
face with the same identity but a different expression.

The early work Face2Face (Thies et al. 2016) designs
a three-step procedure to swap expressions without deep
learning. Specifically, Face2Face first strips the identity
information from the source identity. Then, it transfers the
source identity’s expression to the target one. Finally, it syn-
thesizes a realistic target mouth region. The whole pipeline
is reasonable but requires complex 3D face models and con-

siderable efforts to capture all the subtle movements in the
face.

In addition, to swap the expression according to the given
images, recent works also explore how to synthesize expres-
sions from audios. For example, A2V (Suwajanakorn et al.
2017) successfully synthesized fake videos of Obama (i.e.,
the 44th president of theUnited States) according to the given
audio. To this end, Suwajanakorn et al. (2017) use recur-
rent neural networks to map audios to the sparse shape of
the mouth (i.e., 18 lip fiducials). Then, they generate photo-
realistic mouth texture based on the generated lip fiducials.
As a result, the expression swap based on the audios is
achieved.

To bypass the explicit 3D model fitting, a straightforward
way is to learn a deep model implicitly via large-scale data.
However, there are two problems. First, it is hard to collect
expression and pose representation that is independent of the
identity feature. Second, such an implicitmodel usually lacks
interpretability and does not easily allowHence, it is difficult
to synthesize diverse face attributes from the other faces. To
solve these problems, ICFA (Tripathy et al. 2020) proposes to
use action units (AUs) (Friesen andEkman 1978) to represent
the emotions. The AUs represent the activations of 17 facial
muscles and each combination of them can produce different
facial expressions. The advantages of AU-based expression
representation are as follows. First, it is a relatively straight-
forward and flexible way to extract expressions from any
facial image. Second, this representation is fairly indepen-
dent of the identity-specific characteristics of the face. As a
result, the first problem can be solved. To swap the expres-
sion to the target face, ICface eliminates the expression of the
input face first, which is done by mapping the input image
to a neutral state representing zero AU values. Then, it uses
a conditional GAN to take the neutral image and the pre-
vious facial attribute vector (i.e., AUs) as input to generate
expression, which solves the second problem. The model is
also interpretable in that the facial attribute vector can be
manually defined.

Previous works focus on the expression swap of images.
However, the expression swap on videos needs to maintain
the consistency of the face across frames, which is much
more difficult than swapping on images. To achieve a more
realistic expression swap on video, Hyun et al. (2021) pro-
pose the SVGAN that clearly defines two constraints (i.e.,
appearance contrastive loss & temporal structure loss) that
should be satisfied in the video synthesis. The appearance
contrastive loss makes the discriminator learn the represen-
tations of appearance which is invariant throughout time in
videos. On the other hand, temporal structure loss forces the
discriminator to figure out whether the video is coherent or
not in temporal ordering. These two losses ensure the appear-
ance of consistency and motion coherency in videos. They
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achieve a good effect by simply adding these two constraints
to the discriminator.

Overall, the development of expression swap techniques
follows the requirements of real-world scenarios, such as
the audios as guidance, controllable expression, and tem-
poral consistency across video frames). For the expression
swap, we think the improvements of the diversity of input
sources, controllable expression, and video consistency are
the major technical characteristics that have been evolved
throughout the years, and we highlight seminal works A2V,
ICface, SVGAN in the bottom right panel of Figure 5, show-
casing the improvements in different angles.

3.6 Real Dataset

Real datasets are required for supervised training of Deep-
Fake detectors. Here we introduce popular real datasets.
Please note that the following datasets are real image datasets
for that the independent real video dataset is infrequent and
most of the real face video datasets used in generating the
fake datasets are collected by them from YouTube or shot by
them with the actors invited by them. We record the infor-
mation in Table 5 as introduced in Sect. 3.7. The datasets are
introduced in ascending order by their release dates.

CASIA-WebFace (Yi et al. 2014) has proposed a semi-
automatic way to collect a lot of face images from the
Internet. The dataset contains 10,575 subjects and 494,414
images, which is both diverse and large.

CelebA (Liu et al. 2015) is constructed by labeling images
selected from a famous face dataset: CelebFaces (Sun et al.
2013). CelebA contains ten thousand identities, each of
which has twenty images, a total of 200,000 images. Each
image in CelebA is annotated with forty face attributes and
five key points by a professional labeling company, which is
extremely abundant and useful.

VGGFace (Parkhi et al. 2015) consists of 2,622 identities
with 2.6 million images. The famous VGGNet (Parkhi et al.
2015) is trained by this dataset.

MegaFace (Kemelmacher-Shlizermanet al. 2016) includes
more than 690K different individuals with one million
photos. They have established MegaFace challenge which
evaluates how face recognition algorithms perform under the
perturbation of a very large number of “distractors” (i.e., indi-
viduals that are not in the probe set).

LSUN (Yu et al. 2015) is the only non-face real dataset
discussed by us, for that it is widely used by fake generation
methods. It contains around one million labeled images for
each of 10 scene categories and 20 object categories.

To develop face recognition technologies, Microsoft
Celeb (MS-Celeb-1M) (Guo et al. 2016) has collected 10
million face images of nearly 100,000 individuals from the
Internet.

VGGFace2 (Cao et al. 2018) contains 3.31million images
of 9,131 subjects. Images are harvested from the Internet and
have large variations in pose, age, illumination, ethnicity, and
profession.

Karras et al. (2019) has collected a new high-resolution
dataset of human faces, Flickr-Faces-HQ (FFHQ). It con-
tains 70,000 high-quality images at 1024× 1024 resolution.
The dataset includes vastly more variation than CelebA-HQ
(Karras et al. 2017) in terms of age, ethnicity, and image
background. It also has much more accessories such as eye-
glasses, sunglasses, hats, etc.

All the above real face datasets can generate DeepFake
dataset with three categories (i.e., entire face synthesis,
identity swap, expression swap). The datasets which have
the abundant label information, especially face attributes
are superior ones for attribute manipulation. For example,
CelebA and CelebA-HQ are the most usually used real face
dataset to generate attribute manipulation images.

3.7 Fake Dataset

Fake image/video datasets are an important benchmark for
testing the performance of existing DeepFake generation
methods. With the development of fake generation methods,
the quality and fidelity of fake datasets are getting higher and
higher. Herewe introduce popular fake datasets. The datasets
are introduced in ascending order by their release dates.

TheUADFVdataset (Li et al. 2018b) consists of 98videos,
with 49 real videos fromYouTube and 49 synthesized videos,
which are made using the FakeAPP (FaceApp 2021).

The DeepFake-TIMIT dataset (Korshunov and Marcel
2018) consists of 620 DeepFake videos of 32 subjects. In
DeepFake-TIMIT, each subject has 20 DeepFake videos. 10
videos are of size 64 × 64 while the other 10 videos are of
size 128 × 128. The synthesized videos are generated using
faceswap-GAN (Lu 2018).

DeepFakes Detection Challenge Preview (DFDC Pre-
view) (Dolhansky et al. 2019) dataset consisting of 5K videos
with two facialmodification algorithms. The actors are of dif-
ferent gender, skin-tone, age, etc. They record videos with
arbitrary backgrounds thus bringing visual variability.

GoogleDFD (Dufour andGully 2019) contains over 3,000
manipulated videos from 28 actors in various scenes. The
videos are generated from hundreds of real videos by using
publicly available DeepFake generation methods.

FaceForensics++ (Rossler et al. 2019) is a famous fake
video dataset consisting of 1,000 original video sequences
that have been manipulated with four automated face manip-
ulation methods: DeepFakes, Face2Face, FaceSwap, and
NeuralTextures. The videos are generated from 977 track-
able YouTube videos. The people in most of the videos are
frontal faces.
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Celeb-DF (Li et al. 2020e) has presented a large-scale
challenging DeepFake video dataset, which contains 5639
high-quality DeepFake videos of celebrities generated using
an improved synthesis process.

Diverse Fake Face Dataset (DFFD) (Dang et al. 2020)
has collected a large-scale dataset that contains numerous
types of facial forgeries. Among all images and video frames,
47.7% are from male subjects, 52.3% are from females,
and the majority of samples are in the age of 21–50 years.
They utilize FFHQ, CelebA, and source frames from Face-
Forensics++ as the real face samples. For facial identity and
expression swap, they use all the video clips fromFaceForen-
sics++. They have adopted two methods FaceAPP (FaceApp
2021) and StarGAN (Choi et al. 2018) to generate attribute
manipulated images. Recent works such as PGGAN (Karras
et al. 2017) and StyleGAN (Karras et al. 2017) are used for
face image synthesis.

FakeCatcher (Ciftci et al. 2020a) has collected over 140
online videos, up to 30GB. Unlike most of the fake datasets,
it includes “in thewild” videos, independent of the generative
model, resolution, compression, content, and context.

iFakeFaceDB (Neves et al. 2020) is a fake image dataset
for the study of synthetic face manipulation detection. It con-
tains about 87,000 synthetic face images generated by the
StyleGAN model (Karras et al. 2019) and transformed with
the GANprintR (Neves et al. 2020) approach. All images are
of size 224 × 224.

Facebook has constructed an extremely large face video
dataset to enable the training of detection models. They
organized a famous DeepFake Detection Challenge (DFDC)
(Dolhansky et al. 2020) Kaggle competition. The DFDC is
a publicly-available face swap video dataset, with 128,514
videos, over 100,000 total clips sourced from 3426 actors.
They use various face swap methods with two kinds of
augmentations (distractor and augmenter). Distractor means
overlaying various kinds of objects (including images,
shapes, and text) onto a video while augmenter means apply-
ing geometric and color transforms, frame rate changes, etc.,
onto a video.

Donget al. (2020) havebuilt a large-scaleDeepFakedetec-
tion dataset “Vox-DeepFake”, which has a total of 2 million
real videos and fake videos. Compared to existing datasets,
it has better quality and diversity in terms of identities and
video content. Furthermore, they have supplied the explicit
reference identity information for each real/fake video,which
is more informative than previous datasets.

DeeperForensics-1.0 (Jiang et al. 2020b) has represented
the largest face forgery detection dataset by far, with 60,000
videos constituted by a total of 17.6 million frames. There
are 50,000 original collected videos and 10,000 manipulated
videos including 100 actors. In particular, 55 of them are
males and 45 of them are females. The actors have four typ-
ical skin tones: white, black, yellow, brown. All faces are

clean without glasses or decorations. Unlike previous data
collection in the wild, they build a professional indoor envi-
ronment for a more controllable data collection and add a
mixture of perturbations to videos making the dataset better
imitate real-world scenarios. The perturbation is added by
systematically applying seven types of distortions (compres-
sion, blurry, noise, etc.) to the fake videos at five intensity
levels. They also proposeDeepFakevariational auto-Encoder
(DF-VAE) as a new end-to-end face swap method.

As the previous fake datasets were filmed with limited
actors in limited scenes, and the fake videos are gener-
ated with a few popular DeepFake software, the diversity of
the dataset is scarce. In contrast, wild DeepFake can have
many persons in one scene, and the scenes vary signifi-
cantly.Meanwhile, wildDeepFakemay even be generated by
combinations of DeepFake software. Furthermore, the fake
videos in the fake dataset may not be well processed for that
the face regions in them often have perceptible distortions.
To provide a more realistic DeepFake dataset, Zi et al. (2020)
collect their datasetWildDeepfake, which contains 7314 face
sequences extracted from 707 DeepFake videos collected
completely from the internet. WildDeepfake is able to test
the effectiveness of DeepFake detectors against real-world
DeepFake.

ForgeryNet (He et al. 2021) has tried to build an extremely
large face forgery dataset designed for four tasks: image
forgery classification, spatial forgery localization, video
forgery classification, temporal forgery localization. This
fake dataset contains 2.9 million images and 221,247 videos,
which is the largest one among the fake datasets. It also
provides 15manipulation approacheswithmore than 36mix-
perturbations on over 5400 subjects. The dataset surpasses
the other fake datasets both in scale and diversity.

Pu et al. (2021) also pay attention to whether the exist-
ing detection methods can effectively adapt to the DeepFake
videos in the wild. They build a fake dataset DF-W, which
contains 1869 fake videos collected from YouTube, Bilibili
(2010) and Reddit.

Most of the fake datasets put emphasis on collecting
videos inwhich only exist onemanipulated person. However,
the existing detection methods fail to detect the multi-person
videos effectively. Thus, Zhou et al. (2021b) build a large
dataset FFIW10K , which comprises 10,000 high-quality fake
videos and real videos, with an average of three human faces
in each frame. This fake dataset is more challenging and
points out the future research direction of the detectionmeth-
ods.

Similar to FFIW10K , OpenForensics (Le et al. 2021) also
take care of the capability of theDeepFake detectionmethods
on multi-person images. It contains 45,473 real images and
70,325 fake images, a total of 115,325 images with 334,126
faces in the images. It is worth mentioning that OpenForen-
sics not only introduce multi-face forgery detection task but
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also propose segmentation in-the-wild task. For these two
tasks, they provide face-wise rich annotations such as forgery
category, bounding box, segmentation mask, forgery bound-
ary, and general facial landmarks. The abundant annotations
make OpenForensics the first dataset that supports the Deep-
Fake localization task, which is meaningful for multi-media
forgery forensics. Furthermore, OpenForensics can also be
used for general object detection and segmentation tasks,
which shows its versatility.

As shown in Table 6, according to the citation metric,
FaceForensics and FaceForensics++ are the datasets with
the highest citations. According to the Elo rating score,
DFDC is the dataset with the highest Elo score. As shown
in Fig. 11, FaceForensics++ is the most commonly detected
fake dataset for facial appearance swapping detection task
while PGGAN is the most commonly detected DeepFake
technique for the entire face synthesis detection task. We
suggest the researchers put more emphasis on these datasets.

3.8 DeepFake Challenges

In recent years, there have been two famous DeepFake chal-
lenge: DeepFake Detection Challenge (DFDC) (Dolhansky
et al. 2020) andDeeperForensics Challenge 2020 (Jiang et al.
2021a). The dataset DeeperForensics-1.0 (Jiang et al. 2020b)
and DFDC (Dolhansky et al. 2020) used by these two chal-
lenges are significantly larger than the previous datasets.
They have 100,000 videos and 100,000,000 numbers of
frames.

The DeepFake Detection Challenge was hosted on the
Kaggle platform2 byFacebook.During the course of the chal-
lenge, 2,114 teams participated. All final evaluations were
tested on a private dataset, using a single V100 GPU. Sub-
missions had to run over 10,000 videos within 90 hours. Of
all of the scores on the private test set, 60% of submissions
had a log loss lower than or equal to 0.69, which is similar
to the score if one were to predict a probability of 0.5 for
every video. In contrast, the best models achieved very good
detection performance onDFDCvideos. In the top-5winning
solutions of DFDC, all of them were image-based detection
methods. Three of the five methods used EfficientNet (Tan
and Le 2019) as the backbone model.

The DeeperForensics Challenge 2020 is hosted on the
CodaLab platform3 in conjunction with ECCV 2020. Dur-
ing the course of the challenge, a total of 115 participants
registered for the competition, and 25 teams made valid sub-
missions. Similar to DFDC, the DeeperForensics Challenge
uses binary cross-entropy loss (BCELoss) to evaluate the per-
formance of detection models. The evaluation is conducted
on a private test set, containing 3000 videos. A total of two

2 https://www.kaggle.com/c/deepfake-detection-challenge.
3 https://competitions.codalab.org/competitions/25228.

online evaluations (each with 7.5 hours of runtime limit) are
allowed. Top-3 winning solutions achieved promising per-
formance. Two of them used EfficientNet as the backbone
model and all of them used augmentation in model training.

From the challenges, we can find two key points for build-
ing a powerful model. First, the backbone selection of the
forgery detectionmodels is important. The high-performance
winning solutions are based on the state-of-the-art (SOTA)
EfficientNet. Second, applying appropriate data augmenta-
tions may better simulate real-world scenarios and boost the
model performance.

3.9 Summary of DeepFake GenerationMethods

DeepFake generation methods have developed rapidly in
recent years. Across the four main categories (entire face
synthesis, attribute manipulation, identity swap, expression
swap) and “other” generation methods, the high quality of
the generated images has made it extremely hard for human
eyes to distinguish between real and fake. Meanwhile, more
and more real image datasets and fake image datasets also
promote the development of generation and detection of the
DeepFake research field.

However, we still think there’s a large space to improve
for the DeepFake generationmethods. For example, the reso-
lution of the generated images, manipulable face properties,
the continuity of the video, etc., could be further improved,
which is introduced in detail in Sect. 7.

To demonstrate the DeepFake generation methods, real
datasets, and fake datasets in detail, we build four tables.

Table 2 shows the images of top-5 generation methods
based on battleground (Figure 11) and Elo rating. In the first
row, we show the DeepFake generation methods which are
attempted the most by DeepFake detection methods accord-
ing to Figure 11. In the second row, we show the DeepFake
generationmethodswhich have the highest Elo rating accord-
ing to Table 6. To give a more complete impression of the
generation methods, Table 3 shows the low-quality images
of the GANs included in table 2. Table 4 and 5 mainly intro-
duce the information about real datasets and fake datasets.
For real datasets, we have collected the number of images
they contain and the diversity of the subjects. For the fake
dataset, we have collected the number of images/videos they
contain and show the number of real/fake ones clearly.

Table 6 is information statistics of the DeepFake genera-
tion methods, real datasets, and fake datasets. It contains the
release time, the first author, the citations/days, the citation
per day, the abbreviation of the method name, the resolu-
tion of images, the Elo rating, and the project URL. For each
of the DeepFake generation methods, real datasets and fake
datasets, we sort them in ascending chronological order. For
the resolution of images in each real dataset, fake dataset, and
generation method, we have collected the value from their
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Table 2 Top-5 generation methods based on battleground (top) and Elo rating (Wikipedia 2021a) (bottom) separately

FaceForensics++
(Rossler et al., 2019)

PGGAN
(Karras et al., 2017)

Celeb-DF
(Li et al., 2020e)

StarGAN
(Miyato et al., 2018)

StyleGAN
(Karras et al., 2019)

DFDC
(Dolhansky et al., 2020)

GDWCT
(Cho et al., 2019)

Glow
(Kingma and Dhariwal, 2018)

SC-FEGAN
(Jo and Park, 2019)

SAN
(Dai et al., 2019)

It is worth noting that the “SAN” method is special because it is inherently a super-resolution method. As can be observed, the latest DeepFake
generation methods are able to produce highly realistic facial images that are immensely hard to tell apart from real ones using human perception

Table 3 Some lower-quality image examples (that show more visible
artifacts) generated by the DeepFake generation methods mentioned in
Table 2, with an exception of the SAN (Dai et al. 2019)method, which is

a super-resolution technique and super-resolution is not easy to produce
low-quality images

FaceForensics++
(Rossler et al., 2019)

PGGAN
(Karras et al., 2017)

Celeb-DF
(Li et al., 2020e)

StarGAN
(Miyato et al., 2018)

StyleGAN
(Karras et al., 2019)

DFDC
(Dolhansky et al., 2020)

GDWCT
(Cho et al., 2019)

Glow
(Kingma and Dhariwal, 2018)

SC-FEGAN
(Jo and Park, 2019)

SAN
(Dai et al., 2019)

Thus we show the same images as in Table 2

paper. For those which have no exact value, we download the
dataset and calculate the resolution of images/videos. For the
value which has “aver” label, the resolution is calculated by
taking the average resolution of dozens of images/videos. For
the value which has “align” label, the resolution is recorded
by the common resolution used in the DeepFake research
field. For FakeCatcher, we could not find its resources and

use “N/A” to label it. As shown in Table 6, according to cita-
tion, Elo rating and time, the top-3 models used for each type
of DeepFake are DCGAN,GDWCT, StyleGAN2 (entire face
synthesis), StarGAN, AttGAN, HifaFace (attribute manip-
ulation), FaceForensics++, DFDC, OpenForensics (identity
swap), Face2Face, SVGAN (expression swap).
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Table 4 Information of real
datasets

Database Subjects Images Img per subject

CASIA-WebFace (Yi et al. 2014) 10,575 494,414 46.75

CelebA(Liu et al. 2015) 10,000 200,000 20

VGGFace2 (Cao et al. 2018) 9131 3,310,000 362.50

FFHQ (Karras et al. 2019) Unknown 70,000 Unknown

VGGFace (Parkhi et al. 2015) 2622 2,600,000 991.61

Ms-Celeb-1M (Guo et al. 2016) 100,000 10,000,000 100

MegaFace (Kemelmacher-Shlizerman et al. 2016) 690,572 4,700,000 6.81

LSUN (Yu et al. 2015) 30 1,000,000 33333.33

Table 5 Information of fake datasets

Database Total images/videos Real images Fake images Real videos Fake videos

UADFV (Li et al. 2018b) 98 – – 49 49

DeepFake-TIMIT (Korshunov and Marcel 2018) 620 – – – 620

DFDC Preview (Dolhansky et al. 2019) 5214 – – 1131 4113

FaceForensics++ (FF++) (Rossler et al. 2019) 5000 – – 1000 4000

Celeb-DF (Li et al. 2020e) 6229 – – 590 5639

FakeCatcher (Ciftci et al. 2020a) 142 – – – 142

DFFD (Dang et al. 2020) 303,039 58,703 240,336 1000 3000

Google DFD (Dufour and Gully 2019) 3431 – – 363 3068

DFDC (Dolhansky et al. 2020) 128,154 – – 23,954 104,500

DeeperForensics (Jiang et al. 2020b) 60,000 – – 50,000 10,000

Vox-DeepFake (Dong et al. 2020) 2,171,215 – – 1,125,429 1,045,786

WildDeepFake (Zi et al. 2020) 7314 – – 3805 3509

ForgeryNet (He et al. 2021) 3,117,309 1,438,201 1,457,861 99,630 121,617

DF-W (Pu et al. 2021) 1869 – – – 1869

FFIW10K (Zhou et al. 2021b) 20,000 – – 10,000 10,000

OpenForensics (Le et al. 2021) 115,325 45,473 70,325 – –

Elo rating (Wikipedia 2021a) is widely used in chess and
competitive games for calculating the players’ ranking. For
chess players, they may have different playing styles, which
makes ranking difficult. Elo rating can give a relatively objec-
tive ranking according to the historical record. Similar to
chess players, DeepFake generation methods also have dif-
ferent styles. Thus using the Elo rating to rank the detection
difficulty of the generation method is also suitable. Although
Elo rating can not give a very accurate ranking, it can give an
efficient, intuitive, and objective ranking that is purely based
on every single one-on-one battle between a detector and a
generator.

This paper mainly focuses on the battleground between
DeepFake generation and DeepFake detection. For this pur-
pose, we need to point out the DeepFake generation methods
that are most difficult to detect by the existing DeepFake
detection methods. Under the battleground, the desired met-
ric should satisfy several requirements: (1) the metric can
reflect the historical performance of a DeepFake generation

method, (2) the metric should be flexible to reflect that a
DeepFake generation method can be evaluated by more than
one DeepFake detection methods, and across many research
papers, (3) the metric should be as objective as possible to
evaluate different DeepFake types (i.e., entire face synthe-
sis, attribute manipulation, identity swap, expression swap).
Existing metrics for evaluating deep generative approaches
such as PSNR, SSIM are suitable for the tasks that ground
truth image is available for the prediction image to compare
with. Themetrics such asFID, Inception score are suitable for
comparing different image feature distributions. It is obvious
that these metrics that evaluate the image quality or dis-
tributional closeness do not satisfy the three requirements
mentioned above. To meet this challenge, we apply the Elo
rating, a performance-related metric that is widely used in
the ranking of chess or Go players. The Elo rating metric can
simultaneously satisfy the three requirements.

For the calculating of Elo rating in DeepFake generation
methods, we first set the Elo score of all the DeepFake gener-
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ationmethods to 1,400. Second, for eachDeepFake detection
method, we collected the generation method detected by
them and sort the generation methods by the detection accu-
racy/AUC (e.g., if the detection accuracy on generation
method A is lower than that on B, then we consider that the
quality of A is higher than B, recorded as (A > B)). Third,
for the generation rank in each DeepFake detection method,
we generate the strong and weak relationship between each
pair of them (e.g., if A > B > C, then we generate three
relationships A > B, B > C, A > C). Fourth, we update the
Elo score of each generation method by the strong and weak
relationships. Consider the score of generation methods A
and B are score_A and score_B, if A > B, then the updated
score score_A′ and score_B′ are calculated bybelow formula
(1)–(4). At last, we sort the generation methods by their Elo
scores. Elo rating helps us to build strong and weak relation-
ships with limited game information of different DeepFake
generation methods. However, the Elo rating system has its
inherent shortcoming. If a generation method only appears
once but beats high-score competitors, its score will go up a
lot. On the other hand, if a generation method has not been
detected for a long time, its score will remain unchanged and
cannot reflect its true difficulty.

score_A_adjust = 1

1 + 10
score_B−score_A

400

(1)

score_B_adjust = 1

1 + 10
score_A−score_B

400

(2)

score_A′ = score_A + 32 ∗ (1 − score_A_adjust) (3)

score_B′ = score_B − 32 ∗ score_B_adjust (4)

4 Detection of DeepFakes

In recent years, studies are continuously working on devel-
oping various techniques to identify whether a still image or
video is synthesized with AI (especially manipulated with
GANs and its variants) or produced naturally with a camera.
Generalize to unseen synthesized techniques, robust against
various attacks (e.g., adversarial attacks, image/video trans-
formations), and providing explainable detection results are
three critical factors for a detector practicality deployed in
the wild. In this section, we mainly review recent studies
on DeepFake detection based on their extracted features
(e.g., spatial (Sect. 4.1), frequency (Sect. 4.2), and biological
signals (Sect. 4.3)) and introduce their performance on the
aforementioned three essential factors. In Sect. 4.4, we detail
the methods that can not be classified into the three typical
DeepFake detectionmethods. To better present theDeepFake
detection methods to readers, we use three tables (Table 7)
to summarize the existing DeepFake detection methods, a
chord diagram (Fig. 14) to show the performance among var-

Fig. 6 The difference between real and fake from the spatial domain,
especially the discrepancies across the blending the boundary (Li et al.
2020c)

ious DeepFake detectors in Sect. 4.5, and a fishbone diagram
(Fig. 10) to present the evolution of three typical detection
techniques.

4.1 Spatial based Detection

Recently, detecting DeepFakes on the spatial domain is the
most popular techniques adopted by existing studies. They
observe various visible or invisible artifacts on the spatial
domain for distinguishing real and fake. Figure 6 shows the
potential of working on spatial domain for DeepFake detec-
tion.

4.1.1 Image Forensics based Detection

The traditional forensics-based techniques inspect the dis-
parities in pixel-level, which is investigated by recent studies
for DeepFake detection. They provide explainable clues in
the detection and introduce the differences between real and
fake. However, theseworks suffer the robustness issues when
the images or videos are manipulated by simple transforma-
tions.

Li et al. (2020a) observe that the differences between syn-
thesized faces and real faces are revealed in the chrominance
components, especially in the residual domain. They propose
to train a one-class classifier on real faces by leveraging the
differences in the chrominance components for tackling the
unseen GANs. However, their performance against perturba-
tion attacks like image transformations is unknown.

Photo response non uniformity (PRNU) pattern is a noise
pattern in a digital image caused by the light sensor in cam-
era, which could be applied for distinguishing DeepFakes
from authentic videos (Koopman et al. 2018). Others explore
utilizing the co-occurrence matrices for differentiating real
and fake faces (Nataraj et al. 2019). The insight behind these
works is obvious, but their effectiveness in tackling challeng-
ing high-quality DeepFakes is not clear.

Similarly, in tackling the fake videos, researchers also
borrow the ideas from the traditional video forensic by lever-
aging the local motion features captured from real videos
to spot the abnormality of manipulated videos (Wang et al.
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2020a). Leveraging the image/video forensic techniques is a
direct idea for fighting against DeepFake by focusing on the
low-level features, but they are not practical to be deployed
in the wild where DeepFakes suffer known and unknown
degradations.

4.1.2 DNN-based Detection

These methods are totally data-driven by utilizing existing or
designing new DNN-based models by extracting spatial fea-
tures to improve the effectiveness and generalization ability
of detection. However, these DNN-based detection methods
all suffer from the adversarial attackswith additive noises and
all the studies failed in evaluating their effectiveness in tack-
ling adversarial noise attacks (Carlini and Farid 2020). The
existing studies by leveraging DNN to identify DeepFakes
can be classified into the following three categories.

Improving Generalization Abilities Conventional DNNs
have beenwidely applied in detecting fake faces, but theywill
overfit to specific manipulation types and suffer the transfer-
ability issues where the capabilities of unseen manipulation
methods are lacking. Thus, motivated by the social percep-
tion and social cognition processes of the human brain, a
novel hierarchical memory network (HMN) is employed for
detecting fake faces to address the transferability issues and
improve the effectiveness in tacking unknown GANs (Fer-
nando et al. 2019).

Gram-Net (Liu et al. 2020b) improves the robustness and
generalization ability to existing CNNs in discriminating
synthesized fake faces by leveraging global texture features.
Experimental results indicate that Gram-Net shows strong
robustness against perturbation attacks like downsampling,
JPEG compression, blur, and noise. Additionally, Gram-Net
claims its generalization ability in tackling different GANs,
which has shown promising applications in the wild.

Wang et al. (2020e) observe that a binary classifier by
leveraging a simple ResNet-50 as the backbone which is a
pre-trained model with ImageNet shows strong generaliza-
tion capabilities in detecting GAN-synthesized still images.
Their classifier is merely trained on PGGAN database and
could be well generalized to other GAN architectures like
StyleGAN, StarGAN, etc. Experiments show that they are
robust against perturbation attacks by incorporating various
data augmentation strategies into the training process. Obvi-
ously, detecting still images synthesized by SOTAGANs like
StyleGAN is not hard.

OC-FakeDect (Khalid and Woo 2020) proposes train-
ing on real faces with a one-class variational autoencoder
(VAE) to detect synthesized fake faces. OC-FakeDect is
vastly different from all the existing detectors which is highly
dependent on collected fake faces by using binary classi-
fiers. They claim that the approach has a good performance

in generalizing across different DeepFake methods, but their
robustness against perturbation attacks is unclear.

Investigating the Artifact Clues In order to focus on
the intrinsic forensics clues, image preprocessing by using
smoothing filtering or noise is employed for destroying
the low-level unstable artifacts in GAN-synthesized images
(Xuan et al. 2019). Investigating the intrinsic clues could
significantly improve the generalization ability of the CNN
model in identifying unknown GANs.

CLRNet (Tariq et al. 2020) proposes a convolutional
long short-termmemory (LSTM) based residual network for
capturing the temporal information in consecutive frames.
Transfer learning is employed for improving the general-
ization ability in tackling fake videos created with different
synthetic methods.

SSTNet (Wu et al. 2020) incorporates the spatial, ste-
ganalysis, and temporal features for detecting DeepFakes.
Specifically, a deep model XceptionNet is employed for
extracting spatial features, a simplified XceptionNet with a
constraint on the conventional filter to learn statistical char-
acteristics of image pixels for steganalysis feature extraction,
recurrent neural network (RNN) is applied for extracting
temporal features. SSTNet reveals that combingmulti-modal
features from a wide range of levels is a promising idea for
developing powerful DeepFake detectors.

Instead of using various CNNmodels for addressing gen-
eral object recognition tasks, researchers observed that the
face recognition systems focus on learning the representation
of faces. Thus, Nhu et al. (2018) employ a deep face recog-
nition system to extract the face representation for building a
binary classifier to detect real and fake faces. DPNet (Trinh
et al. 2021) captures the temporal dynamic features with a
carefully designed DNN to build an interpretable DeepFake
detection framework to explain why a video is predicted as
fake or real.

In DeepFake videos, the temporal artifacts across frames
indicate the abnormal face in the video. A recurrent con-
volutional network is exploited to capture the temporal
discrepancies in fake videos (Sabir et al. 2019). de Lima et al.
(2020) have employed the temporal information by leverag-
ing various typical CNNs for DeepFake detection.

Empowering CNN Models FDFtNet (Jeon et al. 2020b)
provides a reusable fine-tuning network to improve the
capabilities of existing CNN models (e.g., SqueezeNet,
ShallowNetV3, ResNetV2, and Xception) in detecting fake
images effectively.Afine-tune transformer (FTT) is designed
with self-attention to extract different features from the
image, then an MBblockV3 adopts different convolution
and structure techniques to extract features. FDFtNet outper-
forms the baselines by using various CNNs. However, their
robustness in tacking with unseen GANs and the evaluation
on perturbation attacks is still unclear.
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Inspired by the advances of deep learning, various DNN-
based approaches are continuously proposed for distinguish-
ing synthesized fake faces, such as deep transfer learning
(Ding et al. 2020; Dogonadze et al. 2020; Jeon et al. 2020a),
customized CNN (Dang et al. 2019; Marra et al. 2020; Coz-
zolino et al. 2018), CNN with local features (Tarasiou and
Zafeiriou 2020),CNNwith optical flow (Amerini et al. 2019),
ensembled CNNs (Bonettini et al. 2021b; Tariq et al. 2018),
light-weight CNN (Sambhu and Canavan 2020), 3D CNNs
(Ganiyusufoglu et al. 2020), a two-stream CNN using RGB
space and multi-scale retinex space (Chen et al. 2019a), two-
stream Faster R-CNN with features from the RGB image
and noise features by using steganalysis (Zhou et al. 2018),
two-stream neural network with GoogLeNet for observing
artifacts and a patch-based triplet network for capturing local
noise residual (Zhou et al. 2017), multistream deep learning
network for capturing the artifacts by using Face2Face reen-
actment (Kumar et al. 2020), incorporating CNNwith image
segmentation (Yu et al. 2019a), capsule networks (Nguyen
et al. 2019b, c), pairwise learning (Hsu et al. 2020), metric
learning (Kumar et al. 2020), incremental learning (Marra
et al. 2019b), multiple instance learning (Li et al. 2020d),
few-shot learning (Mansourifar and Shi 2020), enhanced
MesoNet (Kawa and Syga 2020; Afchar et al. 2018), a
combination with CNN and RNN (Güera and Delp 2018;
MasMontserrat et al. 2020), DNNwith contrastive loss (Hsu
et al. 2018), multi-attentional network (Zhao et al. 2021).

Though, numerous studies are working on proposing var-
ious DNN-based detection methods to discern fake faces.
However, they are not robust to be deployed in dealing with
real-world scenarios according to a recent study (Hulzebosch
et al. 2020). Leveraging the power of CNN models as the
backbone is a promising idea for detecting DeepFakes in the
wild, however, the biggest obstacle is that the DNN models
are susceptible to adversarial noise attacks.

4.1.3 Obvious Artifacts Clues

Due to the limitation of existing AI techniques, the gener-
ated DeepFakes exhibit some obvious artifacts which could
be leveraged for detection by using some simple DNN mod-
els. Chai et al. (2020) investigate that local patches have
redundant artifacts which could be used for differentiating
fake faces. A fully convolutional approach is applied for
training classifiers to focus on image patches. This approach
can be well generalized across different network architec-
tures, image datasets, etc. The discrepancy between faces
and their context is another artifact clue for detecting fake
faces (Nirkin et al. 2020). A face identification network is
trained by using the face region to identify the person, while
a context recognition network is trained by utilizing the face
context like hair, ear to identify the person. Two vectors from
the aforementioned two networks are compared for detect-

ing the identity-to-identity discrepancies. This approach also
has a good generalization ability acrossGANs. For each indi-
vidual that is speaking, their facial and head movements are
always in distinct pattern (Agarwal et al. 2019, 2020a). This
could be exploited to protect celebrities with large historic
training data. These approaches simply leverage the artifact
clues for detection without introducing any new DNN mod-
els, thus they will be invalid when the GAN is updated or the
artifacts are fixed in the new version.

4.1.4 Detection and Localization

Beyond DeepFake detection, some researchers are working
on locating themanipulated regionswhich provides evidence
for forensics and inspires future work to develop more pow-
erful DeepFake detectors by focusing on the manipulated
regions. FakeLocator (Huang et al. 2022) investigates the
architecture of existing GANs and observed that the imper-
fection of upsampling methods exhibits obvious clues for
detection and forgery localization where the manipulated
area could be precisely marked. They employ an encoder-
decoder network to extract the fake texture with devised
gray-scale prediction map for better detection and local-
ization. FakeLocator performs well across different GANs
and shows strong generalization capabilities in unknown
synthetic techniques. Furthermore, the robustness against
perturbation attacks (e.g., compression, blur, noise, and low-
resolution) is also promising. Locating the manipulated area
provides clear explanations why the image is identified as
fake.

Dang et al. (2020) also study the localization of forgery
area in fake faces by estimating an image-specific attention
map. However, the estimation of the attention map fails to
work in a totally unsupervised manner. The inverse intersec-
tion non-containment (IINC), a novel metric, is proposed
for evaluating the performance of facial forgery localiza-
tion. They also claim that forgery detection can work well in
both seen and unseen synthetic techniques. The evaluation
of the robustness against perturbation attacks is still lacking.
The proposed attention map predicts the manipulated pixels,
which provides a direct decision for determining fake faces.

Multi-task learning could also be used for classifying
and locating the manipulated facial images (Nguyen et al.
2019a). Formulating fake forensics as a segmentation task
to localize the manipulated region in synthesized faces is
another interesting idea in fighting against DeepFakes (Li
et al. 2019a; Chen and Yang 2021). Combing deep learning
and co-occurrence matrices could also be used for the detec-
tion, attribution, and localization of GAN images (Goebel
et al. 2020).

Face X-ray (Li et al. 2020c) observes that a manipu-
lated facial image always blends into an existing background
image. Thus, the discrepancies across the blending the
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boundary could be used as a signal for detecting manipu-
lated fake faces. Face X-ray is designed for working as both
DeepFake detection and manipulated region localization.

Songsri-in and Zafeiriou (2019) release the first foren-
sic localization dataset with labeled corresponding binary
masks. The dataset contains real facial images, gener-
ated facial images, and partially manipulated facial images.
ManTra-Net (Wu et al. 2019) proposes an end-to-end fully
convolutional network for addressing various types of image
forgery, such as splicing, copy-move, removal, enhancement,
and even unknown types. ManTra-Net formulates the local-
ization problem as local anomaly detection and has a board
of applications than the existing image forgery localization
methods.

4.1.5 Facial Image Preprocessing

Some studies propose preprocessing the facial images before
sending them to binary classifiers for discrimination. These
works hope that the preprocessed DeepFakes could expose
their fake textures to simple classifiers, such as, shallow neu-
ral networks, conventional machine learning models (e.g.
SVM, KNN).

FakeSpotter (Wang et al. 2020d) observes that the layer-
by-layer neuron behaviors provide more subtle features for
capturing the differences between real and fake faces. This
work provides a new insight for spotting fake faces by moni-
toring third-partyDNN-based neuron behaviors,which could
be extended to other fields like fake speech detection (Wang
et al. 2020c). Experimental results also show its robustness
against four common perturbation attacks and its capabilities
in detecting DeepFake videos. However, the generalization
ability of unseen techniques is still unclear. FakeSpotter sim-
ply receives facial images as input, thus the detection result
is lacking explainability.

The EM algorithm is employed for extracting the local
features to represent the convolutional traces in the gener-
ated facial images (Guarnera et al. 2020a). Then, some naive
classifiers like K-nearest neighbors (KNN), support vector
machine (SVM), and latent Dirichlet allocation (LDA) could
easily classify real and fake faces. Actually, some dimension
reduction algorithms like T-SNE could non-linearly separate
the real and fake faces. However, the robustness against per-
turbation attacks and generalization ability in differentGANs
are unclear.

In the real-world scenario, videos always suffer various
degradations such as compression, blurring, etc. ARENnet
(Guo et al. 2020c) aims at highlighting the tampered arti-
facts by suppressing the image content to build a practical
DeepFake detector. An adaptive residuals extraction network
(AREN) is designed for suppressing image content to learn
prediction residuals via an adaptive convolution layer. Then,
a fake face detector ARENnet is constructed by integrating

ARENwithCNNtodealwith the fakevideos sufferingdegra-
dations. ARENnet claims the robustness against perturbation
attacks and generalization ability in unseen GANs.

Chen and Yang (2021) also study to improve the qual-
ity of training dataset by employing dataset preprocessing
techniques to remove the false face detected in videos. They
observe that preprocessing the training dataset can signifi-
cantly increase the detection performance in comparisonwith
baselines.

Zhang et al. (2017) detect the key points in facial images
and applied a descriptor to represent them for capturing the
local information, then a linear classifier is applied for effec-
tive detection. This approach could be integrated into face
verification systems to enhance their security.

Studies have shown that the preprocessed DeepFakes
could obviously improve the detection performance. How-
ever, attackers can use other preprocessing techniques to
remove the artifactswhich could be used forDeepFake detec-
tion, which poses potential threats to the community.

4.1.6 Technical Evolution of Spatial-Based Detection

In this subsection, we introduce the evolution of the spatial-
basedDeepFakedetection techniques andpresent the strength
and weakness in detecting DeepFakes as well. Due to the low
quality faces generated by the early DeepFakes, researchers
first investigate the differences of real and fake faces in
the spatial domain since 2017. Investigating on the spatial
domain is a straightforward idea for distinguishing real and
fake faces, which could borrow ideas from the traditional
digital media forensics.

The spatial based DeepFake detection methods aim at
leveraging the power of DNN models to capture the subtle
differences between real and fake in the spatial domain. The
detection task can be simply formulated as a binary classifica-
tion problem. Most of these studies are working towards two
directions, observing more visual artifacts and developing
powerful DNN models which could work in an end-to-end
manner.

The simple approach for detecting DeepFakes is employ-
ing the traditional image forensics techniques by inspecting
the disparities at the pixel-level, such as studying the PRNU
patternwhich caused by the light sensor in camera (Koopman
et al. 2018) and the chrominance components (Li et al. 2020a)
on real and fake faces. However, such solution usually suf-
fers from performance decline when the DeepFakes’ quality
is degraded. Due to the significant progress of DNN mod-
els in various cutting-edge fields, powerful DNN models are
designed or employed for spotting DeepFakes, such as FDFt-
Net (Jeon et al. 2020b) or ResNet-50 (Wang et al. 2020e). In
addition, some researchers employ shallowmachine learning
models like KNN and SVM to detect DeepFakes with hand-
craft features. For example, Guarnera et al. (2020a) apply
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Fig. 7 Thedifference between real and fake from the frequencydomain,
especially noticing the difference in their spectra (Zhang et al. 2019)

EM to extract local features and use KNN and SVM for clas-
sification.

Beyond DeepFake detection, Huang et al. (2022) aim to
localize the GAN-based manipulated region with gray-scale
prediction map, which is helpful for fine-grained DeepFake
forensics.

The early DeepFakes present abnormal visual artifacts
like discrepancy between faces and their context (Nirkin
et al. 2020), providing effective artifact clues for detection.
We believe more and more interesting studies on the spatial
domain will be proposed by our community.

Overall, the spatial based DeepFakes detection is one of
the most popular solutions. It works well when DeepFakes
exhibit obvious visual artifacts. However, it will be not a
promising way when the DeepFakes become realistic in the
near future. Nevertheless, there are two critical challenges
via the spatial based solution to fight against DeepFakes,
i.e., poor generalization capability against unknownsynthetic
techniques and low robustness to adversarial attacks (Carlini
and Farid 2020).

4.2 Frequency based Detection

Beyond distinguishing real and fake from the spatial domain,
some studies are working on exploiting the differences
between real and fake from the frequency domain. Figure 7
represents the potentials of employing the frequency artifacts
for detecting DeepFakes, where the GAN-based manipula-
tion introduces invisible artifacts in the frequency domain.

4.2.1 GAN-Based Artifacts

Instead of examining the visual artifacts, some researchers
areworking on investigating the imperfection design of exist-
ingGANs,which provides obvious signals for differentiating
real and fake faces. They are normally working on the fre-
quency domain, but there are generalized artifacts of existing
GANs.

McCloskey and Albright (2019) investigate the architec-
ture of the generator model and observed that the internal
value of the generator is normalized which limits the fre-
quency of saturated pixels. Then, a simple SVM-based
classifier is trained to measure the frequency of saturated and

under-exposed pixels in each facial image for discriminating
fake faces.

AutoGAN (Zhang et al. 2019) identifies a unique arti-
fact in GANs which is introduced due to the upsampling
design of common GAN pipelines. Then, a GAN simula-
tor is proposed for simulating the artifacts without accessing
pre-trained GANs to improve the generalization ability of
existing detectors. The artifacts are manifested as replica-
tions of spectra in the frequency domain. Finally, a classifier
is trained by using the frequency spectrum for discriminating
GAN-synthesized fake faces. They claim that the observed
GAN-based artifacts could generalize well in unseen syn-
thetic techniques with similar architectures. However, their
robustness against perturbation attacks is not explored.

Yu et al. (2019b) first introduce the GAN fingerprints for
classifying the images as real or synthesizedwithGANs. The
GAN fingerprints could be further utilized for predicting the
source of images. Study has shown that small differences
in GAN training could result in distinct GAN fingerprints.
However, the fingerprints could be easily destroyed by sim-
ple perturbation attacks like blur, JPEG compression, etc.
Other studies (Marra et al. 2019a) also leverage the GAN
fingerprints for discriminating GAN-synthesized fake faces.
The GAN artifacts are a promising clue for detection, how-
ever the artifacts could be easily corrupted with some simple
image transformations like shallow reconstruction with prin-
cipal component analysis (PCA) (Huang et al. 2020b).

4.2.2 Frequency Domain Feature

The differences between real and synthesized fake faces
could also be revealed in the frequency domain. Here,
we mainly introduce the studies simply employing fre-
quency domain as features for differentiating real and fake.
These methods are often failed in tackling unknown GAN-
synthesized DeepFakes, which are vast different from the
aforementioned methods in Sect. 4.2.1.

Frank et al. (2020) comprehensively investigate the arti-
facts revealed in the frequency domain across different GAN
architectures and datasets. They observe that severe artifacts
are introduced due to the upsampling techniques in GANs.
Experiments demonstrate that a classifierwith a simple linear
model and a CNN-based model could both achieve promis-
ing results on the entire frequency spectrum.Furthermore, the
classifier trained on the frequency domain is robust against
common perturbation attacks (e.g. blurring, cropping) and
tackles the future unseen GANs (Frank et al. 2020).

FGPD-FA (Bai et al. 2020) extracts three types of features
(e.g., statistical, oriented gradient, and blob) in the frequency
domain for differentiating real and fake faces. F3-Net (Qian
et al. 2020) considers two complementary frequency-aware
clues for detection, namely frequency-aware pattern from
frequency-aware image decomposition, and local frequency
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statistics. Specifically, discrete cosine transform (DCT) is
applied for frequency-domain transformation. Finally, a
two-stream collaborative learning framework collaboratively
learns the two frequency clues and achieves considerable per-
formance in low-quality DeepFake video detection.

Barni et al. (2020) propose exploiting the inconsistencies
among spectral bands, then a CNN model is trained with
cross-band co-occurrence matrices and pixel co-occurrence
matrices for discriminating real and fake faces. Yu et al.
(2020b) explore the channel difference image (CDI) and
spectrum image (SI) towork as intrinsic clues for distinguish-
ing images generated with a camera and manipulated with
AI techniques. Octave convolution (OctConv) (Chen et al.
2019b) is leveraged for capturing the frequency domain to
learn the intrinsic feature from CDI and SI to determine fake
faces. These two intrinsic clues are claimed to generalize
well in unseen manipulations. To improve the transferabil-
ity of face forgery detection method across unseen synthetic
techniques, Liu et al. (2021b) combine spatial image and
phase spectrum to capture the up-sampling artifacts in exist-
ing GANs for aiding detection. Masi et al. (2020) propose a
two-branch network for amplifying the artifacts in the syn-
thesized faces by combing clues from the color domain and
frequency domain. Furthermore, the two-branch network has
claimed a good performance across datasets. Actually, lever-
aging the frequency domain to distinguish real and fake faces
is widely applied in recent studies (Durall et al. 2019; Bonet-
tini et al. 2021a; Guarnera et al. 2020c).

4.2.3 Technical Evolution of Frequency-Based Detection

In this subsection,we introduce the evolutionof the frequency-
basedDeepFakedetection techniques andpresent the strength
andweakness in detectingDeepFakes aswell.Beyonddetect-
ing DeepFakes via the spatial information, exploring the
artifacts of DeepFakes in the frequency domain is another
effective solution. The frequency based DeepFake detection
methods identify DeepFakes via artifacts in the frequency
domain, benefiting higher generalization ability.

The frequency based DeepFake detectionmethods mainly
rely on two kinds of information, i.e., the artifacts in the
spectra introduced by GAN and frequency domain features
of real or fake faces. For the first kind solution, researchers
observe that theGAN-synthesized facial images exhibit obvi-
ous artifacts in the spectra, which provides effective clues
for detection with high generalization. Figure 7 visualizes
the spectra maps of real and fake face (Zhang et al. 2019),
respectively. Then, a series of studies try tomine GAN-based
artifacts of fake faces effectively and achieve better gener-
alization capabilities when addressing unknown synthetic
techniques. In particular, McCloskey and Albright (2019)
measure the frequency of saturated and under-exposed pixels
to discriminate real and fake faces. Zhang et al. (2019) iden-

Fig. 8 The difference between real and fake from the biological sig-
nal domain, especially the colorful motion-magnified spatial-temporal
(MMST) maps between them (Qi et al. 2020)

tify the artifacts introduced by GAN due to the common used
upsampling operation. The above two methods claim their
competitive generalization capabilities in unknown Deep-
Fake techniques. For the second solution, features in the
frequency domain is leveraged as clues for detection. For
example, Frank et al. (2020) employ the entire frequency
spectrum as features for differentiating fake. Barni et al.
(2020) exploit the inconsistencies among spectrum bands to
discriminate fake.

The frequency based DeepFake detection method could
generalize well on unknown synthetic techniques, but they
are not robust to various image degradations, such as image
compression, reconstruction, etc. (Huang et al. 2020b). Thus,
they are less practical in the real-wold scenario where known
and unknown image degradations are common. As a result,
more robust frequency based methods should be developed,
which is critical for detectors to be further deployed in the
wild.

4.3 Biological Signal based Detection

Real still facial images and videos are produced with cam-
eras, which are natural compared to the synthesized fake
faces. The biological signal exhibits a clear signal for dis-
tinguishing real and fake. In general, the biological signals
are existed in both real videos and synthesized fake videos.
However, the biological signals revealed in the real faces
videos are natural and realistic. Unfortunately, in the fake
videos, the biological signals are generated with low-quality
and most of time the perceptual biological signals are dis-
appeared, such as the consistency between visual and audio.
Figure 8 shows the sample of biological signals which could
served as clues for DeepFake detection. These biological sig-
nals can be classified into the following categories.

4.3.1 Visual-Audio Inconsistency

For DeepFake video, combining visual and audio to identify
the inconsistency in fake faces is a new insight for distin-
guishing DeepFakes. These methods can well explain why
the video is fake. A Siamese network is employed for mod-
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eling the visual and audio in videos with a combination of
two triplet loss functions for measuring the similarity (Mit-
tal et al. 2020). Specifically, one loss function is designed
for computing the similarity between visual and audio, the
other loss function is devised for calculating the effect cues,
like perceived emotion. Experiments show that it outper-
forms conventional DNN-based methods in detecting fake
videos. Lip-sync is a typical DeepFake by generating a per-
son’s mouth to be consistent with a person’s speech. With
the basic insight that the dynamics of mouth shape are some-
times inconsistent with a spoken phoneme due to the highly
compelling circumstances. Specifically, the lips have to be
closed when spoken some words that begin with M, B, P .
However, this is violated in fake videos. Researchers lever-
aged this clue for detecting lip-sync DeepFakes (Agarwal
et al. 2020b). Modality dissonance score (MDS) is proposed
for measuring the audio-visual dissonance in videos (Chugh
et al. 2020). Specifically, MDS is based on contrastive loss
which enforces the distance between visual and audio to
be closer for real, and further for synthesized fake video.
Additionally, MDS can be used for temporal forgery local-
ization which identifies the tampered segment in the video.
However, Korshunov and Marcel (2018) investigate several
baselines for evaluating existing studies in DeepFake detec-
tion including lip-sync inconsistencydetection.Theyobserve
that detecting the inconsistency of lip-sync is not effective for
fighting DeepFakes. They also release a public dataset for the
community.

4.3.2 Visual Inconsistency

Visual inconsistency indicates that the synthesized faces
are not natural, especially the shape, facial features, and
landmarks of faces. Li and Lyu (2019) observe that the
synthesized fake faces are always in fixed sizes due to the
limitation of computation resources and the production time
of DeepFake algorithms. The fixed size of synthesized faces
leaves artifacts in warping to match the source face, which
can be employed for DeepFake detection. Then, a CNN
model is trained for detecting the artifacts. The lack of eye
blinking is another telltale sign for exposing DeepFakes (Li
et al. 2018b). A CNN combined with a recursive neural
network is trained for distinguishing the eye state. The mis-
matched facial landmarks in fake faces are invisible to human
eyes, but they can be easily revealed from head poses esti-
mated from 2D landmarks (Yang et al. 2019a, b). A naive
SVM classifier is finally trained for capturing the differences
between estimated head poses, which is further employed
for DeepFake detection. Visual artifacts such as eyes, teeth,
facial contours will be an important clue for exposing Deep-
Fakes (Matern et al. 2019). The inconsistent corneal specular
highlight between two eyes is another clue for exposing the
GAN-synthesized faces (Hu et al. 2021). This inconsistency

ismainly due to the lack of physical/physiological constraints
in the existing popularGANs. Thesemethods are all based on
the observation that the fake faces exhibit obvious artifacts to
human eyes, especially the inconsistencies that appeared in
the face compared with real faces. They provide strong guar-
antees to explain the decision in distinguishing real or fake,
but they will be invalid when advanced GANs are proposed.
Furthermore, their robustness against perturbation attacks is
unclear.

4.3.3 Biological Signal in Video

Biological signals in the video are not easily replicable. In
FakeCatcher, six different biological signals are extracted to
exploit the spatial and temporal coherence for authenticat-
ing real videos taken by the camera (Ciftci et al. 2020a).
Studies have shown that the heart rate could be used for
detecting fake videos, however, obtaining the heart rate from
videos is a time-consuming task. Fernandes et al. (2019) use
neural ordinary differential equation (Neural-ODE) (Chen
et al. 2018b) trained on the original videos to predict the
heart rate of testing videos. DeepRhythm also exposes Deep-
Fake videos by monitoring the heartbeat rhythms (Qi et al.
2020). Specifically, they develop motion-magnified spatial-
temporal representation (MMSTR) to video for highlighting
the heart rhythm signals. Finally, a dual-spatial-temporal
attentional network is designed for detecting fake videobased
on the output of MMSTR. DeepFakesON-Phys (Hernandez-
Ortega et al. 2020) also leverages heart rate for DeepFake
detection by using remote photoplethysmography (rPPG) to
illustrate the presence of blood flow by observing the sub-
tle color changes in human skins. A convolutional attention
network (CAN) is proposed for extracting the spatial and
temporal information from video frames to detect DeepFake
video. Beyond the DeepFake detection, PPG could be used
for discovering the generative model which is used for gener-
ating DeepFake (Ciftci et al. 2020b). In detecting DeepFake
videos, the biological signal exposed by the heart rate pro-
vides promising clues for detection. This will be a promising
idea for dealing with future advanced GANs, since the subtle
biological characteristics are a challenge for synthesis.

4.3.4 Technical Evolution of Biological Signal based
Detection

In this subsection, we introduce the evolution of the biologi-
cal signal based DeepFake detection techniques and present
the strength and weakness in detecting DeepFakes as well.
With the rapid development of deep synthesis techniques, the
fake images would be perfectly synthesized without expos-
ing any artifacts in both the spatial and frequency domains
in the near future, which would pose more challenges for
DeepFake detection. Recently, some researchers are work-
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ing to explore the biological signals in the facial videos to
serve as effective fake indicators since the signals are not
natural and unrealistic in fake videos.

The existing biological signal based DeepFake detection
methods utilize biological signals that are broken and could
not be easily replicated by state-of-the-art DeepFake tech-
niques. Early works study the irregular eye blinking (Li
et al. 2018b), the mismatch facial landmarks (Yang et al.
2019a, b), and the fixed size of synthesized faces (Li and Lyu
2019), etc. Nevertheless, the above visual inconsistencies
could be easily removed in the advanced DeepFakes. In addi-
tion to the visual information, the audio of the video is also
an important clue for DeepFake detection. Specifically, the
inconsistency between visual and audio is common in fake
videos. However, Korshunov and Marcel (2018) observed
that the simple lip-sync is not enough for accurate DeepFake
detection. Then, some studies areworking on how tomeasure
the similarity between visual and audio (Mittal et al. 2020;
Chugh et al. 2020) and further explore strong visual-audio
inconsistency signals for DeepFake detection (Agarwal et al.
2020b). Moreover, some works also exploit the subtle color
changes in human skins introduced by the normal heartbeat
to authentic real videos (Qi et al. 2020; Hernandez-Ortega
et al. 2020). We believe that more and more interesting and
robust biological signals will be observed for discriminating
DeepFakes in the wild.

Overall, In the near future, the DeepFake could be realis-
tic where the spatial and frequency based detection methods
could hardly exhibit noticeable and detectable artifacts by
human eyes and machines. As a result, the biological signals
would be a more effective solution for fighting against Deep-
Fake that could be deployed in the real world. Nevertheless,
the solution might be invalid when the biological signals are
enhanced manually, and exploring more informative biolog-
ical signals would be the most promising one for the future
detection.

4.4 Other DeepFake Detectors

Besides the aforementioned three types, some studies cannot
be classified into any of them. Here, we introduce them with
an independent subsection. Fraga-Lamas and Fernández-
Caramés (2020) provide a comprehensive overview by lever-
aging distributed ledger technologies (DLT) to combat digital
deception. Hasan and Salah (2019) also leverage blockchain
to trace and track the source of multimedia which provides
insight for combating DeepFake videos. Instead of a focus
on the multimedia self, FakeET (Gupta et al. 2020) explores
to leverage the user behavior clues for DeepFake detection,
specifically the eye-gaze. Tolosana et al. (2020) explore the
role of different facial regions in contributing to the Deep-
Fake detection. They find that the artifacts which exist in
the specific facial region could improve the detection per-

Fig. 9 (L) Summary of various types of DeepFake detection methods,
including the type ID and the name of each type. (R) The proportion of
various types ofDeepFake detectionmethods in our collectedDeepFake
detection papers

formance by a large margin than the entire face. Similarly,
Du et al. (2019) observe that concentrating on the forgery
region could help for DeepFake detection. Maurer (2000)
approaches the DeepFake detection as a hypothesis testing
problem and presents a generalizable statistical framework
based on the information-theoretic study of authentication.

4.5 Summary of DeepFake DetectionMethods

In this section, we use a long table and a chord diagram to
summarize the existing DeepFake detection methods and a
fishbone diagram to show the evolution of the threeDeepFake
detection techniques.

Tables 7, tabulate the summary of DeepFake detection
methods, where Fig. 9 gives the meaning of type ID and
the proportions. In these tables, we mainly show the method
type, the adopted classifier, the claimed performance, com-
pared baselines, and its capabilities with regard to the
generalization capabilities in tackling unseen DeepFakes,
the robustness against various attacks, and whether provides
explainable detection results.

In analyzing the Tables 7, we can gather the following
interesting findings. Due to the powerful capabilities of DNN
model, CNN models are served as the most popular back-
bone in the DeepFake detection classifiers. However, linear
machine learning models like KNN are rarely employed in
detection. In employing the evaluation metrics, ACC and
AUC are the two popular metrics for evaluating the per-
formance of DeepFake detection methods. Compared with
DeepFake videos, the still images are easier to be detected
by various DeepFake detectors. Researchers tend to evaluate
their method on public DeepFake videos, rather than build
their own synthesized-images datasets for evaluation due to
the lack of public fake image datasets. The existing studies
claimed their effectiveness in detecting DeepFakes with high
confidence, however most of them failed in evaluating their
effectiveness in tackling unseen DeepFakes and their robust-
ness against image/video transformations, which is critical
for a detector deployed in the wild. Additionally, these meth-
ods failed in providing evidence to introduce the differences
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between real and fake, thus the explainability is limited in
existing studies.

Figure 10 presents the milestone studies of DeepFake
detection with a fishbone diagram. In investigating the three
classical DeepFake detection techniques, we observed that
there are two critical challenges that should be addressed
for the future DeepFake detection techniques. The first chal-
lenge is that the fake textures for DeepFake detection might
be corrupted or intentionally removed. The second one is that
the quality of synthesized images would be further improved
with the development of synthetic techniques. As a result, the
community should develop more robust models against var-
ious degradations to capture the subtle differences between
real and fake faces and investigate more long-standing clues
to detect unknown DeepFake synthetic techniques.

5 Battleground

In the previous two sections, we have discussed recent
advances in DeepFake generation methods (Sect. 3) and
DeepFake detection methods (Sect. 4), respectively. The two
parties naturally form a battleground, where the “offenders”
or the “adversaries” are the DeepFake generation methods,
and the “defenders” are the DeepFake detection methods.
By illustrating and visualizing the battleground, we hope to
gain insights and knowledge about the most current battling
landscape and interactions between DeepFake generation
and detection methods. We believe that incremental but
continuous scientific progresses can be made through the

competition between adversaries and defenders, and new
observations can be obtained when defeating the other side.
It is the unceasing battling between the two parties that will
most likely make the meaningful progress to push the field
(i.e., high-fidelity generation of DeepFakes as well as high-
performance detection of DeepFakes) forward possible.

Among all 318 DeepFake-related papers surveyed so far,
we have kept the important ones in tables across Sects. 3
and 4. As previously tabulated in Table 6, we have surveyed
83 DeepFake generation methods in Sect. 3. As tabulated in
Table 7, we have surveyed 117 DeepFake detection methods
in Sect. 4. In order to create a full map of the battleground,
for each of the DeepFake detection methods, we aim to know
which DeepFake generation method the detector attempted
to counter, i.e., to perform DeepFake detection on. In the
Sankey diagram (Wikipedia 2021b) shown in Fig. 11, we
have chronologically arranged various surveyed DeepFake
generation methods (including datasets) on the left column
and the surveyed DeepFake detection methods on the right
column. A curve connecting the node A on the left and the
node B on the right means that DeepFake detection method
B has evaluated and reported detection results on the Deep-
Fake generationmethod A in its paper. After all the nodes are
connected by traversing the 83 × 117 generation-detection
relationships, Fig. 11 now presents the status of the Deep-
Fake generation-detection battleground. As the out degree
for each node shown in the figure, we can tell how popular
each DeepFake generation method or DeepFake detection
method is. For example, the FaceForensics++ has a large out
degree, which means that it is evaluated by a large number of

Fig. 10 The evolution of DeepFake detection techniques with a fish-
bone diagram. In the main fishbone, the weakness and strengths of each
detection method are presented as well. For each DeepFake detection
method in the sub-fishbone diagram, the milestone studies are added

for presenting the significant progress, especially their novelty on tech-
nical, the problem addressed, and new insight for defending DeepFakes
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Fig. 11 Battleground diagram between DeepFake generation and
detection. The Sankey diagram shows the interactions between vari-
ous DeepFake detection methods (right column) and various DeepFake
generation methods (left column). Both of the generation and detection
methods are sorted by the release time and labeled with the corre-
sponding years (same as the order in Tables 6, 7). Four colors represent

the different types of detection methods introduced in Tables 7: Blue
is Type-I (spatial based) methods, green is Type-II (frequency based)
methods, yellow is Type-III (biological signal based) methods, and red
is Type-IV (others) methods. Interactive diagram is available at http://
www.xujuefei.com/dfsurvey
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Fig. 12 (L) Top-9 most popular DeepFake generation methods or
datasets based on the battleground. (R) 2020’s Top-11 most popular
DeepFake generation methods or datasets based on the battleground

DeepFake detection methods. Similarly, a big clustered con-
nections on the right side indicates that a particular DeepFake
detection method (e.g., Sheng-Yu Wang’s method) has been
evaluated extensively across various DeepFake generation
methods. The colorful curves represent the different types of
detection methods introduced in Table 7 as well as tabulated
in Fig. 9: Blue is Type-I (i.e., spatial based) methods, green is
Type-II (i.e., frequency-based) methods, yellow is Type-III
(i.e., biological signal based) methods, and i.e., red is Type-
IV (others) methods. The ‘self-built’ methods on the left-side
bottom of the battleground represent the nameless methods
addressed by the detection methods on the right side.

Figure 12 shows the top-9 most popular DeepFake gen-
eration methods or datasets based on the topology of the
battleground figure, as well as the top-11most popular Deep-
Fake generation methods or datasets in the year 2020 alone.
As expected, systemically organizedDeepFake datasets such
as FaceForensics++ (Rossler et al. 2019), Celeb-DF (Li
et al. 2020e), DFDC (Dolhansky et al. 2020) as well as
open-sourced high-fidelity face generation methods such as
PGGAN (Karras et al. 2017), StarGAN (Choi et al. 2018),
StyleGAN (Karras et al. 2019), etc., are on the top of the list.

Based on the above discussion about the most popular
or most widely evaluated DeepFake generation methods or
datasets, we have made some interesting observations: (1)
the surveyed DeepFake detectors perform more detection
experiments on DeepFake images than on DeepFake videos;
(2) only a tiny portion of the surveyed detection methods
work on both DeepFake image and video detection tasks;
(3) for those detectors for both DeepFake image and video
detection, most of them focus on the latest high-fidelity
image-based DeepFakes while on the less state-of-the-art
video-based DeepFakes, although both modalities are con-
currently accessible. This can be partially attributed to the
fact that video-based DeepFake datasets are more scarce,
and/or the latest ones are much more challenging to tackle.

We try to capture this phenomenon through the Sankey
diagram in Fig. 13, where only 10 of the surveyed 117
DeepFake detection methods have attempted the DeepFake
detection on both the image and video modalities. A curve

Fig. 13 Relation pairs of the image- and video-based DeepFake gen-
eration methods that are simultaneously evaluated by some DeepFake
detection methods. Interactive diagram is available at http://www.xujuefei.
com/dfsurvey

connecting a node A on the left column and a node B on
the right column means that a particular DeepFake detector
evaluated on the image-based DeepFake generation method
A has also been evaluated on video-based DeepFake gener-
ation method B, as reported in its paper.

Moreover, we try to understand for a particular DeepFake
detectionmethod listed on the right column of Fig. 11 , which
previously published detectors has it benchmarked against.
Figure 14 presents a chord diagram to show the ‘compe-
tition’ among later detectors and earlier ones. In the chord
diagram, each node represents aDeepFake detectionmethod,
and a link connecting a node A and a node B means that the
method A has been compared with the method B as a base-
line in A’s paper, which infers that the method A comes after
B. We also notice that many of the DeepFake detectors are
benchmarked against commonmachine learning (ML) based
classifiers such as KNN and logistic regression, or popular
DNNs such as the ResNet (He et al. 2016), etc. Therefore,
we also list out 30 popular ML-based methods in Fig. 14,
and a link between a DeepFake detection method A and an
ML-based method B can be established when the method
B is compared by the A’s paper. We provide an interactive
diagram4 to facilitate the interpretation of the graph. The
top-5 popular baselines adopted in the evaluation are Xcep-
tionNet (Chollet 2017), Afchar et al. (2018), Nguyen et al.
(2019a), ResNet (He et al. 2016), and Yang et al. (2019b).
XceptionNet, ResNet, and VGG are the top-3 CNN models
that are employed as the baselines for comparison. In par-
ticular, XceptionNet is the most popular baseline and more

4 http://www.xujuefei.com/dfsurvey.
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Fig. 14 A chord diagram represents the comparison among the exist-
ing detection methods. The node indicates the method for DeepFake
detection and the link represents that one of the work is served as the

baseline in the evaluation. The baselines include typical CNN models
and the works with/without the peer review. An interactive diagram is
available at http://www.xujuefei.com/dfsurvey

than one-third studies compare with it. Figure 15 (L) shows
the top-11most popular DeepFake detectionmethods chosen
as baselines and Fig. 15 (R) shows the top-10 most popular
ML-based methods chosen as baselines by various Deep-
Fake detectors (See Fig. 14). We also identify the DeepFake
detection methods that conduct the most extensive compar-
ison experiments, that is, the number of baselines used by
these methods are ranked in the top 9 according to the chord
diagram. Figure 16 (L) shows the top-9 DeepFake detection
methods that benchmark against the most number of base-
lines, and Fig. 16 (R) shows the top-8 DeepFake detection
methods that benchmark against the most number of base-
lines in 2020.

Another way is to measure the popularity of the DeepFake
generation and detection methods through the citation count
as well as citations normalized by the number of days since
exposure. Figure 17 (L) shows the top-10 DeepFake genera-
tion methods or datasets based on their citations. Fig. 17 (R)
shows the top-10 DeepFake generation methods or datasets
based on citations normalized by the number of days since
exposure. Similarly, Fig. 18 (L) shows the top-10 DeepFake
detectionmethods based on citations and Fig. 18 (R) presents
the top-10 DeepFake detection methods based on citations
normalized by the number of days since exposure. In addi-
tion, Fig. 19 shows the top-10 DeepFake generation methods
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Fig. 15 (L) Top-11 most popular DeepFake detection methods chosen
as baselines. (R) Top-10 most popular ML-based methods chosen as
baselines

Fig. 16 (L) Top-9 DeepFake detectionmethods that benchmark against
the most number of baselines. (R) Top-8 DeepFake detection methods
that benchmark against the most number of baselines in 2020
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Fig. 17 (L) Top-10 DeepFake generation methods or datasets based on
citations. (R) Top-10 DeepFake generation methods or datasets based
on normalized citations
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Fig. 18 (L) Top-10 DeepFake detection methods based on citations.
(R) Top-10 DeepFake detection methods based on normalized citations

or datasets based on Elo rating with a default score set to
1400.

Regarding the citation of DeepFake detection methods
reported in Figs. 18 and 11, it is actually difficult to identify
some seminal milestone papers, although some papers have
received more popularity than others. This phenomenon can
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Fig. 19 Top-10 DeepFake generation methods or datasets based on Elo
rating (Wikipedia 2021a). Default score is 1400

be attributed tomultiple factors and is a double-edged sword.
The field of DeepFake detection is relatively new, thus it may
takemore time for anymilestone papers to stand out. The lack
of milestone papers can also be a positive indicator that the
current state-of-the-art researches are multi-threaded and do
not anchor on a few seminal works. Whether we are able
to witness some new research hot zones emerge as the time
goes by, the field is poised to progress at a fast pace.

6 Evasion of DeepFake Detection

With the rapiddevelopment ofDeepFakedetectors, researchers
start paying attention to design methods to evade the fake
faces being detected. Specifically, given a real or fake face,
evasion methods map it to a new one that cannot be correctly
classified by the state-of-the-art DeepFake detectors, hiding
the fake faces from being discovered. An exemplar pipeline
of the evasion of DeepFake detection is shown in Fig. 20. We
can roughly divide all methods into three types.

The first type is based on the adversarial attack. For exam-
ple, Carlini and Farid (2020) add imperceptible adversarial
perturbations to the fake/real faces and show that even the
state-of-the-art DeepFake detectors are vulnerable to both
white-box and black-box attacks (Carlini and Wagner 2017;
Brown et al. 2017) with significant accuracy reduction on
the public datasets (Wang et al. 2020e; Frank et al. 2020).
Similarly, Gandhi and Jain (2020) use the fast gradient sign
method (Goodfellow et al. 2014b) and C&W attacks (Car-
lini and Wagner 2017) to fool DeepFake detectors. Then,
they propose two methods with the Lipschitz regularization
(Woods et al. 2019) and deep image prior (Ulyanov et al.
2018) to improve the adversarial robustness of DeepFake
detectors. Neekhara et al. (2021) further study the adversar-
ial attack-based evasion methods on the more challenging
DeepFake Detection Challenge (DFDC) dataset (Dolhan-
sky et al. 2020) and find that the input-preprocessing steps,
as well as face detection methods across DeepFake detec-
tors, make the adversarial transferability difficult. Then,
they implement a high transferability attack method based
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Fig. 20 Evasion of DeepFake detection via shallow reconstruction
(Huang et al. 2020b)

on the universal adversarial perturbations to alleviate the
challenges. In general, the adversarial attack-based meth-
ods inevitably introduce noise to the face images, leading
to quality reduction.

The second type of methods focus on removing the fake
traces in the frequency domain. Recent works on the detec-
tion of DeepFake images have pointed out that they are
actually easily distinguishable by artifacts in their frequency
spectra. Thus, some generation methods attempt to repair the
flaw in the generation procedure. Durall et al. (2020) show
that CNN-based generative deep networks with common up-
sampling methods cannot reproduce spectral distributions of
the real or natural training data, making the fake or gen-
erated images easily identified. To alleviate this drawback,
they propose a novel spectral regularization objective term
for training the GANs. Jiang et al. (2020a) also note this phe-
nomenon and find that narrowing the frequency domain gap
can improve the image synthesis quality further. To this end,
they propose a frequency domain optimization target (i.e.,
focal frequency loss). The proposed loss enforces the model
to dynamically focus on the frequency components that are
hard to synthesize by down-weighting the easy frequencies.
As a result, the method enhances the synthesis quality signif-
icantly. Jung and Keuper (2020) identify a straightforward
solution for this issue by equipping the generative models
with a spectral discriminator, thus the new trained GANs
can generate images with realistic frequency spectra. These
methods mainly focus on the mismatching between real and
fake faces in the frequency domain while neglecting other
potential factors that may make fake faces be identified eas-
ily.

The third kind of methods regard evasion as a general
image generation process and use advanced image filtering
or generative models to mislead DeepFake detectors. Huang
et al. (2020b) demonstrate that theDeepFake detectors can be
easily evaded via the shallow reconstruction based on sparse
coding and dictionary-based reconstruction. In addition to
the non-deep-learning solution, Huang et al. (2020a, 2021a)
propose to fool the DeepFake detectors by first adding the

deliberate noise to destroy the fake trace in the frequency
domain and then reconstructing the clear counterpart via a
deep kernel prediction network. Besides, Neves et al. (2020)
remove the ‘fingerprints’ in the fake faces through a pre-
trainedGANmodel, which can spoof theDeepFake detectors
while maintaining the visual quality of the fake faces. In
contrast to the above solutions of adding extra modules for
evading DeepFake detection, Osakabe et al. (2021) propose
to enhance the CycleGAN (Zhu et al. 2017) by equipping
the fixed convolutional layers to remove the checkerboard
artifacts.

7 Horizon

In this section, we touch upon the challenges and opportu-
nities for future research directions surrounding DeepFake
generation and DeepFake detection methods, as well as the
evasion of DeepFake detection. The segmented discussions
will be followed by a bird’s-eye view comment of the entire
DeepFake research field moving forward in the epilogue.

7.1 Generation of DeepFakes

We have surveyed and tabulated more than 91 papers pub-
lished through the peer-review process or posted on arXiv
on the topic of DeepFake generation and the datasets tasked
for the DeepFake detection. The observed findings and chal-
lenges can shed some light on the future work in creating
more realistic and detection-evasive DeepFakes. A much
improved DeepFake generation method will in turn push for-
ward the development of the DeepFake detection method.

– Lacking ultra high-resolution images Since PGGANpro-
posed a method to generate high-resolution (1024 ×
1024) images, the newmethods on synthesizing full fake
images haven’t been innovating towards higher resolu-
tion images. With the development of high-definition
display resolution of phones or computers, 1024× 1024
resolution may not enough in the near future.

– Limited properties of face manipulation methods The
attributemanipulationmethods can only change the prop-
erties given by the training set. Thus, the properties
provided by these attribute manipulation methods are
somewhat limited. An attributemanipulationmethod that
is independent of the training set properties is desired.

– Less consideration of video continuity The identity swap
and expression swap usually ignore the continuity of
videos. They do not take physiological signals such as
eye blink frequency, heart beat frequency into consider-
ation.

– Lacking diversified DeepFake datasets The latest fake
dataset are obsessed with being large scale. Most of them
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only expand the diversity of the content-related factors
such as gender and age of the subject, the place where
the face photo is taken, the illumination condition, etc.
The diversity in video quality such as various resolu-
tions, various compression degrees, or other degradations
commonly found in videos, etc., have not been fully
taken into account. Furthermore, the DeepFake gener-
ation method used by these fake dataset are somewhat
limited, which may fall short when tasked to demon-
strate the diversity of different generation methods. The
latest DeeperForensics-1.0 (Jiang et al. 2020b) dataset
has been a good attempt in this regard by incorporating
diverse perturbations such as Gaussian blue, added noise,
JPEG compression, contrast change, etc. However, at the
moment these perturbations are artificially added image-
level degradations during post-processing, rather than
organic video-level degradations such as bit-rate varia-
tions, choices of codec, etc. We hope to see more organic
degradations incorporated in the future generation of the
dataset, i.e., DeeperForensics-2.0.

– Do not contain common sense fakeMost of the fakeness
lies in the image texture. However, the fake datasets usu-
ally do not contain common sense fake such as three-eye
human, one-horned human, etc. These fakes are obvious
to humans but DeepFake detection methods may lack the
common sense to judge properly.

– Lacking a platform for demonstrating the different fake
datasetsThere lacks a platform for demonstrating the dif-
ferent fake datasets. On such a platform, we can directly
see the different image style of the various fake datasets.
The platform can also provide the information of the fake
dataset such as (published year, image resolution, gener-
ation method, degraded or not, download link, the best
detection method on each dataset, etc.).

– Lacking sub-categorized DeepFake detection datasets
with respect to gender, age, ethnicity DeepFake detec-
tion benchmark datasets, likemanyother face recognition
datasets, have data biases. For example, in many cases,
the majority faces are from Caucasian males, and many
of the internet-crawled datasets have the celebrity biases.
With unbalanced datasets with respect to gender, age,
and ethnicity to train the model, the learned DeepFake
detector can become data biased as well. It is worth-
while to push for a more balanced DeepFake detection
benchmark. We have seen some recent attempts to build
DeepFake detection dataset based on one ethnicity group
such as (Kwon et al. 2021). More development in this
direction is needed.

– Lackingmulti-faceDeepFakedetectiondatasetsFormost
of the existing DeepFake detection benchmark datasets,
single face is DeepFake manipulated in the image or
video, and when multiple faces are present, oftentimes,
only one of the faces is DeepFake manipulated (usu-

ally the one with the largest detection bounding box
size). There is a need to push for DeepFake detection
benchmarks that involve multiple faces or with unknown
number of DeepFake manipulated faces in the crowd.
This effort will not only pose a new dimension of the
challenge for DeepFake detectors, considering that the
manipulation, if happens, may be hidden in the crowd
and with unknown number. Also, this will foster new
research into the DeepFake detection method where cues
can now be drawn beyond individual faces and from the
peers in the images or videos. It is good to see that one of
the latest benchmarks (Le et al. 2021) is created towards
that goal, and we hope to see more.

7.2 Detection of DeepFakes

We have investigated and tabulated more than 117 papers
published through the peer-review process or posted on
arXiv on the topic of DeepFake detection. We have observed
some interesting findings and challenges, after reviewing the
papers, which could inspire future work in defending Deep-
Fakes more effectively.

– Lacking public AI-synthesized image datasets Almost
all the existing studies build their own image dataset
with various GANs to evaluate the effectiveness of their
method in defending still image DeepFakes. They do not
have a consensus onwhich forgery image datasets need to
be used in evaluation. These studies claim that they have
achieved competitive results in detecting various GAN-
synthesized images built on their own. However, the
quality of these generated fake images is still unknown,
i.e., if there are any obvious artifacts that exist in the
image. A public GAN-synthesized fake image dataset
needs to be developed by the community for advancing
this challenging research field.

– Lacking competitive baselines in comparison In evaluat-
ing the performance of their proposed methods, existing
studies prefer to employ some simple baselines (e.g.,
simple DNN-based methods, naive methods by lever-
aging perceptible artifacts) rather than the SOTA work
to demonstrate that they have beaten the prior studies.
We hope that future studies could compare their work
with some competitive baselines which are highlighted
in Tables 7 to demonstrate the advances of their work.

– Generalization abilities of DeepFake detectors Tackling
the unknown DeepFakes is one of the key challenges
in fighting against DeepFakes. In recent years, a series
of studies are working towards this goal to develop
more generalized methods. Unfortunately, these works
are merely evaluated on simple DeepFake video datasets,
like FaceForensics++. We hope that future work can
focus more on challenging datasets.
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– Robustness of DeepFake detectors In the real-world,
DeepFakes can easily suffer from various degrada-
tions, such as image/video compression, added Gaus-
sian noises, blurring, low-light (Juefei-Xu and Savvides
2015), low-resolution (Abiantun et al. 2019), etc. Exist-
ing studies proposed various robustmethods to tackle this
simple degradation. However, more than 90% of meth-
ods leverage DNNs as their backbone to determine real
and fake in the final classifier. The DNNs are vulnerable
to adversarial noise attacks with imperceptible additive
noises, which is demonstrated by prior works. Unfor-
tunately, we observe that all the existing studies failed
in evaluating their robustness against adversarial noise
attacks. In addition, the SOTA detectors may fall short
when faces are under occlusions such as facial masks
(Zhu et al. 2022) where only the eye region is visible
(Juefei-Xu and Savvides 2016; Juefei-Xu et al. 2015),
heavy makeups, heavy facial hairs, etc.

– Capabilities of DeepFake detectors Improving the gen-
eralization capabilities to tackle the emerging unknown
DeepFakes, enhancing the robustness against various
DeepFake degradations including simple transforma-
tions and adversarial attacks, and explaining why the
detector works are the three key factors in developing
a practical DeepFake detector which could be deployed
in the wild. In reviewing the recent papers with regard
to detecting DeepFakes, we find that less than ten papers
have evaluated the capabilities of their method from all
three perspectives.

– AComprehensive evaluationmetricsThe performance of
DeepFake detectors is highly determined by the quality of
DeepFakes. The low-qualityDeepFakes (e.g., DeepFake-
TIMIT, FaceForensic++) with observable artifacts could
be easily identified by almost all the DeepFake detectors
with high confidence, while, the challenging high-quality
DeepFakes (e.g., Celeb-DF, DFDC)which could fool our
eyes can be hardly determined by detectors. The existing
studies report their experimental results by merely con-
sidering the detection accuracy and false alarms, which
ignore the relation with the quality of DeepFakes, espe-
cially from the self-builtDeepFake datasets.Wehope that
more comprehensive experimental results by considering
the quality of DeepFakes should be considered in future
work. Thus, new metrics for measuring the quality of
DeepFakes need to be proposed by researchers.

– A platform for evaluation In Tables 7, we can find that
the existing DeepFake detectors can easily achieve more
than 90% detection accuracy in fighting the common
DeepFakes. However, in a DeepFake Detection Chal-
lenge (DFDC) built by Facebook, the final competition
results show that the winner can only give less than 70%
accuracy in detecting DeepFakes. Another DeepFake
detection challenge, called DeeperForensics Challenge

2020 (Jiang et al. 2021a), is hosted on DeeperForensics-
1.0 dataset which is a real-world face forgery detection
dataset. However, only 25 teamsmade valid submissions,
and only one method adopted for generating DeepFakes
in DeeperForensics-1.0. The results cannot represent
the SOTA performance in DeepFake detection. Thus,
the DeepFake is still a real threat to the community
and academia needs to develop more practical detection
methods. Obviously, the reported experimental results in
academic papers can not reflect the true performance of
their methods. A platform, incorporating the challenging
DeepFakedatasets and competitive baselines, is not ready
for evaluating the true performance of existing DeepFake
detectors and the future DeepFake detectors. FaceForen-
sic++ provides a simple platform with low-quality and
simple CNNs as baselines, which might fall short when
tackling the ever-progressing DeepFakes.

7.3 Evasion of DeepFake Detection

We have discussed three kinds of methods for evading Deep-
Fake detection in Sect. 6, which mainly aims at misleading
the DeepFake detectors or removing artifacts introduced by
DeepFake generations. In the near future, we hope that the
evading methods would evade new DeepFake detectors by
developing more advanced adversarial attacks that consider
natural degradation in the real world and deeply removing
the fake traces in both images and videos. More specifically,
the following directions should be noted:

– Misleading DeepFake detection via natural degrada-
tion Existing adversarial attack-based evasion methods
mainly rely on the additive adversarial perturbations that
do not exist in the real world and might be detected by
recent works on detecting adversarial examples (Pang
et al. 2018; Zheng and Hong 2018). Moreover, the
state-of-the-art defense methods are also able to inval-
idate the adversarial attacks, thus making the evasion
methods less effective. A possible solution for this prob-
lem is to design natural degradation-based adversarial
attacks, e.g., motion blur, light variation, shadow syn-
thetic, etc., allowing generating realistic examples while
misleading the DeepFake detection. For example, Guo
et al. (2020a) realize an adversarial blur attack that can
generate realistic-blurred images and mislead the state-
of-the-art deep neural networks (Guo et al. 2021). Similar
works are proposed for natural degradations like weather
elements (Zhai et al. 2022, 2020;Gao et al. 2021b), expo-
sure (Gao et al. 2022, 2020; Cheng et al. 2020), lighting
(Gao et al. 2021c; Tian et al. 2021b, a; Sun et al. 2022),
shadow (Fu et al. 2021a, b), defocus blur (Huang et al.
2021b), etc. In the future, we can employ these attacks
to evade the DeepFake detection with the natural adver-
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sarial examples that can be hardly defended through the
state-of-the-art defense methods designed for additive
adversarial perturbations.

– Faking the physiological signal in fake videos The state-
of-the-art DeepFake detector starts using physiological
signal, e.g., heart rate extracted from the video, as an
effective fake indicator (Qi et al. 2020), because even the
advanced GAN methods can hardly preserve the heart
rate signal that usually presents as fine-grain color vari-
ation among frames. To evading such new detectors, we
should develop a novel evading method allowing the
processed fake videos to also contain the normal heart
rate single. This actually requires us to learn how to add
sequential color variations into the frames in a fake video,
letting the rhythm detection methods obtain normal heart
rate.

– Joint perception and appearance fake trace removal
Existing fake trace removal-based evading methods
mainly focus on how to remove the known appear-
ance artifacts, e.g., spectral distributions in the frequency
domain, introduced by DeepFake generations while
ignoring their influence on the perception, e.g., deep rep-
resentations of fake faces, which seems to be the essential
factor for effective DeepFake detection. Hence, in the
near future, a more advanced fake trace removal could
be explored by jointly removing the artifacts and percep-
tions of fake traces.

7.4 Epilogue and the Next Chapter

Now that we have discussed the existing challenges and
opportunities for future studies, it is a good segue into some
final thoughts regarding DeepFakes.

Based on the discussions throughout this survey paper, we
can see that at the moment, the work on DeepFake detection
heavily relies on curated datasets with the latest DeepFake
generation methods incorporated that show the highest level
of realisticity when the dataset is created. We would like to
emphasize the significance of the continued progression of
such datasets. Unlike the acclaimed ImageNet (Deng et al.
2009) classification tasks, whose image classification diffi-
culty will remain relatively unchanged throughout the years,
the DeepFake detection tasks are becoming increasingly
more difficult year over year since the DeepFake generation
method can produce increasingly more realistic DeepFakes.
In this sense, it is imperative to hold periodic ImageNet-
style contests and/or produce updated DeepFake detection
datasets to keep track of the latest DeepFake generation
methods and encourage competition among various research
groups in order to advance the effort of countering malicious
DeepFakes. A very fitting example would be the latest Deep-
erForensics Challenge 2020 on Real-World Face Forgery
Detection (Jiang et al. 2021a).

Needless to say, the various DeepFake datasets, produced
by the DeepFake generators, are valuable assets for develop-
ing next-generation DeepFake detectors. Over the years, we
have seen that the datasets have grown tremendously in sizes,
quality, diversity, and levels of challenging scenarios. How
will the datasets evolve in the next five, ten years is unknown
at this point, but we envision that the DeepFake datasets may
evolve into a dichotomy following similar trends as other
computer vision datasets. On one hand, there will be con-
vergence of many dataset sources into a few very large-scale
standardized evaluation datasets for the DeepFake commu-
nity, similar to the scales of the ImageNet dataset or the
COCOobject detection dataset (Lin et al. 2014). These large-
scale datasets will be less frequently updated and will most
likely be served as the go-to benchmark and tools for devel-
oping and evaluating DeepFake algorithms. Next-generation
large-scale general-purpose DeepFake foundational models
can be developed on these large-scale datasets. In computer
vision and natural language processing, foundational mod-
els (Bommasani et al. 2021) are those models trained on
broad data at scale (usually in multi-modality such as vision
and language) and are adaptable to a wide range of down-
stream tasks. Examples of vision and language foundational
models include Florence (Yuan et al. 2021), CLIP (Rad-
ford et al. 2021), ALIGN (Jia et al. 2021), Wu Dao (Beijing
Academy of Artificial Intelligence 2021), etc. We envision
that similar general-purposeDeepFake detectors that are able
to deal with the majority of DeepFake types will emerge.
On the other hand, proprietary datasets that are smaller in
scale that are more flexible and more frequently updated are
also likely to emerge. These datasets, on the contrary, are
best catered towards developing and evaluating ad-hocDeep-
Fake algorithms for particular types of DeepFake generators
that are newly emerged, or for particular long-tail scenar-
ios, and more importantly, for finetuning the aforementioned
DeepFake foundational models with particular downstream
DeepFake-related tasks. With the two types of datasets dis-
cussed above, i.e., large-scale general-purpose datasets vs.
smaller-scale proprietary datasets, if one DeepFake dataset
is out of date, it can still be beneficial to the community by
being incorporated into the first type of the datasets because
it is deemed very valuable for maintaining the large scale and
diversity of the datasets.Meanwhile, newly emerged datasets
from the latest DeepFake generators will carry the weight
for pushing the development of next-generation DeepFake
detectors, and when they become obsolete, they will be
replaced by newer ones, and theywill still find their way back
to contribute to the first type of general-purpose datasets.

There have not been many studies on the intersection
of DeepFake generation and adversarial attack. The current
research landscape is still largely fragmented w.r.t.the two
domains. Most common adversarial attacks create image-
level pixel perturbations to alter the classification output
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through access to the white-boxmodel parameters. However,
such perturbation is not limited to image-level representa-
tions.When we decouple the face representation into various
attribute/semantic latent sub-representations such as identity,
expression, gender, ethnicity, etc., from the adversarial attack
point of view, we can see clearly that the identity swapped
DeepFake is merely an adversarial perturbation on the iden-
tity sub-representation, and similarly for expression swapped
DeepFakes. From this viewing angle, how the DeepFake nar-
rative can fit into the adversarial robustness studies is worth
looking forward to.

Incorporating other multi-media modalities such as voice
and sound will help to counter malicious DeepFakes. In this
survey, although we have focused on the image and video
modalities, it is quite intuitive to monitor the realism of the
DNN generated fake voice and sound (Wang et al. 2020c)
in a DeepFake video. Being able to detect multi-modal fake
traces, such as traces from standalone visual cues, standalone
acoustic cues, as well as the interactions between them, such
as synchronization, the combined effort in detecting Deep-
Fakes will most likely be boosted by practicing Liebig’s
barrel theory.

One issue surrounding the battle between DeepFake gen-
eration methods and DeepFake detection methods is that the
detection method is usually lagging behind. This is generally
true for adversaries and defenders in any “battle” scenarios
such as the development of Covid-19 vaccination happening
after the Covid-19 outbreak because the knowledge of the
virus is required for the vaccination development. The same
applies here to DeepFake problems. The currently developed
DeepFake detection methods are still somewhat myopic in
the sense that they can most confidently tackle DeepFakes
generated by existing methods, but will be outcompeted by
DeepFakes generated by future generation techniques. How
to make DeepFake detection methods forward-looking and
remain effective, with or without small tweaks, through itera-
tions of DeepFake generation methods is an open challenge.
The earlier-mentioned DeepFake foundational models can
potentially provide a more friendly training paradigm for the
continual evolving of the DeepFake algorithms on both sides
of the battleground. Meanwhile, there are some proactive
measures that the defenders (such as social media plat-
forms where DeepFakes are most likely disseminated) can
take in order to become more effective in fighting malicious
DeepFakes, for example, through the responsible disclosure
of generative models using GAN fingerprinting (Yu et al.
2020a), or embedding an invisible tag into the original clean
image uploaded by the user which can remain retrievable
after the DeepFake generation process so that at a later time
when the DeepFake version is re-uploaded by the bad actor,
the platform is able to retrieve the tag and block the dissem-
ination (Wang et al. 2020b).

From an algorithmic point of view, two of the major
research hot topics in the machine learning community at
the moment are self-supervised learning and transformer for
vision and language problems. Self-supervised learning, free
of labels, enables continuous life-long learning on an infi-
nite and smoothly changing data stream (Sun et al. 2020b).
What would self-supervised learning in the domain of Deep-
Fake detection be like? Transformer language models are
now being operationalized to computer vision domain with
the latest ImageGPT (Chen et al. 2020), DALL-E (Ope-
nAI 2021), and subsequent CLIP (Radford et al. 2021) all
from OpenAI, as well as Google’s ALIGN (Jia et al. 2021).
They, togetherwith other latest generative approaches such as
vector quantized variational autoencoder (VQ-VAE) (Razavi
et al. 2019), VQGAN + autoregressive transformer (Esser
et al. 2021), etc., will definitely supplement and enhance the
DeepFake generation techniques. We have seen the latest
vision transformers (ViT) (Dosovitskiy et al. 2020) already
equipped with the state-of-the-art image generation capabil-
ities such as the TransGAN (Jiang et al. 2021b) and Paint
Transformer (Liu et al. 2021c). Although there hasn’t been
a ViT dedicated for DeepFake generation or detection yet,
the unprecedentedly fast growing pace and increasing ubiq-
uity in ViTs (Khan et al. 2021) to tackle various computer
vision problems will eventually turn the landscape of Deep-
Fake generation and detection into a ViT-based one. With
both sides of the DeepFake battleground now equipped with
the newest technological expertise, the clash between the two
parties will, for sure, spark flaming research in the foresee-
able future.

The humanity may reach a stage where DeepFakes have
become so genuinely looking that they are beyond human
and machine’s capability to distinguish from the real ones, a
“DeepFake singularity”, if you will. If this day is inevitable,
be it a utopia or a dystopia, perhaps a more interesting era is
upon us. Are we brave enough to embrace it?

8 Conclusion

In this survey, we have provided a comprehensive overview
and detailed analysis of the research work on the topic of
DeepFake generation, DeepFake detection as well as evasion
of DeepFake detection, with more than 318 research papers
carefully surveyed. We have presented the taxonomy of var-
ious DeepFake generation methods and the categorization of
variousDeepFake detectionmethods alongwith highlights of
the technical evolution of themethods, andmore importantly,
we have showcased the battleground between the two parties
with detailed interactions between the adversaries (DeepFake
generation methods) and the defenders (DeepFake detection
methods). The battleground allows fresh perspective into the
latest landscape of the DeepFake research and can provide
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valuable analysis towards the research challenges and oppor-
tunities as well as research trends and directions in the field
of DeepFake generation and detection. We hope that this
survey paper can help empower and fast-track researchers
and practitioners in this field to identify the most pressing
research topics and attract more researchers to contribute to
this emerging and rapidly growing field.
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